Gas flow is fundamental for driving tidal ventilation and thus the speed of lung motion, but current bias flow settings to support the preterm lung after birth are without an evidence base. We aimed to determine the role of gas bias flow rates to generate positive pressure ventilation in initiating early lung injury pathways in the preterm lamb. Using slower speeds to inflate the lung during tidal ventilation (gas flow rates 4-6 L/min) did not impact lung mechanics, mechanical power or gas exchange compared to those currently used in clinical practice (8-10 L/min). Speed of pressure and volume change during inflation were faster with higher flow rates. Lower flow rates resulted in less bronchoalveolar fluid protein, better lung morphology and fewer detached epithelial cells. Overall, relative to unventilated fetal controls, there was greater protein change using 8-10 L/min, which was associated with enrichment of acute inflammatory and innate responses. Slowing the speed of lung motion by supporting the preterm lung from birth with lower flow rates than currently used clinically resulted in less lung injury without compromising tidal ventilation or gas exchange.
David G. Tingay, Monique Fatmous, Kelly Kenna, Jack Chapman, Ellen Douglas, Arun Sett, Qi Hui Poh, Sophia I. Dahm, Tuyen Kim Quach, Magdy Sourial, Haoyun Fang, David W. Greening, Prue M. Pereira-Fantini
Spinocerebellar ataxia type 7 (SCA7) is an autosomal dominant neurological disorder caused by a deleterious CAG repeat expansion in the coding region of the ataxin-7 gene. Infantile onset SCA7 leads to severe clinical manifestation of respiratory distress, but the exact cause of respiratory impairment remains unclear. Using the infantile SCA7 mouse model, the SCA7266Q/5Q mouse, we examined the impact of pathological poly-Q-ataxin-7 mutant ataxin-7 on hypoglossal (XII) and phrenic motor units. We identified the transcript profile of the medulla and cervical spinal cord and, investigated the XII and phrenic nerve and the neuromuscular junctions in the diaphragm and tongue. SCA-7 astrocytes showed significant intranuclear inclusions of ataxin-7 in the XII and putative phrenic motor nuclei. Transcriptomic analysis revealed dysregulation of genes involved in amino acid and neurotransmitter transportation and myelination. Additionally, SCA7 mice demonstrated blunted efferent output of the XII nerve and demyelination in both XII and phrenic nerves. Finally, there was an increased number of NMJ clusters with higher expression of synaptic markers in SCA7 mice compared to WT controls. These pre-clinical findings elucidate the underlying pathophysiology responsible for impaired glial cell function and death leading to dysphagia, aspiration and respiratory failure in infantile SCA7.
Debolina Dipankar Biswas, Yihan Shi, Léa El Haddad, Ronit Sethi, Meredith L. Huston, Sean Kehoe, Evelyn R. Scarrow, Laura M. Strickland, Logan A. Pucci, Justin S. Dhindsa, Ani Hunanyan, Albert R. La Spada, Mai K. ElMallah
Primary ciliary dyskinesia (PCD) is a genetic condition that results in dysmotile cilia. The repercussions of cilia dysmotility and gene variants on the multiciliated cell remain poorly understood. We used single-cell RNA sequencing, proteomics, and advanced microscopy to compare primary culture epithelial cells from patients with PCD, their heterozygous mothers, healthy individuals, and induced pluripotent stem (iPS) cells generated from a PCD patient. Transcriptomic analysis revealed unique signatures in PCD airway cells compared to their mothers and healthy individuals. Gene expression in heterozygous mothers’ cells diverged from both control and PCD cells, marked by increased inflammatory and cellular stress signatures. Primary and iPS-derived PCD multiciliated cells had increased expression of glutathione-S-transferases, GSTA2 and GSTA1, as well as NRF2 target genes, accompanied by elevated levels of reactive oxygen species (ROS). Immunogold labeling in human cilia and proteomic analysis of the ciliated organism, Chlamydomonas reinhardtii, demonstrated that GSTA2 localizes to motile cilia. Loss of human GSTA2 and C. reinhardtii GSTA resulted in slowed cilia motility pointing to local cilia regulatory roles. Our findings identify cellular responses unique to PCD variants and independent of environmental stress and uncover a dedicated ciliary GSTA2 pathway essential for normal motility that may be a therapeutic target.
