Type 2 inflammatory diseases are common in cystic fibrosis (CF) including asthma, sinusitis, and allergic bronchopulmonary aspergillosis. CD4+ T helper 2 (Th2) cells promote these diseases through secretion of IL-4, IL-5, and IL-13. Whether the cystic fibrosis transmembrane conductance regulator (CFTR), the mutated protein in CF, has a direct effect on Th2 development is unknown. Using murine models of CFTR deficiency and human CD4+ T cells, we show CD4+ T cells expressed Cftr transcript and CFTR protein following activation. Loss of T cell CFTR expression increased Th2 cytokine production compared to control cells. Mice with CFTR-deficient T cells developed increased allergic airway disease to Alternaria alternata extract compared to control mice. Culture of CFTR-deficient Th2 cells demonstrated increased IL-4Rα expression and increased sensitivity to IL-4 with greater induction of GATA3 and IL-13 compared to control Th2 cell cultures. The CFTR potentiator ivacaftor reduced allergic inflammation and type 2 cytokine secretion in bronchoalveolar lavage of “humanized” CFTR mice following Alternaria alternata extract challenge and decreased Th2 development in human T cell culture. Together, these data support a direct role of CFTR in regulating T cell sensitivity to IL-4 and demonstrate a potential CFTR-specific therapeutic strategy for Th2 cell-mediated allergic disease.
Mark Rusznak, Christopher M. Thomas, Jian Zhang, Shinji Toki, Weisong Zhou, Masako Abney, Danielle M. Yanda, Allison E. Norlander, Craig A. Hodges, Dawn C. Newcomb, Mark H. Kaplan, R. Stokes Peebles Jr., Daniel P. Cook
Idiopathic pulmonary fibrosis (IPF) causes remodeling of the distal lung. Pulmonary remodeling is histologically characterized by fibrosis, as well as appearance of basal cells; however, the involvement of basal cells in IPF remains unclear. Here, we focus on the long noncoding RNA MIR205HG, which is highly expressed in basal cells, using RNA sequencing. Through RNA sequencing of genetic manipulations using primary cells and organoids, we discovered that MIR205HG regulates IL-33 expression. Mechanistically, the AluJb element of MIR205HG plays a key role in IL-33 expression. Additionally, we identified a small molecule that targets the AluJb element, leading to decreased IL-33 expression. IL-33 is known to induce type 2 innate lymphoid cells (ILC2s), and we observed that MIR205HG expression was positively correlated with the number of ILC2s in patients with IPF. Collectively, these findings provide insights into the mechanisms by which basal cells contribute to IPF and suggest potential therapeutic targets.
Tsuyoshi Takashima, Chao Zeng, Eitaro Murakami, Naoko Fujiwara, Masaharu Kohara, Hideki Nagata, Zhaozu Feng, Ayako Sugai, Yasue Harada, Rika Ichijo, Daisuke Okuzaki, Satoshi Nojima, Takahiro Matsui, Yasushi Shintani, Gota Kawai, Michiaki Hamada, Tetsuro Hirose, Kazuhiko Nakatani, Eiichi Morii
Aberrant immune response is a hallmark of asthma, with 5-10% of patients suffering from severe disease exhibiting poor response to standard treatment. A better understanding of the immune responses contributing to disease heterogeneity is critical for improving asthma management. T cells are major players in the orchestration of asthma, in both mild and severe disease, but it is unclear whether specific T cell subsets influence asthma symptom duration. Here we show a significant association of airway CD8+ effector memory T cells re-expressing CD45RA (TEMRAs), but not CD8+ CD45RO+ or tissue resident memory (TRM) T cells, with asthma duration in patients with severe asthma (SA) but not mild to moderate asthma (MMA). Higher frequencies of IFN-γ+ CD8+ TEMRAs compared to IFN-γ+ CD45RO+ T cells were detected in SA airways, and the TEMRAs from SA but not MMA patients proliferated ex vivo, although both expressed cellular senescence-associated biomarkers. Prompted by the transcriptomic profile of SA CD8+ TEMRAs and proliferative response to IL-15, airway IL15 expression measured higher in SA compared to MMA patients. IL15 expression in asthmatic airways negatively correlated with lung function. Our findings add a new dimension to understanding asthma heterogeneity identifying IL-15 as a potential target for treatment.
Richard P. Ramonell, Timothy B. Oriss, Jessica C. McCreary-Partyka, Sagar L. Kale, Nicole R. Brandon, Mark A. Ross, Marc C. Gauthier, Molin Yue, Taylor J. Nee, Sudipta Das, Wei Chen, Alok V. Joglekar, Prabir Ray, Claudette M. St Croix, Dhivyaa Rajasundaram, Sally E. Wenzel, Anuradha Ray
The role of mesenchymal cells during respiratory infection is not well defined, including whether, which, and how the different types of mesenchymal cells respond. We collected all mesenchymal cells from lung single-cell suspensions of mice that were naïve (after receiving only saline vehicle), pneumonic (after intratracheal instillation of pneumococcus 24 hours previously), or resolved from infection (after non-lethal pneumococcal infections 6 weeks previously) and performed single-cell RNA sequencing. Cells clustered into five well-separated groups based on their transcriptomes: matrix fibroblasts, myofibroblasts, pericytes, smooth muscle cells, and mesothelial cells. Fibroblasts were the most abundant and could be further segregated into Pdgfra+Npnt+Ces1d+Col13a1+ alveolar fibroblasts and Cd9+Pi16+Sca1+Col14a1+ adventitial fibroblasts. The cells from naïve and resolved groups overlapped in dimension reduction plots, suggesting the mesenchymal cells returned to baseline transcriptomes after resolution. During pneumonia, all mesenchymal cells responded with altered transcriptomes, revealing a core response that had been conserved across cell types as well as distinct mesenchymal cell type-specific responses. The different subsets of fibroblasts induced similar gene sets, but the alveolar fibroblasts responded more strongly than the adventitial fibroblasts. These data demonstrated diverse and specialized immune activities of lung mesenchymal cells during pneumonia.
Alicia M. Soucy, Jourdan E. Brune, Archana Jayaraman, Anukul T. Shenoy, Filiz T. Korkmaz, Neelou S. Etesami, Bradley E. Hiller, Ian M.C. Martin, Wesley N. Goltry, Catherine T. Ha, Nicholas A. Crossland, Joshua D. Campbell, Thomas G. Beach, Katrina E. Traber, Matthew R. Jones, Lee J. Quinton, Markus Bosmann, Charles W. Frevert, Joseph P. Mizgerd
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive scarring and loss of lung function. With limited treatment options, patients succumb to the disease within 2 to 5 years. The molecular pathogenesis of IPF regarding the immunologic changes that occur is poorly understood. We characterize a role for non-canonical aryl-hydrocarbon receptor signaling (ncAHR) in dendritic cells (DCs) that leads to production of IL-6 and increased IL-17+ cells, promoting fibrosis. TLR9 signaling in myofibroblasts is shown to regulate production of TDO2 which converts tryptophan into the endogenous AHR ligand kynurenine. Mice with augmented ncAHR signaling were created by crossing floxed AHR exon-2 deletion mice (AHRΔex2) with mice harboring a CD11c-Cre. Bleomycin (blm) was used to study fibrotic pathogenesis. Isolated CD11c+ cells and primary fibroblasts were treated ex-vivo with relevant TLR agonists and AHR modulating compounds to study how AHR signaling influenced inflammatory cytokine production. Human datasets were also interrogated. Inhibition of all AHR signaling rescued fibrosis, however, AHRΔex2 mice treated with blm developed more fibrosis and DCs from these mice were hyperinflammatory and profibrotic upon adoptive transfer. Treatment of fibrotic fibroblasts with TLR9 agonist increased expression of TDO2 and fibrotic fibroblasts activated IL-6 production in CD103+ DCs. Study of human samples corroborates the relevance of these findings in IPF patients. We also, for the first time, identify that AHR exon-2 floxed mice retain capacity for ncAHR signaling.
