Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Recently published
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Recently published
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact

Endocrinology

  • 139 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 13
  • 14
  • Next →
Antagonizing somatostatin receptor subtype 2 and 5 reduces blood glucose in a gut- and GLP-1R-dependent manner
Sara L. Jepsen, … , Rainer E. Martin, Jens J. Holst
Sara L. Jepsen, … , Rainer E. Martin, Jens J. Holst
Published January 12, 2021
Citation Information: JCI Insight. 2021. https://doi.org/10.1172/jci.insight.143228.
View: Text | PDF

Antagonizing somatostatin receptor subtype 2 and 5 reduces blood glucose in a gut- and GLP-1R-dependent manner

  • Text
  • PDF
Abstract

Somatostatin (SS) inhibits glucagon-like peptide-1 (GLP-1) secretion in a paracrine manner. We hypothesized that blocking somatostatin subtype receptor 2 (SSTR2) and 5 (SSTR5) would improve glycaemia by enhancing GLP-1 secretion. In the perfused mouse small intestine the selective SSTR5 antagonist (SSTR5a) stimulated glucose-induced GLP-1 secretion to a larger degree than the SSTR2 antagonist (SSTR2a). In parallel, mice lacking the SSTR5R showed increased glucose-induced GLP-1 secretion. Both antagonists improved glycaemia in vivo in a GLP-1 receptor (GLP-1R) dependent manner, as the glycaemic improvements were absent in mice with impaired GLP-1R signalling and in mice treated with a GLP-1R specific antagonist. SSTR5a had no direct effect on insulin secretion in the perfused pancreas whereas SSTR2a increased insulin secretion in a GLP-1R independent manner. Adding a dipeptidyl peptidase 4 inhibitor (DPP-4i) in vivo resulted in additive effects on glycaemia, however, when glucose was administered intraperitoneally the antagonists was incapable of lowering blood glucose. Oral administration of SSTR5a, but not SSTR2a lowered blood glucose in diet induced obese mice. In summary, we demonstrate that selective SSTR antagonists can improve glucose control primarily through the intestinal GLP-1 system in mice.

Authors

Sara L. Jepsen, Nicolai J. Wewer Albrechtsen, Johanne Agerlin Windeløv, Katrine D. Galsgaard, Jenna Elizabeth Hunt, Thomas B. Farb, Hannelouise Kissow, Jens Pedersen, Carolyn F. Deacon, Rainer E. Martin, Jens J. Holst

×

Islet cell dedifferentiation is a pathologic mechanism of long-standing progression of type 2 diabetes
Kikuko Amo-Shiinoki, … , Hiroaki Nagano, Yukio Tanizawa
Kikuko Amo-Shiinoki, … , Hiroaki Nagano, Yukio Tanizawa
Published January 11, 2021
Citation Information: JCI Insight. 2021;6(1):e143791. https://doi.org/10.1172/jci.insight.143791.
View: Text | PDF

Islet cell dedifferentiation is a pathologic mechanism of long-standing progression of type 2 diabetes

  • Text
  • PDF
Abstract

Dedifferentiation has been implicated in β cell dysfunction and loss in rodent diabetes. However, the pathophysiological significance in humans remains unclear. To elucidate this, we analyzed surgically resected pancreatic tissues of 26 Japanese subjects with diabetes and 11 nondiabetic subjects, who had been overweight during adulthood but had no family history of diabetes. The diabetic subjects were subclassified into 3 disease stage categories, early, advanced, and intermediate. Despite no numerical changes in endocrine cells immunoreactive for chromogranin A (ChgA), diabetic islets showed profound β cell loss, with an increase in α cells without an increase in insulin and glucagon double-positive cells. The proportion of dedifferentiated cells that retain ChgA immunoreactivity without 4 major islet hormones was strikingly increased in diabetic islets and rose substantially during disease progression. The increased dedifferentiated cell ratio was inversely correlated with declining C-peptide index. Moreover, a subset of islet cells converted into exocrine-like cells during disease progression. These results indicate that islet remodeling with dedifferentiation is the underlying cause of β cell failure during the course of diabetes progression in humans.

Authors

Kikuko Amo-Shiinoki, Katsuya Tanabe, Yoshinobu Hoshii, Hiroto Matsui, Risa Harano, Tatsuya Fukuda, Takato Takeuchi, Ryotaro Bouchi, Tokiyo Takagi, Masayuki Hatanaka, Komei Takeda, Shigeru Okuya, Wataru Nishimura, Atsushi Kudo, Shinji Tanaka, Minoru Tanabe, Takumi Akashi, Tetsuya Yamada, Yoshihiro Ogawa, Eiji Ikeda, Hiroaki Nagano, Yukio Tanizawa

×

Short-term overnutrition induces white adipose tissue insulin resistance through sn-1,2-diacylglycerol – PKCε – insulin receptorT1160 phosphorylation
Kun Lyu, … , Varman T. Samuel, Gerald I. Shulman
Kun Lyu, … , Varman T. Samuel, Gerald I. Shulman
Published January 7, 2021
Citation Information: JCI Insight. 2021. https://doi.org/10.1172/jci.insight.139946.
View: Text | PDF

Short-term overnutrition induces white adipose tissue insulin resistance through sn-1,2-diacylglycerol – PKCε – insulin receptorT1160 phosphorylation

  • Text
  • PDF
Abstract

Insulin-mediated suppression of white adipose tissue (WAT) lipolysis is an important anabolic function that is dysregulated in states of overnutrition. However, the mechanism of short-term high-fat diet (HFD)-induced WAT insulin resistance is poorly understood. Based on our recent studies we hypothesize that a short-term HFD causes WAT insulin resistance through increases in plasma membrane (PM) sn-1,2-diacylglycerols (DAG), which promotes protein kinase C-ε (PKCε) activation to impair insulin signaling by phosphorylating insulin receptor (Insr) Thr1160. To test this hypothesis, we assessed WAT insulin action in 7-day HFD-fed versus regular chow diet-fed rats during a hyperinsulinemic-euglycemic clamp. HFD feeding caused WAT insulin resistance, reflected by reductions in both insulin-mediated WAT glucose uptake and suppression of WAT lipolysis. These changes were specifically associated with increased PM sn-1,2-diacylglycerol (DAG) content, increased PKCε activation and impaired insulin-stimulated InsrY1162 phosphorylation. In order to examine the role of InsrT1160 phosphorylation in mediating lipid-induced WAT insulin resistance, we examined these same parameters in short-term HFD-fed InsrT1150A knockin mice (mouse homolog for human Thr1160). Similar to the rat study HFD feeding induced WAT insulin resistance in WT control mice but failed to induce WAT insulin resistance in InsrT1150A mice. Taken together these data demonstrate that the PM sn-1,2-DAG - PKCε - InsrT1160 phosphorylation pathway plays an important role in mediating lipid-induced WAT insulin resistance and represents a potential therapeutic target to improve insulin sensitivity in WAT.

Authors

Kun Lyu, Dongyan Zhang, Joongyu D. Song, Xiruo Li, Rachel J. Perry, Varman T. Samuel, Gerald I. Shulman

×

Tregs facilitate obesity and insulin resistance via a Blimp-1-IL-10 axis
Lisa Y. Beppu, … , Michael J. Jurczak, Louise M. D'Cruz
Lisa Y. Beppu, … , Michael J. Jurczak, Louise M. D'Cruz
Published December 22, 2020
Citation Information: JCI Insight. 2020. https://doi.org/10.1172/jci.insight.140644.
View: Text | PDF

Tregs facilitate obesity and insulin resistance via a Blimp-1-IL-10 axis

  • Text
  • PDF
Abstract

Interleukin-10 (IL-10) is a critical cytokine used by immune cells to suppress inflammation. Paradoxically, immune cell-derived IL-10 can drive insulin resistance in obesity by suppressing adipocyte energy expenditure and thermogenesis. However, the source of IL-10 necessary for the suppression of adipocyte thermogenesis is unknown. We show here that CD4+ Foxp3+ regulatory T cells (Tregs) are a significant source of IL-10, and that Treg-derived IL-10 can suppress adipocyte beiging. Unexpectedly, Treg-specific loss of IL-10 resulted in increased insulin sensitivity and reduced obesity in high fat diet (HFD)-fed male mice. Mechanistically, we determined that Treg-specific loss of the transcription factor Blimp-1, a driver of IL-10 expression by Tregs, phenocopied the Treg-specific IL-10-deficient mice. Loss of Blimp-1 expression in Tregs resulted in reduced ST2+, KLRG1+, IL-10-secreting Tregs, particularly in the white adipose tissue. Blimp-1-deficient mice were protected from glucose intolerance, insulin resistance and diet-induced obesity (DIO), through increased white adipose tissue browning. Taken together, our data show that Blimp-1-regulated IL-10 secretion by Tregs represses white adipose tissue beiging to maintain adipose tissue homeostasis.

