Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Gastroenterology

  • 178 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 17
  • 18
  • Next →
ETS1 suppresses Hepatic Stellate Cell activation and liver fibrosis
Wonseok Lee, … , David A. Brenner, Tatiana Kisseleva
Wonseok Lee, … , David A. Brenner, Tatiana Kisseleva
Published November 4, 2025
Citation Information: JCI Insight. 2025. https://doi.org/10.1172/jci.insight.195242.
View: Text | PDF

ETS1 suppresses Hepatic Stellate Cell activation and liver fibrosis

  • Text
  • PDF
Abstract

Chronic liver injury results in activation of quiescent Hepatic Stellate Cells (qHSCs) into Collagen Type I-producing activated HSCs that make liver fibrotic. We identified ETS1/2 (E26 transformation-specific transcription factors 1/2) as lineage-specific transcription factors regulating HSC phenotypes. Here we investigated the role of ETS1/2 in HSCs in liver fibrosis using toxic liver injury models and 3D human liver spheroids. Liver fibrosis was induced in wild-type and HSC-specific Ets1 (Ets1ΔHSC) and Ets2 (Ets2ΔHSC) knockout mice by administration of carbon tetrachloride for 6 weeks, following cessation of liver injury for 2 weeks. Liver fibrosis was more severe in Ets1ΔHSC, and to lesser extent in Ets2ΔHSC, compared to wild-type mice. Regression of liver fibrosis was suppressed only in Ets1ΔHSC, indicating Ets1 as the predominant isoform maintaining quiescent-like phenotype in HSCs. Similar results were obtained in a MASH model using 3D human liver spheroids. Knockdown of ETS1 in human HSCs caused upregulation of fibrogenic genes in MASH human liver spheroids and prevented fibrosis regression. ETS1 regulated the qHSC phenotype via CRTC2/PGC1α/PPARγ pathway. Knockdown of CRTC2 (cAMP response element-binding protein (CREB)-regulated transcription co-activator 2) abrogated PPARγ responses and facilitated HSC activation. These findings suggest that ETS1 may represent a therapeutic target for anti-fibrotic therapy.

Authors

Wonseok Lee, Xiao Liu, Sara Brin Rosenthal, Charlene Miciano, Sadatsugu Sakane, Kanani Hokutan, Debanjan Dhar, Hyun Young Kim, David A. Brenner, Tatiana Kisseleva

×

CRB3 and NF2 orchestrate cytoskeletal dynamics to control epithelial barrier assembly
Shuling Fan, … , Charles A. Parkos, Asma Nusrat
Shuling Fan, … , Charles A. Parkos, Asma Nusrat
Published October 22, 2025
Citation Information: JCI Insight. 2025;10(20):e196350. https://doi.org/10.1172/jci.insight.196350.
View: Text | PDF

CRB3 and NF2 orchestrate cytoskeletal dynamics to control epithelial barrier assembly

  • Text
  • PDF
Abstract

The gastrointestinal epithelium depends on the apical junctional complex (AJC), composed of tight and adherens junctions, to regulate barrier function. Here, we identify the apical polarity protein Crumbs homolog 3 (CRB3) as an important regulator of AJC assembly and barrier function in intestinal epithelium. Using primary murine colonic epithelial cells (colonoids) from inducible, conditional Crb3-knockout (Crb3ERΔIEC) and control (Crb3fl/fl) mice, we show that CRB3 deficiency compromised barrier function that was associated with a hypercontractile perijunctional actomyosin network and impaired AJC assembly. Loss of CRB3 exacerbated proinflammatory cytokine–induced AJC remodeling, leading to increased intestinal permeability. Crb3ERΔIEC cells exhibited increased RhoA activity and junctional tension, which could be reversed by ROCK-II or myosin II inhibition, restoring junctional architecture. Mechanistically, CRB3A interacts with the actin cytoskeletal linker protein, Merlin (NF2) via its FERM-binding domain, and NF2 knockdown phenocopied CRB3 loss, suggesting their cooperative role in AJC assembly. These findings establish CRB3 and NF2 signaling as key regulators of perijunctional actomyosin contractility and AJC organization during both de novo junctional assembly and inflammation-induced remodeling. This work defines a CRB3- and NF2-dependent pathway by which epithelial cells regulate mechanical tension to coordinate barrier assembly during homeostasis and junctional remodeling under inflammatory stress.