Hannah Carter, Rita Medina Costa, Taylor S. Adams, Talon M. Gilchrist, Claire E. Emch, Monica Bame, Justin M. Oldham, Steven K. Huang, Angela L. Linderholm, Imre Noth, Naftali Kaminski, Bethany B. Moore, Stephen J. Gurczynski
Acute respiratory distress syndrome (ARDS) results in significant morbidity and mortality, especially in the elderly. Mechanical ventilation, a common supportive treatment for ARDS, is necessary for maintaining gas exchange, but can also propagate injury. We hypothesized that aging leads to alterations in surfactant function, inflammatory signaling, and microvascular permeability within the lung during mechanical ventilation. Young and aged male mice were mechanically ventilated, and surfactant function, inflammation, and vascular permeability were assessed. Additionally, single-cell RNA sequencing was used to delineate cell-specific transcriptional changes. The results showed that in aged mice, surfactant dysfunction and vascular permeability were significantly augmented, while inflammation was less pronounced. Differential gene expression and pathway analyses revealed that alveolar macrophages in aged mice showed a blunted inflammatory response, while aged endothelial cells exhibited altered cell-cell junction formation. In vitro functional analysis revealed that aged endothelial cells had an impaired ability to form a barrier. These results highlight the complex interplay between aging and mechanical ventilation, including an age-related predisposition to endothelial barrier dysfunction, due to altered cell-cell junction formation, and decreased inflammation, potentially due to immune exhaustion. It is concluded that age-related vascular changes may underlie the increased susceptibility to injury during mechanical ventilation in elderly patients.
Aminmohamed Manji, Lefeng Wang, Cynthia M. Pape, Lynda A. McCaig, Alexandra Troitskaya, Onon Batnyam, Leah J.J. McDonald, C. Thomas Appleton, Ruud A.W. Veldhuizen, Sean E. Gill
The complement system is central to the innate immune response, playing a critical role in pro-inflammatory and autoimmune diseases such as pulmonary hypertension (PH). Recent discoveries highlight the emerging role of intracellular complement, or the "complosome," in regulating cellular processes like glycolysis, mitochondrial dynamics, and inflammatory gene expression. This study investigates the hypothesis that intracellular complement proteins C3, CFB, and CFD are upregulated in PH fibroblasts (PH-Fibs) and drive their metabolic and inflammatory states, contributing to PH progression. Our results reveal a pronounced upregulation of CFD, CFB, and C3 in PH-Fibs from human and bovine models, both in vivo and in vitro. Elevated levels of C3 activation fragments, including C3b, C3d, and C3a, emphasize enhanced C3 activity. PH-Fibs exhibit notable metabolic reprogramming and increased pro-inflammatory mediators such as MCP1, SDF1, IL6, IL13, and IL33. Silencing CFD via shRNA reduced CFB activation and C3a production while normalizing glycolysis, tricarboxylic acid (TCA) cycle activity, and fatty acid metabolism. Metabolomic and gene expression analyses of CFD knockdown PH-Fibs revealed restored metabolic and inflammatory profiles, underscoring CFD’s crucial role in these changes. This study emphasizes the crucial role of intracellular complement in PH pathogenesis, highlighting the potential for complement-targeted therapies in PH.
Ram Raj Prasad, Sushil Kumar, Hui Zhang, Min Li, Cheng-Jun Hu, Suzette Riddle, Brittany A. McKeon, M.G. Frid, Konrad Hoetzenecker, Slaven Crnkovic, Grazyna Kwapiszewska, Rubin M. Tuder, Kurt R. Stenmark
Idiopathic pulmonary fibrosis (IPF) is an age-related interstitial lung disease, characterized by inadequate alveolar regeneration and ectopic bronchiolization. While some molecular pathways regulating lung progenitor cells have been described, the role of metabolic pathways in alveolar regeneration is poorly understood. We report that expression of fatty acid oxidation (FAO) genes is significantly diminished in alveolar epithelial cells of IPF lungs by single-cell RNA sequencing and tissue staining. Genetic and pharmacological inhibition in AT2 cells of carnitine palmitoyltransferase 1a (CPT1a), the rate-limiting enzyme of FAO, promoted mitochondrial dysfunction and acquisition of aberrant intermediate states expressing basaloid, and airway secretory cell markers SCGB1A1 and SCGB3A2. Furthermore, mice with deficiency of CPT1a in AT2 cells show enhanced susceptibility to developing lung fibrosis with an accumulation of epithelial cells expressing markers of intermediate cells, airway secretory cells, and senescence. We found that deficiency of CPT1a causes a decrease in SMAD7 protein levels and TGF-β signaling pathway activation. These findings suggest that the mitochondrial FAO metabolic pathway contributes to the regulation of lung progenitor cell repair responses and deficiency of FAO contributes to aberrant lung repair and the development of lung fibrosis.
Quetzalli D. Angeles-Lopez, Jhonny Rodriguez-Lopez, Paula Agudelo Garcia, Jazmin Calyeca, Diana Álvarez, Marta Bueno, Lan N. Tu, Myriam Salazar-Terreros, Natalia Vanegas-Avendaño, Jordan E. Krull, Aigul Moldobaeva, Srimathi Bogamuwa, Stephanie S. Scott, Victor Peters, Brenda F. Reader, Sruti Shiva, Michael Jurczak, Mahboobe Ghaedi, Qin Ma, Toren Finkel, Mauricio Rojas, Ana L. Mora
Lymphangioleiomyomatosis (LAM) is a progressive lung disease with limited treatments, largely due to an incomplete understanding of its pathogenesis. Lymphatic endothelial cells (LECs) invade LAM cell clusters, which include HMB-45-positive epithelioid cells and smooth muscle α-actin-expressing LAM-associated fibroblasts (LAMFs). Recent evidence shows that LAMFs resemble cancer-associated fibroblasts, with LAMF-LEC interactions contributing to disease progression. To explore these mechanisms, we used spatial transcriptomics on LAM lung tissues and identified a gene cluster enriched in kinase signaling pathways linked to myofibroblasts and co-expressed with LEC markers. Kinase arrays revealed elevated PDGFR and FGFR in LAMFs. Using a 3D co-culture spheroid model of primary LAMFs and LECs, we observed increased invasion in LAMF-LEC spheroids compared to non-LAM fibroblasts. Treatment with sorafenib, a multikinase inhibitor, significantly reduced invasion, outperforming Rapamycin. We also confirmed TSC2-deficient renal angiomyolipoma cells (TSC2-null AML) as key VEGF-A secretors, which was suppressed by sorafenib in both TSC2-null AML cells and LAMFs. These findings highlight VEGF-A and bFGF as potential therapeutic targets and suggest multikinase inhibition as a promising strategy for LAM.
Sinem Koc-Gunel, Emily C. Liu, Lalit K. Gautam, Ben A. Calvert, Shubha Murthy, Noa C. Harriott, Janna C. Nawroth, Beiyun Zhou, Vera P. Krymskaya, Amy L. Ryan
The impact of diet-induced maternal obesity on offspring airway hyperresponsiveness was studied in a diversity outbred mouse model that mirrors human genetic diversity. Female mice were started on high-fat or regular diet 8 weeks before breeding and throughout pregnancy and lactation. After weaning, all offspring were fed a regular diet. By 12 weeks, body weight and fat were increased in offspring of high-fat diet–fed dams, which was accompanied by metabolic dysfunction and hyperinsulinemia. This was followed by increased epithelial sensory innervation and increased bronchoconstriction to inhaled 5-hydroxytryptamine at 16 weeks. Bronchoconstriction was nerve mediated and blocked by vagotomy or atropine. A high-fat diet before pregnancy exerted the most influence on offspring airway physiology. Maternal obesity induced metabolic dysfunction and hyperinsulinemia, resulting in hyperinnervation and subsequent increased reflex-mediated hyperresponsiveness in their offspring. This is relevant to our understanding of asthma inheritance, considering the genetic diversity of humans.
Kayla R. Williams, Hoyt A.T.K. Bright, Allison D. Fryer, David B. Jacoby, Zhenying Nie
No posts were found with this tag.