Authors

Lisa Y. Beppu, Raja Mooli, Xiaoyao Qu, Giovanni J. Marrero, Christopher A. Finley, Allen N. Fooks, Zackary P. Mullen, Adolfo B. Frias Jr., Ian J. Sipula, Bingxian Xie, Katherine E. Helfrich, Simon C. Watkins, Amanda C. Poholek, Sadeesh K. Ramakrishnan, Michael J. Jurczak, Louise M. D'Cruz

×

Vasopressin mediates fructose-induced metabolic syndrome by activating the V1b receptor
Ana Andres-Hernando, … , Richard Johnson, Miguel Lanaspa
Ana Andres-Hernando, … , Richard Johnson, Miguel Lanaspa
Published December 15, 2020
Citation Information: JCI Insight. 2020. https://doi.org/10.1172/jci.insight.140848.
View: Text | PDF

Vasopressin mediates fructose-induced metabolic syndrome by activating the V1b receptor

  • Text
  • PDF
Abstract

Subjects with obesity frequently have elevated serum vasopressin levels, noted by the stable analog, copeptin. Vasopressin acts primarily to reabsorb water via urinary concentration. However, fat is also a source of metabolic water, raising the possibility that vasopressin might have a role in fat accumulation. Fructose has also been reported to stimulate vasopressin. Here we tested the hypothesis that fructose induced metabolic syndrome is mediated by vasopressin. Orally administered fructose, glucose or high fructose corn syrup increased vasopressin (copeptin) concentrations and was mediated by fructokinase, an enzyme specific for fructose metabolism. Suppressing vasopressin with hydration both prevented and ameliorated fructose-induced metabolic syndrome. The vasopressin effects were mediated by the Vasopressin 1b receptor, as Vasopressin 1b receptor knockout mice were completely protected while V1a knockout paradoxically showed worse metabolic syndrome. The mechanism is likely mediated in part by de novo expression of V1b in the liver that amplifies fructokinase expression in response to fructose. Thus, our studies document a new role for vasopressin in water conservation via the accumulation of fat as a source of metabolic water. Clinically, it also suggests that increased water intake may be a beneficial way to both prevent or treat metabolic syndrome.

Authors

Ana Andres-Hernando, Thomas J. Jensen, Masanari Kuwabara, David J. Orlicky, Christina Cicerchi, Nanxing Li, Carlos A. Roncal-Jimenez, Gabriela E. Garcia, Takuji Ishimoto, Paul S. Maclean, Petter Bjornstad, Laura Gabriela Sanchez-Lozada, Mehmet Kanbay, Takahiko Nakagawa, Richard Johnson, Miguel Lanaspa

×

Mitophagy protects beta cells from inflammatory damage in diabetes
Vaibhav Sidarala, … , Leslie S. Satin, Scott A. Soleimanpour
Vaibhav Sidarala, … , Leslie S. Satin, Scott A. Soleimanpour
Published November 24, 2020
Citation Information: JCI Insight. 2020. https://doi.org/10.1172/jci.insight.141138.
View: Text | PDF

Mitophagy protects beta cells from inflammatory damage in diabetes

  • Text
  • PDF
Abstract

Inflammatory damage contributes to β-cell failure in type 1 and 2 diabetes (T1D and T2D). Mitochondria are damaged by inflammatory signaling in β-cells, resulting in impaired bioenergetics and initiation of pro-apoptotic machinery. Hence, the identification of protective responses to inflammation could lead to new therapeutic targets. Here we report that mitophagy serves as a protective response to inflammatory stress in both human and rodent β-cells. Utilizing in vivo mitophagy reporters, we observed that diabetogenic pro-inflammatory cytokines induced mitophagy in response to nitrosative/oxidative mitochondrial damage. Mitophagy-deficient β-cells were sensitized to inflammatory stress, leading to the accumulation of fragmented dysfunctional mitochondria, increased β-cell death, and hyperglycemia. Overexpression of CLEC16A, a T1D gene and mitophagy regulator whose expression in islets is protective against T1D, ameliorated cytokine-induced human β-cell apoptosis. Thus, mitophagy promotes β-cell survival and prevents diabetes by countering inflammatory injury. Targeting this pathway has the potential to prevent β-cell failure in diabetes and may be beneficial in other inflammatory conditions.

Authors

Vaibhav Sidarala, Gemma L. Pearson, Vishal S. Parekh, Benjamin Thompson, Lisa Christen, Morgan A. Gingerich, Jie Zhu, Tracy Stromer, Jianhua Ren, Emma C. Reck, Biaoxin Chai, John A. Corbett, Thomas Mandrup-Poulsen, Leslie S. Satin, Scott A. Soleimanpour

×

Elevated CCL2 causes Leydig cell malfunction in metabolic syndrome
Qingkui Jiang, … , Lanbo Shi, Thomas Linn
Qingkui Jiang, … , Lanbo Shi, Thomas Linn
Published November 5, 2020
Citation Information: JCI Insight. 2020;5(21):e134882. https://doi.org/10.1172/jci.insight.134882.
View: Text | PDF

Elevated CCL2 causes Leydig cell malfunction in metabolic syndrome

  • Text
  • PDF
Abstract

Metabolic syndrome (MetS), which is associated with chronic inflammation, predisposes males to hypogonadism and subfertility. The underlying mechanism of these pathologies remains poorly understood. Homozygous leptin-resistant obese db/db mice are characterized by small testes, low testicular testosterone, and a reduced number of Leydig cells. Here we report that IL-1β, CCL2 (also known as MCP-1), and corticosterone concentrations were increased in the testes of db/db mice relative to those in WT controls. Cultured murine and human Leydig cells responded to cytokine stress with increased CCL2 release and apoptotic signals. Chemical inhibition of CCL2 rescued Leydig cell function in vitro and in db/db mice. Consistently, we found that Ccl2-deficient mice fed with a high-energy diet were protected from testicular dysfunction compared with similarly fed WT mice. Finally, a cohort of infertile men with a history of MetS showed that reduction of CCL2 plasma levels could be achieved by weight loss and was clearly associated with recovery from hypogonadism. Taken together, we conclude that CCL2-mediated chronic inflammation is, to a large extent, responsible for the subfertility in MetS by causing damage to Leydig cells.

Authors

Qingkui Jiang, Constanze C. Maresch, Sebastian Friedrich Petry, Agnieszka Paradowska-Dogan, Sudhanshu Bhushan, Yongsheng Chang, Christine Wrenzycki, Hans-Christian Schuppe, Petr Houska, Michaela F. Hartmann, Stefan A. Wudy, Lanbo Shi, Thomas Linn

×

Requirement of FAT and DCHS protocadherins during hypothalamic-pituitary development
Emily J. Lodge, … , Constantine Stratakis, Cynthia L. Andoniadou
Emily J. Lodge, … , Constantine Stratakis, Cynthia L. Andoniadou
Published October 27, 2020
Citation Information: JCI Insight. 2020. https://doi.org/10.1172/jci.insight.134310.
View: Text | PDF

Requirement of FAT and DCHS protocadherins during hypothalamic-pituitary development

  • Text
  • PDF
Abstract

Pituitary developmental defects lead to partial or complete hormone deficiency and significant health problems. The majority of cases are sporadic and of unknown cause. We screened 28 patients with pituitary stalk interruption syndrome (PSIS) for mutations in the FAT/DCHS family of protocadherins that have high functional redundancy. We identified seven variants, four of which putatively damaging, in FAT2 and DCHS2 in six patients with pituitary developmental defects recruited through a cohort of patients with mostly ectopic posterior pituitary gland and/or pituitary stalk interruption. All patients had growth hormone deficiency and two presented with multiple hormone deficiencies and small glands. FAT2 and DCHS2 were strongly expressed in the mesenchyme surrounding the normal developing human pituitary. We analyzed Dchs2-/- mouse mutants and identified anterior pituitary hypoplasia and partially penetrant infundibular defects. Overlapping infundibular abnormalities and distinct anterior pituitary morphogenesis defects were observed in Fat4-/- and Dchs1-/- mouse mutants but all animal models displayed normal commitment to the anterior pituitary cell type. Together our data implicate FAT/DCHS protocadherins in normal hypothalamic-pituitary development and identify FAT2 and DCHS2 as candidates underlying pituitary gland developmental defects such as ectopic pituitary gland and/or pituitary stalk interruption.

Authors

Emily J. Lodge, Paraskevi Xekouki, Tatiane S. Silva, Cristiane Kochi, Carlos A. Longui, Fabio R. Faucz, Alice Santambrogio, James L. Mills, Nathan Pankratz, John Lane, Dominika Sosnowska, Tina Hodgson, Amanda L. Patist, Philippa Francis-West, Francoise Helmbacher, Constantine Stratakis, Cynthia L. Andoniadou

×

Epigenetic regulation of the PGE2 pathway modulates macrophage phenotype in normal and pathologic wound repair
Frank M. Davis, … , Bethany B. Moore, Katherine A. Gallagher
Frank M. Davis, … , Bethany B. Moore, Katherine A. Gallagher
Published September 3, 2020
Citation Information: JCI Insight. 2020;5(17):e138443. https://doi.org/10.1172/jci.insight.138443.
View: Text | PDF

Epigenetic regulation of the PGE2 pathway modulates macrophage phenotype in normal and pathologic wound repair

  • Text
  • PDF
Abstract

Macrophages are a primary immune cell involved in inflammation, and their cell plasticity allows for transition from an inflammatory to a reparative phenotype and is critical for normal tissue repair following injury. Evidence suggests that epigenetic alterations play a critical role in establishing macrophage phenotype and function during normal and pathologic wound repair. Here, we find in human and murine wound macrophages that cyclooxygenase 2/prostaglandin E2 (COX-2/PGE2) is elevated in diabetes and regulates downstream macrophage-mediated inflammation and host defense. Using single-cell RNA sequencing of human wound tissue, we identify increased NF-κB–mediated inflammation in diabetic wounds and show increased COX-2/PGE2 in diabetic macrophages. Further, we identify that COX-2/PGE2 production in wound macrophages requires epigenetic regulation of 2 key enzymes in the cytosolic phospholipase A2/COX-2/PGE2 (cPLA2/COX-2/PGE2) pathway. We demonstrate that TGF-β–induced miRNA29b increases COX-2/PGE2 production via inhibition of DNA methyltransferase 3b–mediated hypermethylation of the Cox-2 promoter. Further, we find mixed-lineage leukemia 1 (MLL1) upregulates cPLA2 expression and drives COX-2/PGE2. Inhibition of the COX-2/PGE2 pathway genetically (Cox2fl/fl Lyz2Cre+) or with a macrophage-specific nanotherapy targeting COX-2 in tissue macrophages reverses the inflammatory macrophage phenotype and improves diabetic tissue repair. Our results indicate the epigenetically regulated PGE2 pathway controls wound macrophage function, and cell-targeted manipulation of this pathway is feasible to improve diabetic wound repair.

Authors

Frank M. Davis, Lam C. Tsoi, Rachael Wasikowski, Aaron denDekker, Amrita Joshi, Carol Wilke, Hongping Deng, Sonya Wolf, Andrea Obi, Steven Huang, Allison C. Billi, Scott Robinson, Jay Lipinski, William J. Melvin, Christopher O. Audu, Stephan Weidinger, Steven L. Kunkel, Andrew Smith, Johann E. Gudjonsson, Bethany B. Moore, Katherine A. Gallagher

×

Lipid mediators and biomarkers associated with type 1 diabetes development
Alexander J. Nelson, … , Charles E. Chalfant, Sasanka Ramanadham
Alexander J. Nelson, … , Charles E. Chalfant, Sasanka Ramanadham
Published August 20, 2020
Citation Information: JCI Insight. 2020;5(16):e138034. https://doi.org/10.1172/jci.insight.138034.
View: Text | PDF

Lipid mediators and biomarkers associated with type 1 diabetes development

  • Text
  • PDF
Abstract

Type 1 diabetes (T1D) is a consequence of autoimmune β cell destruction, but the role of lipids in this process is unknown. We previously reported that activation of Ca2+-independent phospholipase A2β (iPLA2β) modulates polarization of macrophages (MΦ). Hydrolysis of the sn-2 substituent of glycerophospholipids by iPLA2β can lead to the generation of oxidized lipids (eicosanoids), pro- and antiinflammatory, which can initiate and amplify immune responses triggering β cell death. As MΦ are early triggers of immune responses in islets, we examined the impact of iPLA2β-derived lipids (iDLs) in spontaneous-T1D prone nonobese diabetic mice (NOD), in the context of MΦ production and plasma abundances of eicosanoids and sphingolipids. We find that (a) MΦNOD exhibit a proinflammatory lipid landscape during the prediabetic phase; (b) early inhibition or genetic reduction of iPLA2β reduces production of select proinflammatory lipids, promotes antiinflammatory MΦ phenotype, and reduces T1D incidence; (c) such lipid changes are reflected in NOD plasma during the prediabetic phase and at T1D onset; and (d) importantly, similar lipid signatures are evidenced in plasma of human subjects at high risk for developing T1D. These findings suggest that iDLs contribute to T1D onset and identify select lipids that could be targeted for therapeutics and, in conjunction with autoantibodies, serve as early biomarkers of pre-T1D.

Authors

Alexander J. Nelson, Daniel J. Stephenson, Robert N. Bone, Christopher L. Cardona, Margaret A. Park, Ying G. Tusing, Xiaoyong Lei, George Kokotos, Christina L. Graves, Clayton E. Mathews, Joanna Kramer, Martin J. Hessner, Charles E. Chalfant, Sasanka Ramanadham

×
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 13
  • 14
  • Next →

No posts were found with this tag.

Advertisement
Follow JCI Insight:
Copyright © 2021 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts