Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Recently published
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Recently published
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact

Gastroenterology

  • 78 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 7
  • 8
  • Next →
Vagal gut-brain signaling mediates amygdaloid plasticity, affect and pain in a functional dyspepsia model
Zachary A. Cordner, … , Timothy H. Moran, Pankaj J. Pasricha
Zachary A. Cordner, … , Timothy H. Moran, Pankaj J. Pasricha
Published February 16, 2021
Citation Information: JCI Insight. 2021. https://doi.org/10.1172/jci.insight.144046.
View: Text | PDF

Vagal gut-brain signaling mediates amygdaloid plasticity, affect and pain in a functional dyspepsia model

  • Text
  • PDF
Abstract

Functional dyspepsia (FD) is associated with both chronic gastrointestinal distress and anxiety and depression. Here, we hypothesized that aberrant gastric signals, transmitted by the vagus nerve, may alter key brain regions modulating affective and pain behavior. Using a previously validated rat model of FD characterized by gastric hypersensitivity, depression- and anxiety-like behavior, we found that vagal activity in response to gastric distention was increased in FD rats. The FD phenotype was associated with gastric mast cell hyperplasia and increased expression of corticotrophin-releasing factor (CRF) and decreased brain-derived neurotrophic factor in the central amygdala. Subdiaphragmatic vagotomy reversed these changes and restored affective behavior to that of controls. Vagotomy partially attenuated pain responses to gastric distention, which may be mediated by central reflexes in the periaqueductal gray, as determined by local injection of lidocaine. Ketotifen, a mast cell stabilizer, reduced vagal hypersensitivity, normalized affective behavior and attenuated gastric hyperalgesia. In conclusion, vagal activity, partially driven by gastric mast cells, induces long-lasting changes in CRF signaling in the amygdala that may be responsible for enhanced pain and anxiety- and depression-like behaviors. Together, these results support a “bottom-up” pathway involving the gut-brain axis in the pathogenesis of both gastric pain and psychiatric co-morbidity in FD.

Authors

Zachary A. Cordner, Qian Li, Liansheng Liu, Kellie L. Tamashiro, Aditi Bhargava, Timothy H. Moran, Pankaj J. Pasricha

×

Duodenal mucosal mitochondrial gene expression is associated with delayed gastric emptying in diabetic gastroenteropathy
Susrutha Puthanmadhom Narayanan, … , Tamas Ordog, Adil E. Bharucha
Susrutha Puthanmadhom Narayanan, … , Tamas Ordog, Adil E. Bharucha
Published January 25, 2021
Citation Information: JCI Insight. 2021;6(2):e143596. https://doi.org/10.1172/jci.insight.143596.
View: Text | PDF

Duodenal mucosal mitochondrial gene expression is associated with delayed gastric emptying in diabetic gastroenteropathy

  • Text
  • PDF
Abstract

Hindered by a limited understanding of the mechanisms responsible for diabetic gastroenteropathy (DGE), management is symptomatic. We investigated the duodenal mucosal expression of protein-coding genes and microRNAs (miRNA) in DGE and related them to clinical features. The diabetic phenotype, gastric emptying, mRNA, and miRNA expression and ultrastructure of duodenal mucosal biopsies were compared in 39 DGE patients and 21 controls. Among 3175 differentially expressed genes (FDR < 0.05), several mitochondrial DNA–encoded (mtDNA-encoded) genes (12 of 13 protein coding genes involved in oxidative phosphorylation [OXPHOS], both rRNAs and 9 of 22 transfer RNAs) were downregulated; conversely, nuclear DNA–encoded (nDNA-encoded) mitochondrial genes (OXPHOS) were upregulated in DGE. The promoters of differentially expressed genes were enriched in motifs for transcription factors (e.g., NRF1), which regulate mitochondrial biogenesis. Seventeen of 30 differentially expressed miRNAs targeted differentially expressed mitochondrial genes. Mitochondrial density was reduced and correlated with expression of 9 mtDNA OXPHOS genes. Uncovered by principal component (PC) analysis of 70 OXPHOS genes, PC1 was associated with neuropathy (P = 0.01) and delayed gastric emptying (P < 0.05). In DGE, mtDNA- and nDNA-encoded mitochondrial genes are reduced and increased — associated with reduced mitochondrial density, neuropathy, and delayed gastric emptying — and correlated with cognate miRNAs. These findings suggest that mitochondrial disturbances may contribute to delayed gastric emptying in DGE.