Jeffrey R. Koenitzer, Deepesh Kumar Gupta, Wang Kyaw Twan, Huihui Xu, Nicholas Hadas, Finn J. Hawkins, Mary Lou Beermann, Gervette M. Penny, Nathan T. Wamsley, Andrew Berical, Michael B. Major, Susan K. Dutcher, Steven L. Brody, Amjad Horani
Fibrosis in the lung is thought to be driven by epithelial cell dysfunction and aberrant cell-cell interactions. Unveiling the molecular mechanisms of cellular plasticity and cell-cell interactions is imperative to elucidate lung regenerative capacity and aberrant repair in pulmonary fibrosis. By mining publicly available RNA-seq datasets, we identified loss of CCAAT enhancer-binding protein alpha (CEBPA) as a candidate contributor to idiopathic pulmonary fibrosis (IPF). We used conditional knockout mice, scRNA-seq, lung organoids, small-molecule inhibition and novel gene manipulation methods to investigate the role of CEBPA in lung fibrosis and repair. Long term (6 month+) of Cebpa loss in AT2 cells caused spontaneous fibrosis and increased susceptibility to bleomycin-induced fibrosis. Cebpa knockout in these mice significantly decreased AT2 cell numbers in the lung and reduced expression of surfactant homeostasis genes, while increasing inflammatory cell recruitment as well as upregulating S100a8/a9 in AT2 cells. In vivo treatment with an S100A8/A9 inhibitor alleviated experimental lung fibrosis. Restoring CEBPA expression in lung organoids ex vivo and during experimental lung fibrosis in vivo rescued CEBPA deficiency-mediated phenotypes. Our study establishes a direct mechanistic link between CEBPA repression, impaired AT2 cell identity, disrupted tissue homeostasis, and lung fibrosis.
Qi Tan, Jack H. Wellmerling, Shengren Song, Sara R. Dresler, Jeffrey A. Meridew, Kyoung M. Choi, Yong Li, Y.S. Prakash, Daniel J. Tschumperlin
Antifibrotic therapy with nintedanib is the clinical mainstay in the treatment of progressive fibrosing interstitial lung disease (ILD). High-dimensional medical image analysis, known as radiomics, provides quantitative insights into organ-scale pathophysiology, generating digital disease fingerprints. Here, we used an integrative analysis of radiomic and proteomic profiles (radioproteomics) to assess whether changes in radiomic signatures can stratify the degree of antifibrotic response to nintedanib in (experimental) fibrosing ILD. Unsupervised clustering of delta radiomic profiles revealed two distinct imaging phenotypes in mice treated with nintedanib, contrary to conventional densitometry readouts, which showed a more uniform response. Integrative analysis of delta radiomics and proteomics demonstrated that these phenotypes reflected different treatment response states, as further evidenced on transcriptional and cellular levels. Importantly, radioproteomics signatures paralleled disease- and drug related biological pathway activity with high specificity, including extracellular matrix (ECM) remodeling, cell cycle activity, wound healing, and metabolic activity. Evaluation of the preclinical molecular response-defining features, particularly those linked to ECM remodeling, in a cohort of nintedanib-treated fibrosing ILD patients, accurately stratified patients based on their extent of lung function decline. In conclusion, delta radiomics has great potential to serve as a non-invasive and readily accessible surrogate of molecular response phenotypes in fibrosing ILD. This could pave the way for personalized treatment strategies and improved patient outcomes.
David Lauer, Cheryl Y. Magnin, Luca R. Kolly, Huijuan Wang, Matthias Brunner, Mamta Chabria, Grazia M. Cereghetti, Hubert S. Gabryś, Stephanie Tanadini-Lang, Anne-Christine Uldry, Manfred Heller, Stijn E. Verleden, Kerstin Klein, Adela-Cristina Sarbu, Manuela Funke-Chambour, Lukas Ebner, Oliver Distler, Britta Maurer, Janine Gote-Schniering
The number of adults living with cystic fibrosis (CF) has already increased significantly due to drastic improvements in life expectancy attributable to advances in treatment including the development of highly effective modulator therapy. Chronic airway inflammation in cystic fibrosis (CF) contributes to morbidity and mortality and aging processes like ‘inflammaging’ and cell senescence impact CF pathology. Our results show that single cell RNA sequencing data, human primary bronchial epithelial cells from non-CF and CF donors, a CF bronchial epithelial cell line, and Cftr knockout (Cftr–/–) rats all demonstrated increased cell senescence markers in the CF bronchial epithelium. This was associated with upregulation of fibroblast growth factor receptors (FGFRs) and mitogen-activated protein kinase (MAPK) p38. Inhibition of FGFRs, specifically FGFR4 and to some extent FGFR1 attenuated cell senescence and improved mucociliary clearance, which was associated with MAPK p38 signaling. Mucociliary dysfunction could also be improved using a combination of senolytics in a CF ex vivo model. In summary, FGFR/MAPK p38 signaling contributes to cell senescence in CF airways, which is associated with impaired mucociliary clearance. Therefore, attenuation of cell senescence in the CF airways might be a future therapeutic strategy improving mucociliary dysfunction and lung disease in an aging CF population.
