The impact of diet-induced maternal obesity on offspring airway hyperresponsiveness was studied in a diversity outbred mouse model that mirrors human genetic diversity. Female mice were started on high-fat or regular diet 8 weeks before breeding and throughout pregnancy and lactation. After weaning, all offspring were fed a regular diet. By 12 weeks, body weight and fat were increased in offspring of high-fat diet–fed dams, which was accompanied by metabolic dysfunction and hyperinsulinemia. This was followed by increased epithelial sensory innervation and increased bronchoconstriction to inhaled 5-hydroxytryptamine at 16 weeks. Bronchoconstriction was nerve mediated and blocked by vagotomy or atropine. A high-fat diet before pregnancy exerted the most influence on offspring airway physiology. Maternal obesity induced metabolic dysfunction and hyperinsulinemia, resulting in hyperinnervation and subsequent increased reflex-mediated hyperresponsiveness in their offspring. This is relevant to our understanding of asthma inheritance, considering the genetic diversity of humans.
Kayla R. Williams, Hoyt A.T.K. Bright, Allison D. Fryer, David B. Jacoby, Zhenying Nie
Determining how alveoli are formed and maintained is critical to understanding lung organogenesis and regeneration after injury. To study the cellular dynamics of this critical stage of lung development, we have used scanned oblique-plane illumination microscopy of living lung slices to observe alveologenesis in real time at high resolution over several days. Contrary to the prevailing notion that alveologenesis occurs by airspace subdivision via ingrowing septa, we find that alveoli form by ballooning epithelial outgrowth supported by contracting mesenchymal ring structures. Systematic analysis has produced a computational model of finely timed cellular structural changes that drive normal alveologenesis. With this model, we can now quantify how perturbing known regulatory intercellular signaling pathways and cell migration processes effects alveologenesis. In the future, this new paradigm and platform can be leveraged for mechanistic studies and screening for therapies to promote lung regeneration.
Nicholas M. Negretti, Yeongseo Son, Philip Crooke, Erin J. Plosa, John T. Benjamin, Christopher S. Jetter, Claire Bunn, Nicholas Mignemi, John Marini, Alice N. Hackett, Meaghan Ransom, Shriya Garg, David Nichols, Susan H. Guttentag, Heather H. Pua, Timothy S. Blackwell, William Zacharias, David B. Frank, John A. Kozub, Anita Mahadevan-Jansen, Evan Krystofiak, Jonathan A. Kropski, Christopher V.E. Wright, Bryan Millis, Jennifer M.S. Sucre
Hermansky-Pudlak syndrome (HPS) is a genetic disorder of endosomal protein trafficking associated with pulmonary fibrosis in specific subtypes, including HPS-1 and HPS-2. Single mutant HPS1 and HPS2 mice display increased fibrotic sensitivity while double mutant HPS1/2 mice exhibit spontaneous fibrosis with aging, which has been attributed to HPS mutations in alveolar epithelial type II (AT2) cells. We utilized HPS mouse models and human lung tissue to investigate mechanisms of AT2 cell dysfunction driving fibrotic remodeling in HPS. Starting at 8 weeks of age, HPS mice exhibited progressive loss of AT2 cell numbers. HPS AT2 cell function was impaired ex vivo and in vivo. Incorporating AT2 cell lineage tracing in HPS mice, we observed aberrant differentiation with increased AT2-derived alveolar epithelial type I cells. Transcriptomic analysis of HPS AT2 cells revealed elevated expression of genes associated with aberrant differentiation and p53 activation. Lineage tracing and organoid modeling studies demonstrated that HPS AT2 cells were primed to persist in a Krt8+ reprogrammed transitional state, mediated by p53 activity. Intrinsic AT2 progenitor cell dysfunction and p53 pathway dysregulation are novel mechanisms of disease in HPS-related pulmonary fibrosis, with the potential for early targeted intervention before the onset of fibrotic lung disease.
Joanna Y. Wang, Sylvia N. Michki, Sneha Sitaraman, Brandon J. Banaschewski, Reshma Jamal, Jason J. Gokey, Susan M. Lin, Jeremy B. Katzen, Maria C. Basil, Edward Cantu, Jonathan A. Kropski, Jarod A. Zepp, David B. Frank, Lisa R. Young
Abstract: Both CO2 retention, or hypercapnia, and skeletal muscle dysfunction predict higher mortality in critically ill patients. Mechanistically, muscle injury and reduced myogenesis contribute to critical illness myopathy, and while hypercapnia causes muscle wasting, no research has been conducted on hypercapnia-driven dysfunctional myogenesis in vivo. Autophagy flux regulates myogenesis by supporting muscle stem cell -satellite cell- activation, and previous data suggests that hypercapnia inhibits autophagy. We tested whether hypercapnia worsens satellite cell autophagy flux and myogenic potential, and if autophagy induction reverses these deficits. Satellite cell transplantation and lineage tracing experiments showed that hypercapnia undermines satellite cells activation, replication, and myogenic capacity. Bulk and single cell sequencing analyses indicated that hypercapnia disrupts autophagy, senescence, and other satellite cells programs. Autophagy activation was reduced in hypercapnic cultured myoblasts, and autophagy genetic knockdown phenocopied these changes in vitro. Rapamycin stimulation led to AMPK activation and downregulation of the mTOR pathway, which are both associated with accelerated autophagy flux and cell replication. Moreover, hypercapnic mice receiving rapamycin showed improved satellite cells autophagy flux, activation, replication rate, and post transplantation myogenic capacity. In conclusion, we have shown that hypercapnia interferes with satellite cell activation, autophagy flux and myogenesis, and systemic rapamycin administration improved these outcomes.
Joseph Balnis, Emily L. Jackson, Lisa A. Drake, Diane V. Singer, Ramon Bossardi Ramos, Harold A. Singer, Ariel Jaitovich.
Radiation-induced lung injury (RILI) initiates radiation pneumonitis and progresses to fibrosis as the main side effect experienced by patients with lung cancer treated with radiotherapy. There is no effective drug for RILI. Sustained vascular activation is a major contributor to the establishment of chronic disease. Here, using a whole thoracic irradiation (WTI) mouse model, we investigated the mechanisms and effectiveness of thrombopoietin mimetic (TPOm) for preventing RILI. We demonstrated that administering TPOm 24 hours before irradiation decreased histologic lung injury score, apoptosis, vascular permeability, expression of proinflammatory cytokines, and neutrophil infiltration in the lungs of mice 2 weeks after WTI. We described the expression of c-MPL, a TPO receptor, in mouse primary pulmonary microvascular endothelial cells, showing that TPOm reduced endothelial cell–neutrophil adhesion by inhibiting ICAM-1 expression. Seven months after WTI, TPOm-treated lung exhibited less collagen deposition and expression of MMP-9, TIMP-1, IL-6, TGF-β, and p21. Moreover, TPOm improved lung vascular structure, lung density, and respiration rate, leading to a prolonged survival time after WTI. Single-cell RNA sequencing analysis of lungs 2 weeks after WTI revealed that TPOm shifted populations of capillary endothelial cells toward a less activated and more homeostatic phenotype. Taken together, TPOm is protective for RILI by inhibiting endothelial cell activation.
Jeb English, Sriya Dhanikonda, Kathryn E. Tanaka, Wade Koba, Gary Eichenbaum, Weng-Lang Yang, Chandan Guha
Airway remodeling is a critical factor determining the pathogenesis and treatment sensitivity of severe asthma (SA) or uncontrolled asthma (UA). The activation of epithelial-mesenchymal trophic units (EMTUs) regulated by airway epithelial cells (AECs) has been proven to induce airway remodeling directly. However, the triggers for EMTU activation and the underlying mechanism of airway remodeling are not fully elucidated. Here, we screened the differentially expressed gene Cathepsin C (CTSC)/dipeptidyl peptidase 1 (DPP-1) in epithelia of SA and UA patients using RNA sequencing data and further verified the increased expression of CTSC in induced sputum of asthma patients which was positively correlated with the severity and airway remodeling. Moreover, direct instillation of exogenous CTSC induced airway remodeling. Genetic inhibition of CTSC suppressed EMTU activation and airway remodeling in two asthma models with airway remodeling. Mechanistically, increased secretion of CTSC from AECs induced EMTU activation through p38-mediated pathway, further inducing airway remodeling. Meanwhile, inhibition of CTSC also reduced the infiltration of inflammatory cells and the production of inflammatory factors in the lungs of asthmatic mice. Consequently, targeting CTSC with compound AZD7986 protected against airway inflammation, EMTU activation and remodeling in asthma model. Based on the dual effects of CTSC on airway inflammation and remodeling, CTSC is a potential biomarker and therapeutic target for SA or UA.
Lin Yuan, Qingwu Qin, Ye Yao, Long Chen, Huijun Liu, Xizi Du, Ming Ji, Xinyu Wu, Weijie Wang, Qiuyan Qin, Yang Xiang, Bei Qing, Xiangping Qu, Ming Yang, Xiaoqun Qin, Zhenkun Xia, Chi Liu
Hermansky-Pudlak syndrome (HPS), particularly in types 1 and 4, is characterized by progressive pulmonary fibrosis, a major cause of morbidity and mortality. However, the precise mechanisms driving pulmonary fibrosis in HPS are not fully elucidated. Our previous studies suggested that CHI3L1-driven fibroproliferation may be a notable factor in HPS-associated fibrosis. This study aimed to explore the role of CHI3L1-CRTH2 interaction on ILC2s and explored the potential contribution of ILC2-fibroblast crosstalk in the development of pulmonary fibrosis in HPS. We identified ILC2s in lung tissues from idiopathic pulmonary fibrosis (IPF) and HPS patients. Using bleomycin-challenged wild type (WT) and Hps1–/– mice we observed that ILC2s were recruited and appeared to contribute to fibrosis development in the Hps1–/– mice, with CRTH2 playing a notable role in ILC2 accumulation. We sorted ILC2s, profiled fibrosis-related genes and mediators, and conducted co-culture experiments with primary lung ILC2s and fibroblasts. Our findings suggest that ILC2s may directly stimulate the proliferation and differentiation of primary lung fibroblasts partially through Amphiregulin-EGFR-dependent mechanisms. Additionally, specific overexpression of CHI3L1 in the ILC2 population using the IL-7Rcre driver, which was associated with increased fibroproliferation, indicates that ILC2-mediated, CRTH2-dependent mechanisms might contribute to optimal CHI3L1-induced fibroproliferative repair in HPS-associated pulmonary fibrosis.
Parand Sorkhdini, Kiran Klubock-Shukla, Selena Sheth, Dongqin Yang, Alina Xiaoyu Yang, Carmelissa Norbrun, Wendy J. Introne, Bernadette R. Gochuico, Yang Zhou
Transcriptomic analyses have advanced the understanding of complex disease pathophysiology including chronic obstructive pulmonary disease (COPD). However, identifying relevant biologic causative factors has been limited by the integration of high dimensionality data. COPD is characterized by lung destruction and inflammation with smoke exposure being a major risk factor. To define novel biological mechanisms in COPD, we utilized unsupervised and supervised interpretable machine learning analyses of single cell-RNA sequencing data from the gold standard mouse smoke exposure model to identify significant latent factors (context-specific co-expression modules) impacting pathophysiology. The machine learning transcriptomic signatures coupled to protein networks uncovered a reduction in network complexity and novel biological alterations in actin-associated gelsolin (GSN), which was transcriptionally linked to disease state. GSN was altered in airway epithelial cells in the mouse model and in human COPD. GSN was increased in plasma from COPD patients, and smoke exposure resulted in enhanced GSN release from airway cells from COPD patients. This method provides insights into rewiring of transcriptional networks that are associated with COPD pathogenesis and provide a novel analytical platform for other diseases.
Justin Sui, Hanxi Xiao, Ugonna Mbaekwe, Nai-Chun Ting, Kaley Murday, Qianjiang Hu, Alyssa D. Gregory, Theodore S. Kapellos, Ali Öender Yildirim, Melanie Königshoff, Yingze Zhang, Frank C. Sciurba, Jishnu Das, Corrine R. Kliment
Idiopathic pulmonary fibrosis (IPF) is a lethal chronic lung disease characterized by aberrant intercellular communication, extracellular matrix deposition, and destruction of functional lung tissue. While extracellular vesicles (EVs) accumulate in the IPF lung, their cargo and biological effects remain unclear. We interrogated the proteome of EV and non-EV fractions during pulmonary fibrosis and characterized their contribution to fibrosis. EVs accumulated 14 days after bleomycin challenge, correlating with decreased lung function and initiated fibrogenesis in healthy precision-cut lung slices. Label-free proteomics of bronchoalveolar lavage fluid EVs (BALF-EVs) collected from mice challenged with bleomycin or control identified 107 proteins enriched in fibrotic vesicles. Multiomic analysis revealed fibroblasts as a major cellular source of BALF-EV cargo, which was enriched in secreted frizzled related protein 1 (SFRP1). Sfrp1 deficiency inhibited the activity of fibroblast-derived EVs to potentiate lung fibrosis in vivo. SFRP1 led to increased transitional cell markers, such as keratin 8, and WNT/β-catenin signaling in primary alveolar type 2 cells. SFRP1 was expressed within the IPF lung and localized at the surface of EVs from patient-derived fibroblasts and BALF. Our work reveals altered EV protein cargo in fibrotic EVs promoting fibrogenesis and identifies fibroblast-derived vesicular SFRP1 as a fibrotic mediator and potential therapeutic target for IPF.
Olivier Burgy, Christoph H. Mayr, Déborah Schenesse, Efthymios Fousekis Papakonstantinou, Beatriz Ballester, Arunima Sengupta, Yixin She, Qianjiang Hu, Maria Camila Melo-Narvaéz, Eshita Jain, Jeanine C. Pestoni, Molly Mozurak, Adriana Estrada-Bernal, Ugochi Onwuka, Christina Coughlan, Tanyalak Parimon, Peter Chen, Thomas Heimerl, Gert Bange, Bernd T. Schmeck, Michael Lindner, Anne Hilgendorff, Clemens Ruppert, Andreas Güenther, Matthias Mann, Ali Önder Yildirim, Oliver Eickelberg, Anna Lena Jung, Herbert B. Schiller, Mareike Lehmann, Gerald Burgstaller, Melanie Königshoff
Gas flow is fundamental for driving tidal ventilation and thus the speed of lung motion, but current bias flow settings to support the preterm lung after birth are without an evidence base. We aimed to determine the role of gas bias flow rates to generate positive pressure ventilation in initiating early lung injury pathways in the preterm lamb. Using slower speeds to inflate the lung during tidal ventilation (gas flow rates 4-6 L/min) did not impact lung mechanics, mechanical power or gas exchange compared to those currently used in clinical practice (8-10 L/min). Speed of pressure and volume change during inflation were faster with higher flow rates. Lower flow rates resulted in less bronchoalveolar fluid protein, better lung morphology and fewer detached epithelial cells. Overall, relative to unventilated fetal controls, there was greater protein change using 8-10 L/min, which was associated with enrichment of acute inflammatory and innate responses. Slowing the speed of lung motion by supporting the preterm lung from birth with lower flow rates than currently used clinically resulted in less lung injury without compromising tidal ventilation or gas exchange.
David G. Tingay, Monique Fatmous, Kelly Kenna, Jack Chapman, Ellen Douglas, Arun Sett, Qi Hui Poh, Sophia I. Dahm, Tuyen Kim Quach, Magdy Sourial, Haoyun Fang, David W. Greening, Prue M. Pereira-Fantini
No posts were found with this tag.