Authors

Susrutha Puthanmadhom Narayanan, Daniel O’Brien, Mayank Sharma, Karl Miller, Peter Adams, João F. Passos, Alfonso Eirin, Tamas Ordog, Adil E. Bharucha

×

Dysregulated SREBP1c/miR-153 signaling induced by hypertriglyceridemia worsens acute pancreatitis and delays tissue repair
Juanjuan Dai, … , Xingpeng Wang, Guoyong Hu
Juanjuan Dai, … , Xingpeng Wang, Guoyong Hu
Published January 25, 2021
Citation Information: JCI Insight. 2021;6(2):e138584. https://doi.org/10.1172/jci.insight.138584.
View: Text | PDF

Dysregulated SREBP1c/miR-153 signaling induced by hypertriglyceridemia worsens acute pancreatitis and delays tissue repair

  • Text
  • PDF
Abstract

Severe acute pancreatitis (AP) is a life-threatening disease with up to 30% mortality. Therefore, prevention of AP aggravation and promotion of pancreatic regeneration are critical during the course and treatment of AP. Hypertriglyceridemia (HTG) is an established aggravating factor for AP that hinders pancreatic regeneration; however, its exact mechanism remains unclear. Using miRNA sequencing and further verification, we found that miRNA-153 (miR-153) was upregulated in the pancreas of HTG animal models and in the plasma of patients with HTG-AP. Increased miR-153 aggravated HTG-AP and delayed pancreatic repair via targeting TRAF3. Furthermore, miR-153 was transcriptionally suppressed by sterol regulatory element-binding transcription factor 1c (SREBP1c), which was suppressed by lipoprotein lipase malfunction-induced HTG. Overexpressing SREBP1c suppressed miR-153 expression, alleviated the severity of AP, and facilitated tissue regeneration in vivo. Finally, therapeutic administration of insulin also protected against HTG-AP via upregulating SREBP1c. Collectively, our results not only provide evidence that HTG leads to the development of more severe AP and hinders pancreatic regeneration via inducing persistent dysregulation of SREBP1c/miR-153 signaling, but also demonstrate that SREBP1c activators, including insulin, might be used to treat HTG-AP in patients.

Authors

Juanjuan Dai, Mingjie Jiang, Yangyang Hu, Jingbo Xiao, Bin Hu, Jiyao Xu, Xiao Han, Shuangjun Shen, Bin Li, Zengkai Wu, Yan He, Yingchun Ren, Li Wen, Xingpeng Wang, Guoyong Hu

×

Repurposing calcium sensing receptor agonist cinacalcet for treatment of CFTR-mediated secretory diarrheas
Apurva A. Oak, … , Alan S. Verkman, Onur Cil
Apurva A. Oak, … , Alan S. Verkman, Onur Cil
Published January 5, 2021
Citation Information: JCI Insight. 2021. https://doi.org/10.1172/jci.insight.146823.
View: Text | PDF

Repurposing calcium sensing receptor agonist cinacalcet for treatment of CFTR-mediated secretory diarrheas

  • Text
  • PDF
Abstract

Diarrhea is a major cause of global mortality, and outbreaks of secretory diarrhea such as cholera remain an important problem in the developing world. Current treatment of secretory diarrhea primarily involves supportive measures such as fluid replacement. The calcium-sensing receptor (CaSR) regulates multiple biological activities in response to changes in extracellular Ca+2. The FDA-approved drug cinacalcet is an allosteric activator of CaSR used for treatment of hyperparathyroidism. Here, we found by short-circuit current measurements in human colonic T84 cells that CaSR activation by cinacalcet reduced forskolin-induced Cl- secretion by greater than 80%. Cinacalcet also reduced Cl- secretion induced by cholera toxin, heat-stable E. coli enterotoxin, and vasoactive intestinal peptide (VIP). The cinacalcet effect primarily involved indirect inhibition of cystic fibrosis transmembrane conductance regulator (CFTR)-mediated Cl- secretion following activation of CaSR, and downstream phospholipase C and phosphodiesterases. In mice, cinacalcet reduced fluid accumulation by more than 60% in intestinal closed-loop models of cholera and Traveler’s diarrhea. The cinacalcet effect involved both inhibition of CFTR-mediated secretion and stimulation of sodium-hydrogen exchanger 3 (NHE3)-mediated absorption. These findings support the therapeutic utility of the safe and commonly used drug cinacalcet in CFTR-dependent secretory diarrheas including cholera, Traveler’s diarrhea and VIPoma.

Authors

Apurva A. Oak, Parth D. Chhetri, Amber Rivera, Alan S. Verkman, Onur Cil

×

Kir6.1- and SUR2-dependent KATP over-activity disrupts intestinal motility in murine models of Cantu Syndrome
Nathaniel W. York, … , Hongzhen Hu, Colin G. Nichols
Nathaniel W. York, … , Hongzhen Hu, Colin G. Nichols
Published November 10, 2020
Citation Information: JCI Insight. 2020. https://doi.org/10.1172/jci.insight.141443.
View: Text | PDF

Kir6.1- and SUR2-dependent KATP over-activity disrupts intestinal motility in murine models of Cantu Syndrome

  • Text
  • PDF
Abstract

Cantύ Syndrome (CS), caused by gain-of-function (GOF) mutations in pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) ATP-sensitive potassium (KATP) channel subunit genes, is frequently accompanied by gastrointestinal (GI) dysmotility, and we describe one CS patient who required an implanted intestinal irrigation system for successful stooling. We used gene-modified mice to assess the underlying KATP channel subunits in gut smooth muscle, and to model the consequences of altered KATP channels in CS gut. We show that Kir6.1/SUR2 subunits underlie smooth muscle KATP channels throughout the small intestine and colon. Knock-in mice, carrying human KCNJ8 and ABCC9 CS mutations in the endogenous loci, exhibit reduced intrinsic contractility throughout the intestine, resulting in death when weaned onto solid food in the most severely affected animals. Death is avoided by weaning onto a liquid gel diet, implicating intestinal insufficiency and bowel impaction as the underlying cause, and GI transit is normalized by treatment with the KATP inhibitor glibenclamide. We thus define the molecular basis of intestinal KATP channel activity, the mechanism by which overactivity results in GI insufficiency, and a viable approach to therapy.

Authors

Nathaniel W. York, Helen Parker, Zili Xie, David Tyus, Maham A. Waheed, Zihan Yan, Dorothy K. Grange, Maria S. Remedi, Sarah K. England, Hongzhen Hu, Colin G. Nichols

×

Stem cell and niche regulation in human short bowel syndrome
Vered Gazit, … , Marc S. Levin, Deborah C. Rubin
Vered Gazit, … , Marc S. Levin, Deborah C. Rubin
Published November 3, 2020
Citation Information: JCI Insight. 2020. https://doi.org/10.1172/jci.insight.137905.
View: Text | PDF

Stem cell and niche regulation in human short bowel syndrome

  • Text
  • PDF
Abstract

Loss of functional small bowel surface area following surgical resection for disorders such as Crohn’s disease, intestinal ischemic injury, radiation enteritis, and in children, necrotizing enterocolitis, atresia and gastroschisis, may result in short bowel syndrome (SBS) with attendant high morbidity, mortality and health care costs in the U.S. Following resection, the remaining small bowel epithelium mounts an adaptive response resulting in increased crypt cell proliferation, increased villus height, crypt depth and enhanced nutrient and electrolyte absorption. Although these morphologic and functional changes are well-described in animal models, the adaptive response in humans is less well understood, and clinically the response is unpredictable and often inadequate. Here we address the hypotheses that human intestinal stem cell populations are expanded and the stem cell niche is regulated following massive gut resection in short bowel syndrome. We use intestinal enteroid cultures from SBS patients to show that the magnitude and phenotype of the adaptive stem cell response is regulated by stromal niche cells including intestinal subepithelial myofibroblasts, which are activated by intestinal resection to enhance epithelial stem and proliferative cell responses. Our data suggest that myofibroblast regulation of bone morphogenetic protein signaling pathways plays a role in the gut adaptive response post resection.