Molly Easter, Meghan June Hirsch, Elex Harris, Patrick Henry Howze IV, Emma Lea Matthews, Luke I. Jones, Seth Bollenbecker, Shia Vang, Daniel J. Tyrrell, Yan Y. Sanders, Susan E. Birket, Jarrod W. Barnes, Stefanie Krick
Mucus plugs occlude airways to obstruct airflow in asthma. Studies in patients and in mouse models show that mucus plugs occur in the context of type 2 inflammation, and studies in human airway epithelial cells (HAECs) show that interleukin 13 (IL-13) activated cells generate pathologic mucus independently of immune cells. To determine how HAECs autonomously generate pathologic mucus, we used a magnetic microwire rheometer to characterize the viscoelastic properties of mucus secreted under varying conditions. We found that normal HAEC mucus exhibits viscoelastic liquid behavior and that mucus secreted by IL-13 activated HAECs exhibits solid-like behavior caused by mucin cross-linking. In addition, IL-13 activated HAECs show increased peroxidase activity in apical secretions, and an overlaid thiolated polymer (thiomer) solution shows an increase in solid behavior that is prevented by peroxidase inhibition. Furthermore, gene expression for thyroid peroxidase (TPO), but not lactoperoxidase (LPO), is increased in IL-13 activated HAECs and both TPO and LPO catalyze the formation of oxidant acids that cross-link thiomer solutions. Finally, gene expression for TPO in airway epithelial brushings is increased in asthma patients with high airway mucus plug scores. Together, our results show that IL-13 activated HAECs autonomously generate pathologic mucus via peroxidase-mediated cross-linking of mucin polymers.
Maude A. Liegeois, Margaret Braunreuther, Annabelle R. Charbit, Wilfred W. Raymond, Monica Tang, Prescott G. Woodruff, Stephanie A. Christenson, Mario Castro, Serpil C. Erzurum, Elliot Israel, Nizar N. Jarjour, Bruce D. Levy, Wendy C. Moore, Sally E. Wenzel, Gerald G. Fuller, John V. Fahy
Cystic fibrosis (CF) is a genetic disorder that disrupts CF transmembrane conductance regulator (CFTR) anion channels and impairs airway host defenses. Airway inflammation is ubiquitous in CF and suppressing it has generally been considered to improve outcomes. However, the role of inflammation in people taking CFTR modulators, small-molecule drugs that restore CFTR function, is not well-understood. We previously showed that inflammation enhances the efficacy of CFTR modulators. To further elucidate this relationship, we treated human ∆F508-CF epithelia with TNFα and IL-17, two inflammatory cytokines that are elevated in CF airways. TNFα+IL-17 enhanced CFTR modulator-evoked anion secretion through mechanisms that raise intracellular Cl– (Na+/K+/2Cl– co-transport) and HCO3– (carbonic anhydrases and Na+/HCO3– co-transport). This enhancement required p38 MAPK signaling. Importantly, CFTR modulators did not affect CF airway surface liquid viscosity under control conditions, but prevented the rise in viscosity in epithelia treated with TNFα+IL-17. Lastly, anti-inflammatory drugs limited CFTR modulator responses in TNFα+IL-17-treated epithelia. These results provide critical insights into mechanisms by which inflammation increases responses to CFTR modulators. They also suggest an equipoise between potential benefits versus limitations of suppressing inflammation in people taking modulators, call into question current treatment approaches, and highlight a need for additional studies.
Tayyab Rehman, Alejandro A. Pezzulo, Andrew L. Thurman, Rachel L. Zemans, Michael J. Welsh
Progressive pulmonary fibrosis (PPF), defined as the worsening of various interstitial lung diseases (ILDs), currently lacks useful biomarkers. To identify novel biomarkers for early detection of patients at risk of PPF, we performed a proteomic analysis of serum extracellular vesicles (EVs). Notably, the identified candidate biomarkers were enriched for lung-derived proteins participating in fibrosis-related pathways. Among them, pulmonary surfactant-associated protein B (SFTPB) in serum EVs could predict ILD progression better than the known biomarkers, serum KL-6 and SP-D, and it was identified as an independent prognostic factor from ILD-gender-age-physiology index. Subsequently, the utility of SFTPB for predicting ILD progression was evaluated further in 2 cohorts using serum EVs and serum, respectively, suggesting that SFTPB in serum EVs but not in serum was helpful. Among SFTPB forms, pro-SFTPB levels were increased in both serum EVs and lungs of patients with PPF compared with those of the control. Consistently, in a mouse model, the levels of pro-SFTPB, primarily originating from alveolar epithelial type 2 cells, were increased similarly in serum EVs and lungs, reflecting pro-fibrotic changes in the lungs, as supported by single-cell RNA sequencing. SFTPB, especially its pro-form, in serum EVs could serve as a biomarker for predicting ILD progression.
Takatoshi Enomoto, Yuya Shirai, Yoshito Takeda, Ryuya Edahiro, Shigeyuki Shichino, Mana Nakayama, Miho Takahashi-Itoh, Yoshimi Noda, Yuichi Adachi, Takahiro Kawasaki, Taro Koba, Yu Futami, Moto Yaga, Yuki Hosono, Hanako Yoshimura, Saori Amiya, Reina Hara, Makoto Yamamoto, Daisuke Nakatsubo, Yasuhiko Suga, Maiko Naito, Kentaro Masuhiro, Haruhiko Hirata, Kota Iwahori, Izumi Nagatomo, Kotaro Miyake, Shohei Koyama, Kiyoharu Fukushima, Takayuki Shiroyama, Yujiro Naito, Shinji Futami, Yayoi Natsume-Kitatani, Satoshi Nojima, Masahiro Yanagawa, Yasushi Shintani, Mari Nogami-Itoh, Kenji Mizuguchi, Jun Adachi, Takeshi Tomonaga, Yoshikazu Inoue, Atsushi Kumanogoh
BACKGROUND Persistent cough and dyspnea are prominent features of post-acute sequelae of SARS-CoV-2 (also termed ’Long COVID’); however, physiologic measures and clinical features associated with these pulmonary symptoms remain poorly defined. Using longitudinal pulmonary function testing (PFTs) and CT imaging, this study aimed to identify the characteristics and determinants of pulmonary Long COVID. METHODS This single-center retrospective study included 1,097 patients with clinically defined Long COVID characterized by persistent pulmonary symptoms (dyspnea, cough, and chest discomfort) lasting for ≥1 month after resolution of primary COVID infection. RESULTS After exclusion, a total of 929 patients with post-COVID pulmonary symptoms and PFTs were stratified diffusion impairment and restriction as measured by percent predicted diffusion capacity for carbon monoxide (DLCO) and total lung capacity (TLC). Dyspnea was the predominant symptom in the cohort (78%) and had similar prevalence regardless of degree of diffusion impairment or restriction. Longitudinal evaluation revealed diffusion impairment (DLCO ≤80%) and pulmonary restriction (TLC ≤80%) in 51% of the cohort overall (n=479). In multivariable logistic regression analysis (adjusted odds ratio; aOR, 95% confidence interval [CI]), invasive mechanical ventilation during primary infection conferred the greatest increased odds of developing pulmonary Long COVID with diffusion impairment and restriction (aOR=10.9 [4.09-28.6]). Finally, a sub-analysis of CT imaging identified radiographic evidence of fibrosis in this patient population. CONCLUSIONS Longitudinal PFT measurements in patients with prolonged pulmonary symptoms after SARS-CoV-2 infection revealed persistent diffusion impaired restriction as a key feature of pulmonary Long COVID. These results emphasize the importance of incorporating PFTs into routine clinical practice for evaluation of patients with prolonged pulmonary symptoms after resolution of SARS-CoV-2. Subsequent clinical trials should leverage combined symptomatic and quantitative PFT measurements for more targeted enrollment of pulmonary Long COVID patients. FUNDING This work was supported by the National Institute of Allergy and Infectious Diseases (AI156898, K08AI129705), the National Heart, Lung, and Blood Institute (HL153113, OTA21-015E, HL149944), and the COVID-19 Urgent Research Response Fund established by the Hugh Kaul Precision Medicine Network at the University of Alabama at Birmingham.
Michael John Patton, Donald Benson, Sarah W. Robison, Dhaval Raval, Morgan L. Locy, Kinner Patel, Scott Grumley, Emily B. Levitan, Peter Morris, Matthew Might, Amit Gaggar, Nathaniel Erdmann
No posts were found with this tag.