Authors

Shuling Fan, Saranyaraajan Varadarajan, Vicky Garcia-Hernandez, Sven Flemming, Arturo Raya-Sandino, Ben Margolis, Charles A. Parkos, Asma Nusrat

×

PNPLA3-I148M genetic variant rewires lipid metabolism to drive programmed cell death in human hepatocytes
Rodrigo M. Florentino, … , Deepak Nagrath, Alejandro Soto-Gutierrez
Rodrigo M. Florentino, … , Deepak Nagrath, Alejandro Soto-Gutierrez
Published October 21, 2025
Citation Information: JCI Insight. 2025. https://doi.org/10.1172/jci.insight.193805.
View: Text | PDF

PNPLA3-I148M genetic variant rewires lipid metabolism to drive programmed cell death in human hepatocytes

  • Text
  • PDF
Abstract

Genetic variants in lipid metabolism influence the risk of developing metabolic dysfunction-associated steatotic liver disease (MASLD), cirrhosis, and end-stage liver disease (ESLD). The mechanisms by which these variants drive disease are poorly understood. Because of the PNPLA3-I148M variant's strong correlation with all stages of the MASLD spectrum and the lack of tractable therapeutic targets, we sought to understand its impact on cellular function and liver metabolism. Primary human hepatocytes (HAH) and iPSC-derived hepatocytes (iHeps) from healthy individuals possessing the PNPLA3-I148M mutation were characterized for changes in lipid metabolism, cellular stress, and survival. Using lipidomics, metabolomics, stable isotope tracing, and flux propensity analysis, we created a comprehensive metabolic profile of the changes associated with the PNPLA3-I148M variant. Functional analysis showed that the presence of the PNPLA3-I148M variant increased endoplasmic reticulum stress, mitochondrial dysfunction, and peroxisomal β-oxidation, ultimately leading to cell death via ferroptosis. Nutritional interventions, ferroptosis-specific inhibitors, and genetic approaches modulating GPX4 activity in PNPLA3-I148M HAH and iHeps decreased programmed cell death. Our findings indicate that therapies targeting ferroptosis in patients carrying the PNPLA3-I148M variant could affect the development of MASLD and ESLD and highlight the utility of iPSC-based models for the study of genetic contributions to hepatic disorders.

Authors

Rodrigo M. Florentino, Olamide Animasahun, Nils Haep, Minal Nenwani, Kehinde Omoloja, Leyla Nurcihan Altay, Abhinav Achreja, Kazutoyo Morita, Takashi Motomura, Ricardo Diaz-Aragon, Lanuza AP Faccioli, Yiyue Sun, Zhenghao Liu, Zhiping Hu, Bo Yang, Fulei Wuchu, Ajay Shankaran, Miya Paserba, Annalisa M. Baratta, Shohrat Arazov, Zehra N. Kocas-Kilicarslan, Noah Meurs, Jaideep Behari, Edgar N. Tafaleng, Jonathan Franks, Alina Ostrowska, Takahiro Tomiyama, Kyohei Yugawa, Akinari Morinaga, Zi Wang, Kazuki Takeishi, Dillon C. Gavlock, Mark Miedel, D. Lansing Taylor, Ira J. Fox, Tomoharu Yoshizumi, Deepak Nagrath, Alejandro Soto-Gutierrez

×

Loss of TRPV4 reduces pancreatic cancer growth and metastasis
Joelle M.-J. Romac, … , Bandana Bindhani, Rodger A. Liddle
Joelle M.-J. Romac, … , Bandana Bindhani, Rodger A. Liddle
Published October 16, 2025
Citation Information: JCI Insight. 2025. https://doi.org/10.1172/jci.insight.196280.
View: Text | PDF

Loss of TRPV4 reduces pancreatic cancer growth and metastasis

  • Text
  • PDF
Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a rapidly metastasizing cancer characterized by a dense desmoplastic stroma comprised of extracellular matrix (ECM) proteins, which complicates treatment. Upon stimulation, pancreatic stellate cells (PSCs) differentiated into cancer-associated fibroblasts (CAFs) that are the source of ECM and cytokines in PDAC. We previously reported that mechanical stress activates PSCs and induces fibrosis through mechanical ion channel PIEZO1-mediated TRPV4 channel activation, but its role in PDAC remains unclear. Here we report that pathological activation of PIEZO1 differentiated human PSCs into an inflammatory CAF phenotype that expresses chemoresistance and cancer stemness markers CD10 and GPR77. In an orthotopic PDAC model, TRPV4 knockout mice exhibited a significant reduction in tumor size, circulating inflammatory cytokines, tissue inhibitor of metalloproteinases-1 (TIMP1), and pre-metastatic niche markers, serum amyloid A (SAA) proteins. A similar trend was observed in mice lacking functional PIEZO1 in PSCs. The livers of TRPV4 knockout mice exhibited fewer cancer cell microlesions, lacked macro tumors, produced lower levels of inflammatory protein S100A8, and developed fewer inflammatory cell clusters. In orthotopic and genetically engineered models of PDAC, these mice also had improved survival, suggesting that blocking TRPV4 channels may be a promising therapeutic target for PDAC.

Authors

Joelle M.-J. Romac, Sandip M. Swain, Nidula Mullappilly, Bandana Bindhani, Rodger A. Liddle

×

Unique epithelial proliferative transcriptomic signature in proton pump inhibitor–responsive pediatric eosinophilic esophagitis
Somdutta Chakraborty, … , Simon P. Hogan, Mirna Chehade
Somdutta Chakraborty, … , Simon P. Hogan, Mirna Chehade
Published October 8, 2025
Citation Information: JCI Insight. 2025;10(19):e178595. https://doi.org/10.1172/jci.insight.178595.
View: Text | PDF

Unique epithelial proliferative transcriptomic signature in proton pump inhibitor–responsive pediatric eosinophilic esophagitis

  • Text
  • PDF
Abstract

Clinical trials have identified 2 distinct eosinophilic esophagitis (EoE) treatment phenotypes: those that show proton pump inhibitor (PPI) responsiveness (PPI-R) and those that show PPI unresponsiveness (PPI-UR). Comprehensive clinical, endoscopic, and RNA-Seq analyses of patients with EoE prior to and following PPI therapy have not previously been performed to our knowledge. We showed that clinical, endoscopic, and histologic evaluation of esophageal biopsies from pediatric PPI-R and PPI-UR individuals with EoE prior to PPI therapy (diagnosis) were indistinguishable. RNA-Seq analyses revealed common immune and inflammatory transcriptional signatures in both PPI-R EoE and PPI-UR EoE esophageal biopsy samples at diagnosis and distinct signatures enriched for processes related to neuropeptide signaling and cell cycle and division. PPI therapy induced histologic, endoscopic, and transcriptional remission in PPI-R EoE, but not in PPI-UR EoE. Persistent disease in PPI-UR EoE was associated with the presence of Th2 inflammatory and dedifferentiated esophageal epithelial transcriptomic signatures, while PPI-R EoE revealed genes enriched in cellular responses to LPS, host defense against viruses, and type I IFN signaling. In silico analyses identified common and unique EoE disease gene drivers in PPI-R and PPI-UR EoE. These studies indicate that the 2 EoE phenotypes have unique transcriptomic elements that underlie the molecular nature of PPI-R and PPI-UR EoE disease.

Authors

Somdutta Chakraborty, Ankit Sharma, Sahiti Marella, Christian F. Rizza, Patrick A. O’Brien, Varsha Ganesan, Gila Idelman, Susie Min, Mayee Chen, Talaya McCright-Gill, Nancy Gonzalez, Alexandros D. Polydorides, Paul S. Foster, Simon P. Hogan, Mirna Chehade

×

The septin cytoskeleton is a novel regulator of intestinal epithelial barrier integrity and mucosal inflammation
Nayden G. Naydenov, … , Andrei I. Ivanov, Seham Ebrahim
Nayden G. Naydenov, … , Andrei I. Ivanov, Seham Ebrahim
Published October 7, 2025
Citation Information: JCI Insight. 2025. https://doi.org/10.1172/jci.insight.191538.
View: Text | PDF

The septin cytoskeleton is a novel regulator of intestinal epithelial barrier integrity and mucosal inflammation

  • Text
  • PDF
Abstract

Intestinal epithelial barrier-integrity is essential for human health, and its disruption induces and exacerbates intestinal inflammatory disorders. While the epithelial cytoskeleton is critical for maintaining gut barrier-integrity, the role of septins- a family of GTP-binding, cytoskeletal proteins- is largely unknown. This highlights an important knowledge gap as dysfunction of septins, and specifically septin 9 (SEPT9), is associated with intestinal pathologies. We determined that SEPT9 localizes to the apical junctions of intestinal epithelial cells (IECs), overlapping with both tight and adherens junctions. IEC-specific ablation of SEPT9 in mice resulted in leaky gut, due to mislocalization of junctional proteins, and increased susceptibility to experimental colitis. Consistently, SEPT9 expression was significantly reduced in intestinal mucosa of inflammatory bowel disease (IBD) patients. Using affinity-purification mass spectrometry, super-resolution imaging, and genetic knockout, we determined that SEPT9 interacts with and is necessary to recruit non-muscle myosin IIC (NMIIC) to the IEC peri-junctional actomyosin belt. Loss of NMIIC also caused IEC barrier disruption. In summary, SEPT9 regulates intestinal barrier-integrity by supporting the assembly of tight and adherens junctions through NMIIC recruitment to the actomyosin belt. The septin cytoskeleton safeguards the intestinal mucosa during acute inflammation, and its disruption in IBD suggests a loss of this protective function.

Authors

Nayden G. Naydenov, Gaizun Hu, Dominik Robak, Atif Zafar, Khosiyat Makhmudova, Susana Lechuga, Yuta Ohno, Naseer Sangwan, Saikat Bandyopadhyay, Ryan Musich, Erin Jeffery, Lei Sun, Armando Marino-Melendez, Florian Rieder, Gloria Sheynkman, Andrei I. Ivanov, Seham Ebrahim

×

Rapid cyclic stretching of cultured human visceral smooth muscle cells promotes a synthetic, proinflammatory phenotype
Sharon M. Wolfson, … , Robert O. Heuckeroth, Sohaib K. Hashmi
Sharon M. Wolfson, … , Robert O. Heuckeroth, Sohaib K. Hashmi
Published September 16, 2025
Citation Information: JCI Insight. 2025. https://doi.org/10.1172/jci.insight.188669.
View: Text | PDF

Rapid cyclic stretching of cultured human visceral smooth muscle cells promotes a synthetic, proinflammatory phenotype

  • Text
  • PDF
Abstract

Bowel smooth muscle experiences mechanical stress constantly during normal function, and pathologic mechanical stressors in disease states. We tested the hypothesis that pathologic mechanical stress could alter transcription to induce smooth muscle phenotypic class switching. To test this hypothesis, primary human intestinal smooth muscle cells (HISMCs), seeded on electrospun aligned poly-ε-caprolactone nano-fibrous scaffolds, were subjected to pathologic, high frequency (1 Hz) uniaxial 3% cyclic stretch (loaded) or kept unloaded in culture for 6 hours. RNA sequencing, qRT-PCR, and quantitative immunohistochemistry defined loading-induced changes in gene expression. NicheNet predicted how differentially expressed genes might impact HISMCs and other bowel cells. These studies showed loading induced differential expression of 4537 HISMC genes. Loaded HISMCs had a less contractile phenotype, with increased expression of synthetic SMC genes, proinflammatory cytokines, and altered expression of axon guidance molecules, growth factors, and morphogens. Many differentially expressed genes encode secreted ligands that could act cell-autonomously on smooth muscle and on other cells in the bowel wall. These data show HISMCs undergo remarkably rapid phenotypic plasticity in response to mechanical stress that may convert contractile HISMCs into proliferative, fibroblast-like cells or proinflammatory cells. These mechanical stress-induced changes in HISMC gene expression may be relevant for human bowel disease.

Authors

Sharon M. Wolfson, Katherine Beigel, Sierra E. Anderson, Brooke Deal, Molly Weiner, Se-Hwan Lee, Deanne M. Taylor, Su Chin Heo, Robert O. Heuckeroth, Sohaib K. Hashmi

×

miR147 promotes mucosal integrity and healing in intestinal inflammation
Agnieszka K. Czopik, … , Xiaoyi Yuan, Holger K. Eltzschig
Agnieszka K. Czopik, … , Xiaoyi Yuan, Holger K. Eltzschig
Published September 16, 2025
Citation Information: JCI Insight. 2025. https://doi.org/10.1172/jci.insight.190466.
View: Text | PDF

miR147 promotes mucosal integrity and healing in intestinal inflammation

  • Text
  • PDF
Abstract

The intestinal mucosal epithelium forms a barrier between luminal contents and the body. microRNAs (miRNAs) regulate mucosal homeostasis by controlling inflammatory responses and structural integrity. Here, we discovered a protective role for miR147 in intestinal inflammation using a miR147tdTomato reporter mouse. miR147 was enriched in the intestines, with the highest expression in the colonic epithelial cells at the luminal surface, with prominent expression in differentiated enterocytes. Mice with general or intestinal epithelial deletion of miR147 showed increased intestinal inflammation and diminished mucosal healing during colitis. RNA sequencing of miR147-deficient cells showed dysregulated immune signaling, with upregulated pro-inflammatory cytokine pathways and reduced type I interferon responses and revealed Ndufa4 as a likely miR147 target. Ndufa4, a mitochondrial protein regulating energy metabolism and inflammation, is elevated at the crypt base, inversely correlating with miR147. Mice lacking the miR147 binding site in Ndufa4’s 3′ untranslated region phenocopied miR147-deficient mice during colitis. Spatial and single-cell transcriptomic analyses in murine and human colons showed mutually exclusive miR147 and Ndufa4 expression, consistent with a regulatory relationship in epithelial differentiation and metabolism. These findings underscore miR147’s role in intestinal homeostasis and mucosal healing, suggesting it as a therapeutic target for inflammatory bowel disease.

Authors

Agnieszka K. Czopik, Arash Dabiri, Chia-Hao Tung, Victoria Vaughn, Xiangsheng Huang, Jinlian Wang, Hui Li, Nicolas F. Moreno, Natalia V. Piwko, Katherine Figarella, Hongfang Liu, Zhongming Zhao, Xiaoyi Yuan, Holger K. Eltzschig

×

A dendritic cell population responsible for transglutaminase 2-mediated gluten antigen presentation in celiac disease
Fu-Chen Yang, … , Bana Jabri, Chaitan Khosla
Fu-Chen Yang, … , Bana Jabri, Chaitan Khosla
Published August 28, 2025
Citation Information: JCI Insight. 2025. https://doi.org/10.1172/jci.insight.196102.
View: Text | PDF

A dendritic cell population responsible for transglutaminase 2-mediated gluten antigen presentation in celiac disease

  • Text
  • PDF
Abstract

In celiac disease (CeD), a gluten-dependent autoimmune disorder, transglutaminase 2 (TG2) deamidates selected glutamine residues in gluten peptides, while HLA-DQ2 presents deamidated antigens to inflammatory T cells. The cellular sources of pathogenic TG2 and DQ2 are unclear. Using chemical biology tools, we show that intestinal CD103+ dendritic cells (DCs) couple cell-surface TG2 to the endocytic LRP1 receptor to simultaneously deamidate gluten antigens and concentrate them in lysosomes. In DQ2-transgenic mice, CD103+ DCs loaded with deamidated antigens migrate from intestinal lamina propria and Peyer’s patches into mesenteric lymph nodes, where they engage T cells. In turn, gluten antigen presentation upregulates intestinal TG2 activity. The tool (HB-230) used to establish a role of CD103+ DCs in gluten antigen presentation and TG2 activation in mice also revealed that the TG2/LRP1 pathway is active in human CD14+ monocytes. Within this population of circulating monocytes, a DC subset with the gut-homing β7-integrin marker is elevated in CeD patients with active disease compared to non-celiac controls or patients on a gluten-free diet. Our findings not only inform the cellular basis for gluten toxicity in CeD but they also highlight the immunologic role of an enigmatic protein of growing therapeutic relevance in CeD and other immune disorders.