Authors

Vered Gazit, Elzbieta A. Swietlicki, Miranda U. Liang, Adam Surti, Raechel McDaniel, Mackenzie Geisman, David M. Alvarado, Matthew A. Ciorba, Grant V. Bochicchio, Obeid Ilahi, John Kirby, William J. Symons, Nicholas O. Davidson, Marc S. Levin, Deborah C. Rubin

×

Bile acid toxicity in Paneth cells contributes to gut dysbiosis induced by high-fat feeding
Hui Zhou, … , Xianjun Xu, Chung Owyang
Hui Zhou, … , Xianjun Xu, Chung Owyang
Published October 15, 2020
Citation Information: JCI Insight. 2020;5(20):e138881. https://doi.org/10.1172/jci.insight.138881.
View: Text | PDF

Bile acid toxicity in Paneth cells contributes to gut dysbiosis induced by high-fat feeding

  • Text
  • PDF
Abstract

High-fat feeding (HFF) leads to gut dysbiosis through unclear mechanisms. We hypothesize that bile acids secreted in response to high-fat diets (HFDs) may act on intestinal Paneth cells, leading to gut dysbiosis. We found that HFF resulted in widespread taxonomic shifts in the bacteria of the ileal mucosa, characterized by depletion of Lactobacillus and enrichment of Akkermansia muciniphila, Clostridium XIVa, Ruminococcaceae, and Lachnospiraceae, which were prevented by the bile acid binder cholestyramine. Immunohistochemistry and in situ hybridization studies showed that G protein–coupled bile acid receptor (TGR5) expressed in Paneth cells was upregulated in the rats fed HFD or normal chow supplemented with cholic acid. This was accompanied by decreased lysozyme+ Paneth cells and α-defensin 5 and 6 and increased expression of XBP-1. Pretreatment with ER stress inhibitor 4PBA or with cholestyramine prevented these changes. Ileal explants incubated with deoxycholic acid or cholic acid caused a decrease in α-defensin 5 and 6 and an increase in XBP-1, which was prevented by TGR5 antibody or 4PBA. In conclusion, this is the first demonstration to our knowledge that TGR5 is expressed in Paneth cells. HFF resulted in increased bile acid secretion and upregulation of TGR5 expression in Paneth cells. Bile acid toxicity in Paneth cells contributes to gut dysbiosis induced by HFF.

Authors

Hui Zhou, Shi-Yi Zhou, Merritt Gillilland III, Ji-Yao Li, Allen Lee, Jun Gao, Guanpo Zhang, Xianjun Xu, Chung Owyang

×

Targeting the gut to prevent sepsis from a cutaneous burn
Fatemeh Adiliaghdam, … , Laurence G. Rahme, Richard A. Hodin
Fatemeh Adiliaghdam, … , Laurence G. Rahme, Richard A. Hodin
Published October 2, 2020
Citation Information: JCI Insight. 2020;5(19):e137128. https://doi.org/10.1172/jci.insight.137128.
View: Text | PDF

Targeting the gut to prevent sepsis from a cutaneous burn

  • Text
  • PDF
Abstract

Severe burn injury induces gut barrier dysfunction and subsequently a profound systemic inflammatory response. In the present study, we examined the role of the small intestinal brush border enzyme, intestinal alkaline phosphatase (IAP), in preserving gut barrier function and preventing systemic inflammation after burn wound infection in mice. Mice were subjected to a 30% total body surface area dorsal burn with or without intradermal injection of Pseudomonas aeruginosa. Mice were gavaged with 2000 units of IAP or vehicle at 3 and 12 hours after the insult. We found that both endogenously produced and exogenously supplemented IAP significantly reduced gut barrier damage, decreased bacterial translocation to the systemic organs, attenuated systemic inflammation, and improved survival in this burn wound infection model. IAP attenuated liver inflammation and reduced the proinflammatory characteristics of portal serum. Furthermore, we found that intestinal luminal contents of burn wound–infected mice negatively impacted the intestinal epithelial integrity compared with luminal contents of control mice and that IAP supplementation preserved monolayer integrity. These results indicate that oral IAP therapy may represent an approach to preserving gut barrier function, blocking proinflammatory triggers from entering the portal system, preventing gut-induced systemic inflammation, and improving survival after severe burn injuries.

Authors

Fatemeh Adiliaghdam, Paul Cavallaro, Vidisha Mohad, Marianna Almpani, Florian Kühn, Mohammad Hadi Gharedaghi, Mehran Najibi, Laurence G. Rahme, Richard A. Hodin

×

In utero human intestine harbors unique metabolomic features including bacterial metabolites
Yujia Li, … , George Tseng, Liza Konnikova
Yujia Li, … , George Tseng, Liza Konnikova
Published October 1, 2020
Citation Information: JCI Insight. 2020. https://doi.org/10.1172/jci.insight.138751.
View: Text | PDF

In utero human intestine harbors unique metabolomic features including bacterial metabolites

  • Text
  • PDF
Abstract

Symbiotic microbial colonization through the establishment of the intestinal microbiome is critical to many intestinal functions including nutrient metabolism, intestinal barrier integrity and immune regulation. Recent studies suggest that education of the intestinal immunity maybe ongoing in utero. However, the drivers of this process are unknown. The microbiome and its byproducts are one potential source. Whether a fetal intestinal microbiome exists is controversial and if microbially derived metabolites are present in utero is unknown. Here, we aimed to determine whether bacterial DNA and microbially-derived metabolites can be detected in second trimester human intestinal samples. Although, we were unable to amplify bacterial DNA from fetal intestines, we report a unique fetal metabolomic intestinal profile with an abundance of bacterially derived and host derived metabolites commonly produced in response to microbiota. Though we did not directly assess their source and function, we hypothesize that these microbial associated metabolites come either from the maternal microbiome and are vertically transmitted to the fetus to prime the fetal immune system and prepare the gastrointestinal tract for postnatal microbial encounters or are produced locally by bacteria that was below our detection threshold.

Authors

Yujia Li, Jessica M. Toothaker, Shira Ben-Simon, Lital Ozeri, Ron Schweitzer, Blake T. McCourt, Collin C. McCourt, Lael Werner, Scott B. Snapper, Dror S. Shouval, Soliman Khatib, Omry Koren, Sameer Agnihorti, George Tseng, Liza Konnikova

×

Pleiotropic ZIP8 A391T implicates abnormal manganese homeostasis in complex human disease
Laxmi Sunuwar, … , Cynthia L. Sears, Joanna M.P. Melia
Laxmi Sunuwar, … , Cynthia L. Sears, Joanna M.P. Melia
Published September 8, 2020
Citation Information: JCI Insight. 2020. https://doi.org/10.1172/jci.insight.140978.
View: Text | PDF

Pleiotropic ZIP8 A391T implicates abnormal manganese homeostasis in complex human disease

  • Text
  • PDF
Abstract

ZIP8 is a metal transporter with a role in manganese (Mn) homeostasis. A common genetic variant in ZIP8 (rs13107325; A391T) ranks in the top 10 of pleiotropic single nucleotide polymorphisms (SNP) identified in genome-wide association studies, including associations with an increased risk of schizophrenia, obesity, Crohn’s disease, and reduced blood Mn. Here, we used CRISPR/Cas9-mediated knock-in (KI) to generate a mouse model of ZIP8 A391T (mouse Zip8 393T-KI). Recapitulating the SNP association with blood Mn, blood Mn is reduced in Zip8 393T-KI mice. There is restricted abnormal tissue Mn homeostasis with decreases in liver and kidney Mn and reciprocal increase in biliary Mn to provide in vivo evidence of hypomorphic Zip8 function. Upon challenge in a chemical-induced colitis model, male Zip8 393T-KI mice exhibited enhanced disease susceptibility. ZIP8 391-Thr associated with reduced triantennary plasma N-glycan species in a population-based cohort to define a genotype-specific glycophenotype hypothesized to be linked to Mn-dependent glycosyltransferase activity. This glycophenotype was maintained in a cohort of Crohn’s disease patients. These data and the pleiotropic disease associations with ZIP8 391-Thr suggest underappreciated roles of Mn homeostasis in compex human disease.

Authors

Laxmi Sunuwar, Azra Frkatovic, Sodbo Sharapov, Qinchuan Wang, Heather Neu, Xinqun Wu, Talin Haritunians, Fengyi Wan, Sarah L. J. Michel, Shaoguang Wu, Dermot McGovern, Gordan Lauc, Mark Donowitz, Cynthia L. Sears, Joanna M.P. Melia

×
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 7
  • 8
  • Next →

No posts were found with this tag.

Advertisement
Follow JCI Insight:
Copyright © 2021 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts