Nguyen et al. report that palmitate triggers ROS-induced Ca2+ overload and mTORC1 activation at the lysosomal membrane, resulting in autophagy defects. Restoring perilysosomal Ca2+ homeostasis offers protection against β cell lipotoxicity. The cover shows an electron micrograph of mouse pancreatic β cells.
Pathogenic variants in kinesin KIF11 underlie microcephaly-lymphedema-chorioretinopathy (MLC) syndrome. Although well known for regulating spindle dynamics ensuring successful cell division, the association of KIF11 (encoding EG5) with development of the lymphatic system, and how KIF11 pathogenic variants lead to lymphatic dysfunction and lymphedema remain unknown. Using patient-derived lymphoblastoid cells, we demonstrated that MLC patients carrying pathogenic stop-gain variants in KIF11 have reduced mRNA and protein levels. Lymphoscintigraphy showed reduced tracer absorption, and intestinal lymphangiectasia was detected in one patient, pointing to impairment of lymphatic function caused by KIF11 haploinsufficiency. We revealed that KIF11 is expressed in early human and mouse development with the lymphatic markers VEGFR3, Podoplanin and PROX1. In zebrafish, scRNA-seq identified kif11 specifically expressed in endothelial precursors. In human lymphatic endothelial cells (LECs), EG5 inhibition with Ispinesib, reduced VEGFC-driven AKT phosphorylation, migration and spheroid sprouting. KIF11 knockdown reduced PROX1 and VEGFR3 expression, providing for the first time a link between KIF11 and drivers of lymphangiogenesis and lymphatic identity.
Kazim Ogmen, Sara E. Dobbins, Rose Yinghan Behncke, Ines Martinez-Corral, Ryan C.S. Brown, Michelle Meier, Sascha Ulferts, Nils Rouven Hansmeier, Ege Sackey, Ahlam Alqahtani, Christina Karapouliou, Dionysios Grigoriadis, Juan C. Del Rey Jimenez, Michael Oberlin, Denise Williams, Arzu Ekici, Kadri Karaer, Steve Jeffery, Peter Mortimer, Kristiana Gordon, Kazuhide S. Okuda, Benjamin M. Hogan, Taija Mäkinen, René Hägerling, Sahar Mansour, Silvia Martin-Almedina, Pia Ostergaard
Developing biomarkers to quantitatively monitor disease-specific T cell activity is crucial for assessing type 1 diabetes (T1D) progression and evaluating immunotherapies. This study presents an approach using V-gene targeted sequencing to quantify T cell receptor (TCR) clonotypes as biomarkers for pathogenic T cells in T1D. We identified "public" TCR clonotypes shared among multiple non-obese diabetic (NOD) mice and human organ donors, with a subset expressed exclusively by islet antigen-reactive T cells in those with T1D. Employing V-gene targeted sequencing of only TCRs containing TRAV16/16D allowed quantitative detection of the public islet antigen-reactive TCR clonotypes in peripheral blood of NOD mice. Frequencies of these public TCR clonotypes distinguished prediabetic NOD mice from those protected from diabetes. In human islets, public TCR clonotypes identical to preproinsulin-specific clones were exclusively found in T1D donors. This quantifiable TCR sequencing approach uncovered public, disease-specific clonotypes in T1D, providing biomarker candidates to monitor pathogenic T cell frequencies in blood for assessing disease activity and therapeutic response.
Laurie G. Landry, Kristen L. Wells, Amanda M. Anderson, Kristen R. Miller, Kenneth L. Jones, Aaron W. Michels, Maki Nakayama
BACKGROUND. Chimeric antigen receptor (CAR) T-cells are a leading immunotherapy for refractory B-cell malignancies; however, their impact is limited by toxicity and incomplete efficacy. Daily (circadian) rhythms in immune function may offer a lever to boost therapeutic success; however, their clinical relevance to CAR T-cell therapy remains unknown. METHODS. We retrospectively analyzed CAR T-cell survival and complications based on infusion time at two geographically distinct hospitals in St. Louis, Missouri (n=384), and Portland, Oregon (n=331) between 1/2018 and 3/2025. The primary outcome was 90-day overall survival (OS). Secondary outcomes included event-free survival (EFS), cytokine release syndrome (CRS), immune cell-associated neurotoxicity syndrome (ICANS), ICU admission, shock, respiratory failure, and infection. We quantified the independent relationship between infusion time and outcomes using multivariable mixed-effects logistic regression and time-to-event models, adjusting for patient, oncologic, and treatment characteristics. RESULTS. The therapeutic index of CAR-T cells inversely correlated with administration time, with later infusions associated with lower effectiveness and more adverse outcomes. For each hour that CAR T-cell treatment was delayed, the adjusted odds of 90-day mortality increased by 24% (aOR 0.64-0.88, p=<0.001), severe neurotoxicity by 17% (p=0.023), and mechanical ventilation by 27% (p=0.026). These temporal patterns were most pronounced in patients receiving CD19-targeting CAR T-cell products. In contrast, we did not find an association between infusion time and severe CRS (aOR 0.99, 95% CI 0.75–1.27, p=0.92). CONCLUSION. Time of day is a potent and easily modifiable factor that could optimize CAR T-cell clinical performance. FUNDING. National Institutes of Health.
Patrick G. Lyons, Emily Gill, Prisha Kumar, Melissa Beasley, Brenna Park-Egan, Zulfiqar A. Lokhandwala, Katie M. Lebold, Brandon Hayes-Lattin, Catherine L. Hough, Nathan Singh, Guy Hazan, Huram Mok, Janice M. Huss, Colleen A. McEvoy, Jeffrey A. Haspel
Few HIV-specific epitopes restricted by non-classical HLA-E have been described, and even less is known about the functional profile of responding CD8 T cells (CD8s). This study evaluates the functional characteristics of CD8s targeting the Gag epitope KF11 (KAFSPEVIPMF) restricted by either HLA-E (E-CD8s) or HLA-B57 (B57-CD8s). CD8s from eight people with HIV (PWH) were cocultured with KF11 peptide presented by cell lines expressing HLA-B*57:01, HLA-E*01:01 or E*01:03. CD8 responses were analyzed using scRNA-seq and scTCR-seq. Supernatants were also assessed for soluble protein profiling. HLA-I multimers were developed to identify CD8s restricted by HLA-B57 and/or HLA-E ex vivo. B57-CD8s secreted higher levels of cytotoxic cytokines such as IFNγ, whereas E-CD8s produced more chemotactic cytokines, including RANTES, CXCL10 (IP-10), and IL27, findings which were corroborated through scRNA sequencing. TCR clonotypes stimulated by KF11 were cross-restricted by HLA-B*57 and HLA-E*01/03 as demonstrated by in vitro T cell reporter assays and ex vivo multimer screening. Ex vivo CD8s were singly restricted by HLA-B57 and HLA-E, with dual restriction only observed in PWH with lower viral load. These findings demonstrate that certain HIV-specific CD8s in PWH exhibit dual restriction by HLA-B*57 and HLA-E*01/03, leading to functionally distinct immune responses depending upon the restricting allele(s).
Kevin J. Maroney, Michael A. Rose, Allisa K. Oman, Abha Chopra, Hua-Shiuan Hsieh, Zerufael Derza, Rachel Waterworth, Mark A. Brockman, Spyros A. Kalams, Anju Bansal, Paul A. Goepfert
Kidney organoids are an emerging tool for disease modeling, especially genetic diseases. Among these diseases, X-linked Alport syndrome (XLAS) is a hematuric nephropathy affecting the glomerular basement membrane (GBM) secondary to pathogenic variations in the COL4A5 gene encoding the α5 subunit of type IV collagen [α5(IV)]. In patients carrying pathogenic variations affecting splicing, the use of antisense oligonucleotides (ASOs) offers immense therapeutic hope. In this study, we develop a framework combining the use of patient-derived cells and kidney organoids to provide evidence of the therapeutic efficacy of ASOs in XLAS patients. Using multiomics analysis, we describe the development of GBM in wild-type and mutated human kidney organoids. We show that GBM maturation is a dynamic process, which requires long organoid culture. Then, using semi-automated quantification of α5(IV) at basement membranes in organoids carrying the splicing variants identified in patients, we demonstrate the efficacy of ASO treatment for α5(IV) restoration. These data contribute to our understanding of the development of GBM in kidney organoids and pave the way for a therapeutic screening platform for patients.
Hassan Saei, Bruno Estebe, Nicolas Goudin, Mahsa Esmailpour, Julie Haure, Olivier Gribouval, Christelle Arrondel, Vincent Moriniere, Pinyuan Tian, Rachel Lennon, Corinne Antignac, Geraldine Mollet, Guillaume Dorval