Authors

Fu-Chen Yang, Harrison A. Besser, Hye Rin Chun, Megan Albertelli, Nielsen Q. Fernandez-Becker, Bana Jabri, Chaitan Khosla

×

Longitudinal single-cell analysis of glucagon-like peptide-2 treatment in the patients with short bowel syndrome
Yumi Kudo, … , Akihiro Fujino, Tomohisa Sujino
Yumi Kudo, … , Akihiro Fujino, Tomohisa Sujino
Published August 7, 2025
Citation Information: JCI Insight. 2025. https://doi.org/10.1172/jci.insight.194497.
View: Text | PDF

Longitudinal single-cell analysis of glucagon-like peptide-2 treatment in the patients with short bowel syndrome

  • Text
  • PDF
Abstract

BACKGROUND. Glucagon-like peptide-2 (GLP-2) analogs are used clinically to enhance nutrient absorption in patients with short bowel syndrome (SBS); however, the precise mechanism remains unclear. To address this, the study aimed to clarify the dynamics of intestinal epithelial cells and immune cells in patients with SBS treated with GLP-2 analogs. METHODS. Five male patients diagnosed with SBS, all of whom received treatment with the GLP-2 analog teduglutide, were included in the study. We conducted longitudinal single-cell RNA sequencing (scRNA-seq) analysis of intestinal tissue from SBS patients over a year, integrating microbiome composition analysis. RESULTS. After treatment, the alpha diversity of the gut microbiome increased, indicating a more varied microbial environment. ScRNA-seq analysis revealed a reduction of T helper 2 cells and an increase in regulatory T (Treg) cells, suggesting a shift towards an immunoregulatory intestinal environment. Additionally, nutrient-absorbing enterocyte-Top2 and middle clusters expanded, enhancing the absorption capacity, whereas major histocompatibility complex class I/II-expressing enterocyte-Top1 cells declined, potentially modulating immune responses. CONCLUSION. The study findings indicate that GLP-2 analogs reshape intestinal immunity and microbiota, fostering a less inflammatory environment while promoting nutrient uptake efficiency. These insights offer a deeper understanding of the role of GLP-2 analogs in gut adaptation and provide a foundation for refining clinical strategies for SBS treatment. FUNDING. This work was supported by Sakaguchi Memorial Foundation, Grants-in-Aid from the Japanese Society for the Promotion of Science (JSPS) (21K18272, 23H03665, 23H02899, 23K27590, 25K22627, 23K08037), JST FOREST(21457195), and the Takeda Japan Medical Office Funded Research Grant 2022.

Authors

Yumi Kudo, Kentaro Miyamoto, Shohei Suzuki, Akihiko Chida, Anna Tojo, Mai Hasegawa, Arina Shigehara, Ikuko Koya, Yoshinari Ando, Masayasu Sato, Aya Kondo, Tomoko Kumagai, Harunori Deguchi, Yoshiki Sugiyama, Yoko Ito, Koji Shirosaki, Satoko Yamagishi, Yutaro Maeda, Hiroki Kanamori, Motohiro Kano, Mototoshi Kato, Hanako Tsujikawa, Yusuke Yoshimatsu, Kaoru Takabayashi, Koji Okabayashi, Takanori Kanai, Naoki Hosoe, Motohiko Kato, Jonathan Moody, Chung-Chau Hon, Tatsuo Kuroda, Yohei Yamada, Akihiro Fujino, Tomohisa Sujino

×
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 17
  • 18
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts