Issue published September 22, 2022

Go to section:
A gut-oral microbiome–driven axis controls oropharyngeal candidiasis through retinoic acid

Aggor et al. report that a gut-specific bacterium can promote oral immunity to Candida albicans. Image credit: Rachel Bailey.

Research Articles
Abstract

Although published studies have demonstrated that IFN-ε has a crucial role in regulating protective immunity in the mouse female reproductive tract, expression and regulation of IFN-ε in the human female reproductive tract (hFRT) have not been characterized to our knowledge. We obtained hFRT samples from a well-characterized cohort of women to enable us to comprehensively assess ex vivo IFN-ε expression in the hFRT at various stages of the menstrual cycle. We found that among the various types of IFNs, IFN-ε was uniquely, selectively, and constitutively expressed in the hFRT epithelium. It had distinct expression patterns in the surface and glandular epithelia of the upper hFRT compared with basal layers of the stratified squamous epithelia of the lower hFRT. There was cyclical variation of IFN-ε expression in the endometrial epithelium of the upper hFRT and not in the distal FRT, consistent with selective endometrial expression of the progesterone receptor and regulation of the IFNE promoter by progesterone. Because we showed IFN-ε stimulated important protective IFN-regulated genes in FRT epithelium, this characterization is a key element in understanding the mechanisms of hormonal control of mucosal immunity.

Authors

Nollaig M. Bourke, Sharon L. Achilles, Stephanie U-Shane Huang, Helen E. Cumming, San S. Lim, Irene Papageorgiou, Linden J. Gearing, Ross Chapman, Suruchi Thakore, Niamh E. Mangan, Sam Mesiano, Paul J. Hertzog

×

Abstract

To define alterations early in tumor formation, we studied nerve tumors in neurofibromatosis 1 (NF1), a tumor predisposition syndrome. Affected individuals develop neurofibromas, benign tumors driven by NF1 loss in Schwann cells (SCs). By comparing normal nerve cells to plexiform neurofibroma (PN) cells using single-cell and bulk RNA sequencing, we identified changes in 5 SC populations, including a de novo SC progenitor–like (SCP-like) population. Long after Nf1 loss, SC populations developed PN-specific expression of Dcn, Postn, and Cd74, with sustained expression of the injury response gene Postn and showed dramatic expansion of immune and stromal cell populations; in corresponding human PNs, the immune and stromal cells comprised 90% of cells. Comparisons between injury-related and tumor monocytes/macrophages support early monocyte recruitment and aberrant macrophage differentiation. Cross-species analysis verified each SC population and unique conserved patterns of predicted cell-cell communication in each SC population. This analysis identified PROS1-AXL, FGF-FGFR, and MIF-CD74 and its effector pathway NF-κB as deregulated in NF1 SC populations, including SCP-like cells predicted to influence other types of SCs, stromal cells, and/or immune cells in mouse and human. These findings highlight remarkable changes in multiple types of SCs and identify therapeutic targets for PN.

Authors

Leah J. Kershner, Kwangmin Choi, Jianqiang Wu, Xiyuan Zhang, Melissa Perrino, Nathan Salomonis, Jack F. Shern, Nancy Ratner

×

Abstract

Loss of retinal blood flow autoregulation is an early feature of diabetes that precedes the development of clinically recognizable diabetic retinopathy (DR). Retinal blood flow autoregulation is mediated by the myogenic response of the retinal arterial vessels, a process that is initiated by the stretch‑dependent activation of TRPV2 channels on the retinal vascular smooth muscle cells (VSMCs). Here, we show that the impaired myogenic reaction of retinal arterioles from diabetic animals is associated with a complete loss of stretch‑dependent TRPV2 current activity on the retinal VSMCs. This effect could be attributed, in part, to TRPV2 channel downregulation, a phenomenon that was also evident in human retinal VSMCs from diabetic donors. We also demonstrate that TRPV2 heterozygous rats, a nondiabetic model of impaired myogenic reactivity and blood flow autoregulation in the retina, develop a range of microvascular, glial, and neuronal lesions resembling those observed in DR, including neovascular complexes. No overt kidney pathology was observed in these animals. Our data suggest that TRPV2 dysfunction underlies the loss of retinal blood flow autoregulation in diabetes and provide strong support for the hypothesis that autoregulatory deficits are involved in the pathogenesis of DR.

Authors

Michael O’Hare, Gema Esquiva, Mary K. McGahon, Jose Manuel Romero Hombrebueno, Josy Augustine, Paul Canning, Kevin S. Edgar, Peter Barabas, Thomas Friedel, Patrizia Cincolà, Jennifer Henry, Katie Mayne, Hannah Ferrin, Alan W. Stitt, Timothy J. Lyons, Derek P. Brazil, David J. Grieve, J. Graham McGeown, Tim M. Curtis

×

Abstract

Macrophages in the tumor microenvironment have a substantial impact on tumor progression. Depending on the signaling environment in the tumor, macrophages can either support or constrain tumor progression. It is therefore of therapeutic interest to identify the tumor-derived factors that control macrophage education. With this aim, we correlated the expression of A Disintegrin and Metalloproteinase (ADAM) proteases, which are key mediators of cell-cell signaling, to the expression of protumorigenic macrophage markers in human cancer cohorts. We identified ADAM17, a sheddase upregulated in many cancer types, as a protein of interest. Depletion of ADAM17 in cancer cell lines reduced the expression of several protumorigenic markers in neighboring macrophages in vitro as well as in mouse models. Moreover, ADAM17–/– educated macrophages demonstrated a reduced ability to induce cancer cell invasion. Using mass spectrometry–based proteomics and ELISA, we identified heparin-binding EGF (HB-EGF) and amphiregulin, shed by ADAM17 in the cancer cells, as the implicated molecular mediators of macrophage education. Additionally, RNA-Seq and ELISA experiments revealed that ADAM17-dependent HB-EGF ligand release induced the expression and secretion of CXCL chemokines in macrophages, which in turn stimulated cancer cell invasion. In conclusion, we provide evidence that ADAM17 mediates a paracrine EGFR-ligand-chemokine feedback loop, whereby cancer cells hijack macrophages to promote tumor progression.

Authors

Sebastian P. Gnosa, Laia Puig Blasco, Krzysztof B. Piotrowski, Marie L. Freiberg, Simonas Savickas, Daniel H. Madsen, Ulrich auf dem Keller, Pauliina Kronqvist, Marie Kveiborg

×

Abstract

Wolfram syndrome is a rare genetic disorder largely caused by pathogenic variants in the WFS1 gene and manifested by diabetes mellitus, optic nerve atrophy, and progressive neurodegeneration. Recent genetic and clinical findings have revealed Wolfram syndrome as a spectrum disorder. Therefore, a genotype-phenotype correlation analysis is needed for diagnosis and therapeutic development. Here, we focus on the WFS1 c.1672C>T, p.R558C variant, which is highly prevalent in the Ashkenazi Jewish population. Clinical investigation indicated that patients carrying the homozygous WFS1 c.1672C>T, p.R558C variant showed mild forms of Wolfram syndrome phenotypes. Expression of WFS1 p.R558C was more stable compared with the other known recessive pathogenic variants associated with Wolfram syndrome. Human induced pluripotent stem cell–derived (iPSC-derived) islets (SC-islets) homozygous for WFS1 c.1672C>T variant recapitulated genotype-related Wolfram syndrome phenotypes. Enhancing residual WFS1 function through a combination treatment of chemical chaperones mitigated detrimental effects caused by the WFS1 c.1672C>T, p.R558C variant and increased insulin secretion in SC-islets. Thus, the WFS1 c.1672C>T, p.R558C variant causes a mild form of Wolfram syndrome phenotypes, which can be remitted with a combination treatment of chemical chaperones. We demonstrate that our patient iPSC–derived disease model provides a valuable platform for further genotype-phenotype analysis and therapeutic development for Wolfram syndrome.

Authors

Rie Asada Kitamura, Kristina G. Maxwell, Wenjuan Ye, Kelly Kries, Cris M. Brown, Punn Augsornworawat, Yoel Hirsch, Martin M. Johansson, Tzvi Weiden, Joseph Ekstein, Joshua Cohen, Justin Klee, Kent Leslie, Anton Simeonov, Mark J. Henderson, Jeffrey R. Millman, Fumihiko Urano

×

Abstract

Pseudomonas aeruginosa is one of the most common nosocomial infections worldwide, and it frequently causes ventilator-associated acute pneumonia in immunocompromised patients. Abundant neutrophil extracellular traps (NETs) contribute to acute lung injury, thereby aggravating ventilator-induced lung damage. While pattern recognition receptors (PRRs) TLR4 and TLR5 are required for host defense against P. aeruginosa invasion, the PRR responsible for P. aeruginosa–induced NET formation, proinflammatory cytokine release, and acute lung injury remains unclear. We found that myeloid C-type lectin domain family 5 member A (CLEC5A) interacts with LPS of P. aeruginosa and is responsible for P. aeruginosa–induced NET formation and lung inflammation. P. aeruginosa activates CLEC5A to induce caspase-1–dependent NET formation, but it neither causes gasdermin D (GSDMD) cleavage nor contributes to P. aeruginosa–induced neutrophil death. Blockade of CLEC5A attenuates P. aeruginosa–induced NETosis and lung injury, and simultaneous administration of anti-CLEC5A mAb with ciprofloxacin increases survival rate and decreases collagen deposition in the lungs of mice challenged with a lethal dose of P. aeruginosa. Thus, CLEC5A is a promising therapeutic target to reduce ventilator-associated lung injury and fibrosis in P. aeruginosa–induced pneumonia.

Authors

Pei-Shan Sung, Yu-Chun Peng, Shao-Ping Yang, Cheng-Hsun Chiu, Shie-Liang Hsieh

×

Abstract

Bronchiolitis obliterans syndrome (BOS) is the main reason for poor outcomes after lung transplantation (LTx). We and others have recently identified B cells as major contributors to BOS after LTx. The extent of B cell heterogeneity and the relative contributions of B cell subpopulations to BOS, however, remain unclear. Here, we provide a comprehensive analysis of cell population changes and their gene expression patterns during chronic rejection after orthotopic LTx in mice. Of 11 major cell types, Mzb1-expressing plasma cells (PCs) were the most prominently increased population in BOS lungs. These findings were validated in 2 different cohorts of human BOS after LTx. A Bhlhe41, Cxcr3, and Itgb1 triple-positive B cell subset, also expressing classical markers of the innate-like B-1 B cell population, served as the progenitor pool for Mzb1+ PCs. This subset accounted for the increase in IgG2c production within BOS lung grafts. A genetic lack of Igs decreased BOS severity after LTx. In summary, we provide a detailed analysis of cell population changes during BOS. IgG+ PCs and their progenitors — an innate B cell subpopulation — are the major source of local Ab production and a significant contributor to BOS after LTx.

Authors

Natalia F. Smirnova, Kent Riemondy, Marta Bueno, Susan Collins, Pavan Suresh, Xingan Wang, Kapil N. Patel, Carlyne Cool, Melanie Königshoff, Nirmal S. Sharma, Oliver Eickelberg

×

Abstract

Cub domain-containing protein 1 (CDCP1) is a protein that is highly expressed on the surface of many cancer cells. However, its distribution in normal tissues and its potential roles in nontumor cells are poorly understood. We found that CDCP1 is present on both human and mouse retinal pigment epithelial (RPE) cells. CDCP1-KO mice developed attenuated retinal inflammation in a passive model of autoimmune uveitis, with disrupted tight junctions and infiltrating T cells detected in RPE flat mounts from WT but not CDCP1-KO mice during EAU development. Mechanistically, we discovered that CDCP1 on RPE cells was upregulated by IFN-γ in vitro and after EAU induction in vivo. CD6 stimulation induced increased RPE barrier permeability of WT but not CDCP1-knockdown (CDCP1-KD) RPE cells, and activated T cells migrated through WT RPE monolayers more efficiently than the CDCP1-KD RPE monolayers. In addition, CD6 stimulation of WT but not the CDCP1-KD RPE cells induced massive stress fiber formation and focal adhesion disruption to reduce cell barrier tight junctions. These data suggest that CDCP1 on RPE cells interacts with CD6 on T cells to induce RPE cytoskeleton remodeling and focal adhesion disruption, which open up the tight junctions to facilitate T cell infiltration for the development of uveitis.

Authors

Lingjun Zhang, Nozha Borjini, Yu Lun, Sweta Parab, Gospel Asonye, Rupesh Singh, Brent A. Bell, Vera L. Bonilha, Andrei Ivanov, David A. Fox, Rachel Caspi, Feng Lin

×

Abstract

Cross-reactive immunity between SARS-CoV-2 and other related coronaviruses has been well-documented, and it may play a role in preventing severe COVID-19. Epidemiological studies early in the pandemic showed a geographical association between high influenza vaccination rates and lower incidence of SARS-CoV-2 infection. We, therefore, analyzed whether exposure to influenza A virus (IAV) antigens could influence the T cell repertoire in response to SARS-CoV-2, indicating a heterologous immune response between these 2 unrelated viruses. Using artificial antigen-presenting cells (aAPCs) combined with real-time reverse-transcription PCR (RT-qPCR), we developed a sensitive assay to quickly screen for antigen-specific T cell responses and detected a significant correlation between responses to SARS-CoV-2 epitopes and IAV dominant epitope (M158–66). Further analysis showed that some COVID-19 convalescent donors exhibited both T cell receptor (TCR) specificity and functional cytokine responses to multiple SARS-CoV-2 epitopes and M158–66. Utilizing an aAPC-based stimulation/expansion assay, we detected cross-reactive T cells with specificity to SARS-CoV-2 and IAV. In addition, TCR sequencing of the cross-reactive and IAV-specific T cells revealed similarities between the TCR repertoires of the two populations. These results indicate that heterologous immunity shaped by our exposure to other unrelated endemic viruses may affect our immune response to novel viruses such as SARS-CoV-2.

Authors

Worarat Chaisawangwong, Hanzhi Wang, Theodore Kouo, Sebastian F. Salathe, Ariel Isser, Joan Glick Bieler, Maya L. Zhang, Natalie K. Livingston, Shuyi Li, Joseph J. Horowitz, Ron E. Samet, Israel Zyskind, Avi Z. Rosenberg, Jonathan P. Schneck

×

Abstract

Chromosome 15q11.2–q13.1 duplication syndrome (Dup15q syndrome) is a severe neurodevelopmental disorder characterized by intellectual disability, impaired motor coordination, and autism spectrum disorder. Chromosomal multiplication of the UBE3A gene is presumed to be the primary driver of Dup15q pathophysiology, given that UBE3A exhibits maternal monoallelic expression in neurons and that maternal duplications typically yield far more severe neurodevelopmental outcomes than paternal duplications. However, studies into the pathogenic effects of UBE3A overexpression in mice have yielded conflicting results. Here, we investigated the neurodevelopmental impact of Ube3a gene overdosage using bacterial artificial chromosome–based transgenic mouse models (Ube3aOE) that recapitulate the increases in Ube3a copy number most often observed in Dup15q. In contrast to previously published Ube3a overexpression models, Ube3aOE mice were indistinguishable from wild-type controls on a number of molecular and behavioral measures, despite suffering increased mortality when challenged with seizures, a phenotype reminiscent of sudden unexpected death in epilepsy. Collectively, our data support a model wherein pathogenic synergy between UBE3A and other overexpressed 15q11.2–q13.1 genes is required for full penetrance of Dup15q syndrome phenotypes.

Authors

A. Mattijs Punt, Matthew C. Judson, Michael S. Sidorov, Brittany N. Williams, Naomi S. Johnson, Sabine Belder, Dion den Hertog, Courtney R. Davis, Maximillian S. Feygin, Patrick F. Lang, Mehrnoush Aghadavoud Jolfaei, Patrick J. Curran, Wilfred F.J. van IJcken, Ype Elgersma, Benjamin D. Philpot

×

Abstract

Endothelial mitochondria play a pivotal role in maintaining endothelial cell (EC) homeostasis through constantly altering their size, shape, and intracellular localization. Studies show that the disruption of the basal mitochondrial network in EC, forming excess fragmented mitochondria, implicates cardiovascular disease. However, cellular consequences underlying the morphological changes in the endothelial mitochondria under distinctively different, but physiologically occurring, flow patterns (i.e., unidirectional flow [UF] versus disturbed flow [DF]) are largely unknown. The purpose of this study was to investigate the effect of different flow patterns on mitochondrial morphology and its implications in EC phenotypes. We show that mitochondrial fragmentation is increased at DF-exposed vessel regions, where elongated mitochondria are predominant in the endothelium of UF-exposed regions. DF increased dynamin-related protein 1 (Drp1), mitochondrial reactive oxygen species (mtROS), hypoxia-inducible factor 1, glycolysis, and EC activation. Inhibition of Drp1 significantly attenuated these phenotypes. Carotid artery ligation and microfluidics experiments further validate that the significant induction of mitochondrial fragmentation was associated with EC activation in a Drp1-dependent manner. Contrarily, UF in vitro or voluntary exercise in vivo significantly decreased mitochondrial fragmentation and enhanced fatty acid uptake and OXPHOS. Our data suggest that flow patterns profoundly change mitochondrial fusion/fission events, and this change contributes to the determination of proinflammatory and metabolic states of ECs.

Authors

Soon-Gook Hong, Junchul Shin, Soo Young Choi, Jeffery C. Powers, Benjamin M. Meister, Jacqueline Sayoc, Jun Seok Son, Ryan Tierney, Fabio A. Recchia, Michael D. Brown, Xiaofeng Yang, Joon-Young Park

×

Abstract

Chitinase 3 like 1 (CHI3L1) is the prototypic chitinase-like protein mediating inflammation, cell proliferation, and tissue remodeling. Limited data suggest CHI3L1 is elevated in human pulmonary arterial hypertension (PAH) and is associated with disease severity. Despite its importance as a regulator of injury/repair responses, the relationship between CHI3L1 and pulmonary vascular remodeling is not well understood. We hypothesize that CHI3L1 and its signaling pathways contribute to the vascular remodeling responses that occur in pulmonary hypertension (PH). We examined the relationship of plasma CHI3L1 levels and severity of PH in patients with various forms of PH, including group 1 PAH and group 3 PH, and found that circulating levels of serum CHI3L1 were associated with worse hemodynamics and correlated directly with mean pulmonary artery pressure and pulmonary vascular resistance. We also used transgenic mice with constitutive knockout and inducible overexpression of CHI3L1 to examine its role in hypoxia-, monocrotaline-, and bleomycin-induced models of pulmonary vascular disease. In all 3 mouse models of pulmonary vascular disease, pulmonary hypertensive responses were mitigated in CHI3L1-null mice and accentuated in transgenic mice that overexpress CHI3L1. Finally, CHI3L1 alone was sufficient to induce pulmonary arterial smooth muscle cell proliferation, inhibit pulmonary vascular endothelial cell apoptosis, induce the loss of endothelial barrier function, and induce endothelial-mesenchymal transition. These findings demonstrate that CHI3L1 and its receptors play an integral role in pulmonary vascular disease pathobiology and may offer a target for the treatment of PAH and PH associated with fibrotic lung disease.

Authors

Xiuna Sun, Erika Nakajima, Carmelissa Norbrun, Parand Sorkhdini, Alina Xiaoyu Yang, Dongqin Yang, Corey E. Ventetuolo, Julie Braza, Alexander Vang, Jason Aliotta, Debasree Banerjee, Mandy Pereira, Grayson Baird, Qing Lu, Elizabeth O. Harrington, Sharon Rounds, Chun Geun Lee, Hongwei Yao, Gaurav Choudhary, James R. Klinger, Yang Zhou

×

Abstract

Therapy with radiation plus cisplatin kills HPV+ oropharyngeal squamous cell carcinomas (OPSCCs) by increasing reactive oxygen species beyond cellular antioxidant capacity. To explore why these standard treatments fail for some patients, we evaluated whether the variation in HPV oncoprotein levels among HPV+ OPSCCs affects mitochondrial metabolism, a source of antioxidant capacity. In cell line and patient-derived xenograft models, levels of HPV full-length E6 (fl-E6) inversely correlated with oxidative phosphorylation, antioxidant capacity, and therapy resistance, and fl-E6 was the only HPV oncoprotein to display such correlations. Ectopically expressing fl-E6 in models with low baseline levels reduced mitochondrial mass, depleted antioxidant capacity, and sensitized to therapy. In this setting, fl-E6 repressed the peroxisome proliferator–activated receptor gamma co-activator 1α/estrogen-related receptor α (PGC-1α/ERRα) pathway for mitochondrial biogenesis by reducing p53-dependent PGC-1α transcription. Concordant observations were made in 3 clinical cohorts, where expression of mitochondrial components was higher in tumors of patients with reduced survival. These tumors contained the lowest fl-E6 levels, the highest p53 target gene expression, and an activated PGC-1α/ERRα pathway. Our findings demonstrate that E6 can potentiate treatment responses by depleting mitochondrial antioxidant capacity and provide evidence for low E6 negatively affecting patient survival. E6’s interaction with the PGC-1α/ERRα axis has implications for predicting and targeting treatment resistance in OPSCC.

Authors

Malay K. Sannigrahi, Pavithra Rajagopalan, Ling Lai, Xinyi Liu, Varun Sahu, Hiroshi Nakagawa, Jalal B. Jalaly, Robert M. Brody, Iain M. Morgan, Bradford E. Windle, Xiaowei Wang, Phyllis A. Gimotty, Daniel P. Kelly, Elizabeth A. White, Devraj Basu

×

Abstract

A side effect of antibiotics is outgrowth of the opportunistic fungus Candida albicans in the oropharynx (oropharyngeal candidiasis, OPC). IL-17 signaling is vital for immunity to OPC, but how the microbiome impacts antifungal immunity is not well understood. Mice in standard specific pathogen–free (SPF) conditions are resistant to OPC, whereas we show that germ-free (GF) or antibiotic-treated mice are susceptible. Oral type 17 cells and IL-17–dependent responses were impaired in antibiotic-treated and GF mice. Susceptibility could be rescued in GF mice by mono-colonization with segmented filamentous bacterium (SFB), an intestine-specific constituent of the microbiota. SFB protection was accompanied by restoration of oral IL-17+CD4+ T cells and gene signatures characteristic of IL-17 signaling. Additionally, RNA-Seq revealed induction of genes in the retinoic acid (RA) and RA receptor–α (RARα) pathway. Administration of RA rescued immunity to OPC in microbiome-depleted or GF mice, while RAR inhibition caused susceptibility in immunocompetent animals. Surprisingly, immunity to OPC was independent of serum amyloids. Moreover, RAR inhibition did not alter oral type 17 cytokine levels. Thus, mono-colonization with a component of the intestinal microflora confers protection against OPC by type 17 and RA/RARα, which act in parallel to promote antifungal immunity. In principle, manipulation of the microbiome could be harnessed to maintain antifungal immunity.

Authors

Felix E.Y. Aggor, Martinna Bertolini, Chunsheng Zhou, Tiffany C. Taylor, Darryl A. Abbott, Javonn Musgrove, Vincent M. Bruno, Timothy W. Hand, Sarah L. Gaffen

×

Abstract

BACKGROUND New therapeutic combinations to improve outcomes of patients with ovarian cancer are clearly needed. Preclinical studies with ribociclib (LEE-011), a CDK4/6 cell cycle checkpoint inhibitor, demonstrate a synergistic effect with platinum chemotherapy and efficacy as a maintenance therapy after chemotherapy. We tested the safety and initial efficacy of ribociclib in combination with platinum-based chemotherapy in recurrent ovarian cancer.METHODS This phase I trial combined weekly carboplatin and paclitaxel chemotherapy with ribociclib, followed by ribociclib maintenance in patients with recurrent platinum-sensitive ovarian cancer. Primary objectives were safety and maximum tolerated dose (MTD) of ribociclib when given with platinum and taxane chemotherapy. Secondary endpoints were response rate (RR) and progression-free survival (PFS).RESULTS Thirty-five patients were enrolled. Patients had a mean of 2.5 prior lines of chemotherapy, and 51% received prior maintenance therapy with poly(ADP-ribose) polymerase inhibitors and/or bevacizumab. The MTD was 400 mg. The most common adverse events included anemia (82.9%), neutropenia (82.9%), fatigue (82.9%), and nausea (77.1%). The overall RR was 79.3%, with a stable disease rate of 18%, resulting in a clinical benefit rate of 96.6%. Median PFS was 11.4 months. RR and PFS did not differ based on the number of lines of prior chemotherapy or prior maintenance therapy.CONCLUSION This work demonstrates that the combination of ribociclib with chemotherapy in ovarian cancer is feasible and safe. With a clinical benefit rate of 97%, this work provides encouraging evidence of clinical efficacy in patients with recurrent platinum-sensitive disease.TRIAL REGISTRATION ClinicalTrials.gov NCT03056833.FUNDING This investigator-initiated trial was supported by Novartis, which provided drugs and funds for trial execution.

Authors

Lan G. Coffman, Taylor J. Orellana, Tianshi Liu, Leonard G. Frisbie, Daniel Normolle, Kent Griffith, Shitanshu Uppal, Karen McLean, Jessica Berger, Michelle Boisen, Madeleine Courtney-Brooks, Robert P. Edwards, Jamie Lesnock, Haider Mahdi, Alexander Olawaiye, Paniti Sukumvanich, Sarah E. Taylor, Ronald Buckanovich

×

Abstract

Although Barrett’s metaplasia of the esophagus (BE) is the only known precursor lesion to esophageal adenocarcinomas (EACs), drivers of cellular transformation in BE remain incompletely understood. We use an artificial intelligence–guided network approach to study EAC initiation and progression. Key predictions are subsequently validated in a human organoid model, in patient-derived biopsy specimens of BE, a case-control study of genomics of BE progression, and in a cross-sectional study of 113 patients with BE and EACs. Our model classified healthy esophagus from BE and BE from EACs in several publicly available gene expression data sets (n = 932 samples). The model confirmed that all EACs must originate from BE and pinpointed a CXCL8/IL8↔neutrophil immune microenvironment as a driver of cellular transformation in EACs and gastroesophageal junction adenocarcinomas. This driver is prominent in White individuals but is notably absent in African Americans (AAs). Network-derived gene signatures, independent signatures of neutrophil processes, CXCL8/IL8 expression, and an absolute neutrophil count (ANC) are associated with risk of progression. SNPs associated with changes in ANC by ethnicity (e.g., benign ethnic neutropenia [BEN]) modify that risk. Findings define a racially influenced immunological basis for cell transformation and suggest that BEN in AAs may be a deterrent to BE→EAC progression.

Authors

Pradipta Ghosh, Vinicius J. Campos, Daniella T. Vo, Caitlin Guccione, Vanae Goheen-Holland, Courtney Tindle, Guilherme S. Mazzini, Yudou He, Ludmil B. Alexandrov, Scott M. Lippman, Richard R. Gurski, Soumita Das, Rena Yadlapati, Kit Curtius, Debashis Sahoo

×

Abstract

BACKGROUND Insulin resistance of the brain can unfavorably affect long-term weight maintenance and body fat distribution. Little is known if and how brain insulin sensitivity can be restored in humans. We aimed to evaluate the effects of an exercise intervention on insulin sensitivity of the brain and how this relates to exercise-induced changes in whole-body metabolism and behavior.METHODS In this clinical trial, sedentary participants who were overweight and obese underwent an 8-week supervised aerobic training intervention. Brain insulin sensitivity was assessed in 21 participants (14 women, 7 men; age range 21–59 years; BMI range 27.5–45.5 kg/m2) using functional MRI, combined with intranasal administration of insulin, before and after the intervention.RESULTS The exercise program resulted in enhanced brain insulin action to the level of a person of healthy weight, demonstrated by increased insulin-induced striatal activity and strengthened hippocampal functional connectivity. Improved brain insulin action correlated with increased mitochondrial respiration in skeletal muscle, reductions in visceral fat and hunger, as well as improved cognition. Mediation analyses suggest that improved brain insulin responsiveness helps mediate the peripheral exercise effects leading to healthier body fat distribution and reduced perception of hunger.CONCLUSION Our study demonstrates that an 8-week exercise intervention in sedentary individuals can restore insulin action in the brain. Hence, the ameliorating benefits of exercise toward brain insulin resistance may provide an objective therapeutic target in humans in the challenge to reduce diabetes risk factors.TRIAL REGISTRATION ClinicalTrials.gov (NCT03151590).FUNDING BMBF/DZD 01GI0925.

Authors

Stephanie Kullmann, Thomas Goj, Ralf Veit, Louise Fritsche, Lore Wagner, Patrick Schneeweiss, Miriam Hoene, Christoph Hoffmann, Jürgen Machann, Andreas Niess, Hubert Preissl, Andreas L. Birkenfeld, Andreas Peter, Hans-Ulrich Häring, Andreas Fritsche, Anja Moller, Cora Weigert, Martin Heni

×

Abstract

Lentiviral vector–based dendritic cell vaccines induce protective T cell responses against viral infection and cancer in animal models. In this study, we tested whether preventative and therapeutic vaccination could be achieved by direct injection of antigen-expressing lentiviral vector, obviating the need for ex vivo transduction of dendritic cells. Injected lentiviral vector preferentially transduced splenic dendritic cells and resulted in long-term expression. Injection of a lentiviral vector encoding an MHC class I–restricted T cell epitope of lymphocytic choriomeningitis virus (LCMV) and CD40 ligand induced an antigen-specific cytolytic CD8+ T lymphocyte response that protected the mice from infection. The injection of chronically infected mice with a lentiviral vector encoding LCMV MHC class I and II T cell epitopes and a soluble programmed cell death 1 microbody rapidly cleared the virus. Vaccination by direct injection of lentiviral vector was more effective in sterile alpha motif and HD-domain containing protein 1–knockout (SAMHD1-knockout) mice, suggesting that lentiviral vectors containing Vpx, a lentiviral protein that increases the efficiency of dendritic cell transduction by inducing the degradation of SAMHD1, would be an effective strategy for the treatment of chronic disease in humans.

Authors

Takuya Tada, Thomas D. Norton, Rebecca Leibowitz, Nathaniel R. Landau

×

Abstract

Energy metabolism failure in proximal tubule cells (PTCs) is a hallmark of chronic kidney injury. We combined transcriptomic, metabolomic, and lipidomic approaches in experimental models and patient cohorts to investigate the molecular basis of the progression to chronic kidney allograft injury initiated by ischemia/reperfusion injury (IRI). The urinary metabolome of kidney transplant recipients with chronic allograft injury and who experienced severe IRI was substantially enriched with long chain fatty acids (FAs). We identified a renal FA-related gene signature with low levels of carnitine palmitoyltransferase 2 (Cpt2) and acyl-CoA synthetase medium chain family member 5 (Acsm5) and high levels of acyl-CoA synthetase long chain family member 4 and 5 (Acsl4 and Acsl5) associated with IRI, transition to chronic injury, and established chronic kidney disease in mouse models and kidney transplant recipients. The findings were consistent with the presence of Cpt2–Acsl4+Acsl5+Acsm5– PTCs failing to recover from IRI as identified by single-nucleus RNA-Seq. In vitro experiments indicated that ER stress contributed to CPT2 repression, which, in turn, promoted lipids’ accumulation, drove profibrogenic epithelial phenotypic changes, and activated the unfolded protein response. ER stress through CPT2 inhibition and lipid accumulation engaged an auto-amplification loop leading to lipotoxicity and self-sustained cellular stress. Thus, IRI imprints a persistent FA metabolism disturbance in the proximal tubule, sustaining the progression to chronic kidney allograft injury.

Authors

Anna Rinaldi, Hélène Lazareth, Virginie Poindessous, Ivan Nemazanyy, Julio L. Sampaio, Daniele Malpetti, Yohan Bignon, Maarten Naesens, Marion Rabant, Dany Anglicheau, Pietro E. Cippà, Nicolas Pallet

×

Abstract

T cell receptor (TCR) sequences are exceptionally diverse and can now be comprehensively measured with next-generation sequencing technologies. However, a thorough investigation of longitudinal TCR repertoires throughout childhood in health and during development of a common childhood disease, type 1 diabetes (T1D), has not been undertaken. Here, we deep sequenced the TCR-β chain repertoires from longitudinal peripheral blood DNA samples at 4 time points beginning early in life (median age of 1.4 years) from children who progressed to T1D (n = 29) and age/sex-matched islet autoantibody-negative controls (n = 25). From 53 million TCR-β sequences, we show that the repertoire is extraordinarily diverse early in life and narrows with age independently of disease. We demonstrate the ability to identify specific TCR sequences, including those known to recognize influenza A and, separately, those specific for insulin and its precursor, preproinsulin. Insulin-reactive TCR-β sequences were more common and frequent in number as the disease progressed in those who developed T1D compared with genetically at risk nondiabetic children, and this was not the case for influenza-reactive sequences. As an independent validation, we sequenced and analyzed TCR-β repertoires from a cohort of new-onset T1D patients (n = 143), identifying the same preproinsulin-reactive TCRs. These results demonstrate an enrichment of preproinsulin-reactive TCR sequences during the progression to T1D, highlighting the importance of using disease-relevant TCR sequences as powerful biomarkers in autoimmune disorders.

Authors

Angela M. Mitchell, Erin E. Baschal, Kristen A. McDaniel, Kimber M. Simmons, Laura Pyle, Kathleen Waugh, Andrea K. Steck, Liping Yu, Peter A. Gottlieb, Marian J. Rewers, Maki Nakayama, Aaron W. Michels

×

Abstract

Immune checkpoint blockade (ICB) therapy has achieved breakthroughs in the treatment of advanced non–small cell lung cancer (NSCLC). Nevertheless, the low response due to immuno-cold (i.e., tumors with limited tumor-infiltrating lymphocytes) tumor microenvironment (TME) largely limits the application of ICB therapy. Based on the glycolytic/cholesterol synthesis axis, a stratification framework for EGFR-WT NSCLC was developed to summarize the metabolic features of immuno-cold and immuno-hot tumors. The cholesterol subgroup displays the worst prognosis in immuno-cold NSCLC, with significant enrichment of the cholesterol gene signature, indicating that targeting cholesterol synthesis is essential for the therapy for immuno-cold NSCLC. Statin, the inhibitor for cholesterol synthesis, can suppress the aggressiveness of NSCLC in vitro and in vivo and can also drastically reverse the phenotype of immuno-cold to an inflamed phenotype in vivo. This change led to a higher response to ICB therapy. Moreover, both our in-house data and meta-analysis further support that statin can significantly enhance ICB efficacy. In terms of preliminary mechanisms, statin could transcriptionally inhibit PD-L1 expression and induce ferroptosis in NSCLC cells. Overall, we reveal the significance of cholesterol synthesis in NSCLC and demonstrate the improved therapeutic efficacy of ICB in combination with statin. These findings could provide a clinical insight to treat NSCLC patients with immuno-cold tumors.

Authors

Wenjun Mao, Yun Cai, Danrong Chen, Guanyu Jiang, Yongrui Xu, Ruo Chen, Fengxu Wang, Xuehai Wang, Mingfeng Zheng, Xinyuan Zhao, Jie Mei

×

Abstract

Accurate estimate of fetal maturity could provide individualized guidance for delivery of complicated pregnancies. However, current methods are invasive, have low accuracy, and are limited to fetal lung maturation. To identify diagnostic gestational biomarkers, we performed transcriptomic profiling of lung and brain, as well as cell-free RNA from amniotic fluid of preterm and term rhesus macaque fetuses. These data identify potentially new and prior-associated gestational age differences in distinct lung and neuronal cell populations when compared with existing single-cell and bulk RNA-Seq data. Comparative analyses found hundreds of genes coincidently induced in lung and amniotic fluid, along with dozens in brain and amniotic fluid. These data enable creation of computational models that accurately predict lung compliance from amniotic fluid and lung transcriptome of preterm fetuses treated with antenatal corticosteroids. Importantly, antenatal steroids induced off-target gene expression changes in the brain, impinging upon synaptic transmission and neuronal and glial maturation, as this could have long-term consequences on brain development. Cell-free RNA in amniotic fluid may provide a substrate of global fetal maturation markers for personalized management of at-risk pregnancies.

Authors

Augusto F. Schmidt, Daniel J. Schnell, Kenneth P. Eaton, Kashish Chetal, Paranthaman S. Kannan, Lisa A. Miller, Claire A. Chougnet, Daniel T. Swarr, Alan H. Jobe, Nathan Salomonis, Beena D. Kamath-Rayne

×
Corrigendum
Abstract

Authors

Leila B. Giron, Michael J. Peluso, Jianyi Ding, Grace Kenny, Netanel F. Zilberstein, Jane Koshy, Kai Ying Hong, Heather Rasmussen, Gregory E. Miller, Faraz Bishehsari, Robert A. Balk, James N. Moy, Rebecca Hoh, Scott Lu, Aaron R. Goldman, Hsin-Yao Tang, Brandon C. Yee, Ahmed Chenna, John W. Winslow, Christos J. Petropoulos, J. Daniel Kelly, Haimanot Wasse, Jeffrey N. Martin, Qin Liu, Ali Keshavarzian, Alan Landay, Steven G. Deeks, Timothy J. Henrich, Mohamed Abdel-Mohsen

×

In-Press Preview - More

Abstract

Early-stage temporomandibular joint osteoarthritis (TMJOA) is characterized by excessive subchondral bone loss. Emerging evidence suggests that TMJ disc displacement is involved, but the pathogenic mechanism remains unclear. Here, we established a rat model of TMJOA that simulated disc displacement and a capacitance-based force sensing system to directly measure articular surface pressure in vivo. Micro-CT, histological staining, immunofluorescence staining, immunohistochemistry staining, and Western blot were used to assess pathological changes and underlying mechanism of TMJOA in the rat model in vivo as well as in RAW264.7 cells in vitro. We found that disc displacement led to significantly higher pressure on articular surface, which caused subchondral bone loss rapidly via activation of RANTES-CCRs-Akt2 axis. Inhibition of RANTES or Akt2 attenuated subchondral bone loss and resulted in improved subchondral bone microstructure. Cytological studies substantiated that RANTES regulated osteoclast formation by binding to its receptor CCRs and activating Akt2 pathway. The clinical evidence further supported that RANTES was a potential biomarker for predicting subchondral bone loss in early-stage TMJOA. Taken together, this study demonstrates important functions of RANTES-CCRs-Akt2 axis in the regulation of subchondral bone remodeling and provides further knowledge of how disc displacement causes TMJOA.

Authors

Shi-Yang Feng, Jie Lei, Yu-Xiang Li, Wen-Ge Shi, Ran-Ran Wang, Adrian Ujin Yap, Yi-Xiang Wang, Kai-Yuan Fu

×

Abstract

Immune-related adverse events are a major hurdle to the success of immunotherapy. The immunological mechanisms underlying their development and relation to anti-tumour responses are poorly understood. By examining both systemic and tissue-specific immune changes induced by combination anti-CTLA-4 and anti-PD-1 immunotherapy, we found distinct repertoire changes in patients who developed moderate-severe colitis irrespective of their anti-tumour response to therapy. The proportion of circulating monocytes were significantly increased at baseline in patients who subsequently developed colitis compared to patients who did not develop colitis and biopsies from patients with colitis showed monocytic infiltration of both endoscopically and histopathologically normal and inflamed regions of colon. The magnitude of systemic expansion of T cells following commencement of immunotherapy was also greater in patients who developed colitis. Importantly, we show expansion of specific T cell subsets within inflamed regions of the colon, including tissue-resident memory CD8+ T cells and Th1 CD4+ T cells in patients who developed colitis. Our data also suggest that CD8+ T cell expansion was locally induced, while Th1 cell expansion was systemic. Together our data show exaggerated innate and T cell responses to combination immunotherapy synergise to propel colitis in susceptible patients.

Authors

Kazi J. Nahar, Felix Marsh-Wakefield, Robert V. Rawson, Tuba N. Gide, Angela L. Ferguson, Ruth O. Allen, Camelia Quek, Ines Pires da Silva, Stephen Tattersall, Christopher J. Kiely, Neomal Sandanayake, Matteo S. Carlino, Geoff McCaughan, James S. Wilmott, Richard A. Scolyer, Georgina V. Long, Alexander M. Menzies, Umaimainthan Palendira

×

Abstract

Developmental and epileptic encephalopathies (DEE) are characterized by pharmacoresistant seizures with concomitant intellectual disability. Epilepsy of infancy with migrating focal seizures (EIMFS) is one of the most severe of these syndromes. De novo variants in ion channels, including gain-of-function variants in KCNT1, have been found to play a major role in the etiology of EIMFS. Here, we test a potential precision therapeutic approach in KCNT1-associated DEE using a gene silencing antisense oligonucleotide (ASO) approach. We generated a mouse model carrying the KCNT1 p.P924L pathogenic variant; only the homozygous animals presented with the frequent, debilitating seizures and developmental compromise that are seen in patients. After a single intracerebroventricular bolus injection of a Kcnt1 gapmer ASO in symptomatic mice at postnatal day 40, seizure frequency was significantly reduced, behavioral abnormalities improved, and overall survival was extended compared to mice treated with a control ASO (non-hybridizing sequence). ASO administration at neonatal age was also well-tolerated and effective in controlling seizures and extending the lifespan of treated animals. The data presented here provide proof of concept for ASO-based gene silencing as a promising therapeutic approach in KCNT1-associated epilepsies.

Authors

Lisseth E. Burbano, Melody Li, Nikola Jancovski, Paymaan Jafar-nejad, Kay Richards, Alicia Sedo, Armand Soriano, Ben Rollo, Linghan Jia, Elena V. Gazina, Sandra Piltz, Fatwa Adikusuma, Paul Q. Thomas, Helen Kopsidas, Frank Rigo, Christopher A. Reid, Snezana Maljevic, Steven Petrou

×

Abstract

The LAMA5 gene encodes laminin α5, an indispensable component of glomerular basement membrane and other types of basement membrane. A homozygous pathological variant in LAMA5 is known to cause systemic developmental syndrome, including glomerulopathy. However, the roles of heterozygous LAMA5 gene variants in human renal and systemic disease have remained unclear. We performed whole-exome sequence analyses of a family with slowly progressive nephropathy associated with hereditary focal segmental glomerulosclerosis; we identified a probable pathogenic novel variant of LAMA5, NP_005551.3:p.Val3687Met. In vitro analyses revealed cell type-dependent changes in secretion of variant laminin α5 LG4-5 domain. Heterozygous and homozygous knock-in mice with a corresponding variant of human LAMA5, p.Val3687Met, developed focal segmental glomerulosclerosis-like pathology with reduced laminin α5 and increased glomerular vinculin levels; this suggested that impaired cell adhesion may underlie this glomerulopathy. We also identified pulmonary defects such as bronchial deformity and alveolar dilation. Re-examinations of the family revealed phenotypes compatible with reduced laminin α5 and increased vinculin levels in affected tissues. Thus, the heterozygous p.Val3687Met variant may cause a new syndromic nephropathy with focal segmental glomerulosclerosis through possibly defective secretion of laminin α5. Enhanced vinculin may be a useful disease marker.

Authors

Jun-Ya Kaimori, Yamato Kikkawa, Daisuke Motooka, Tomoko Namba-Hamano, Ayako Takuwa, Atsuko Imai-Okazaki, Kaori Kobayashi, Arisa Tanigawa, Yuko Kotani, Yoshihiro Uno, Kazuto Yoshimi, Koki Hattori, Yuta Asahina, Sachio Kajimoto, Yohei Doi, Tatsufumi Oka, Yusuke Sakaguchi, Tomoji Mashimo, Kiyotoshi Sekiguchi, Akihiro Nakaya, Motoyoshi Nomizu, Yoshitaka Isaka

×

Abstract

Intravenous administration of a high affinity carbon monoxide (CO)-binding molecule, recombinant neuroglobin, can improve survival in CO poisoning mouse models. The current study aims to understand how biochemical variables of the scavenger determine the CO removal from the RBCs by evaluating three readily available hemoproteins, 2,3-diphosphoglycerate stripped human hemoglobin (StHb), N-ethylmaleimide modified hemoglobin (NEMHb), and equine myoglobin (Mb). These molecules efficiently sequester CO from hemoglobin in erythrocytes in vitro. A kinetic model was developed to predict the CO binding efficacy for hemoproteins, based on their measured in vitro oxygen and CO binding affinities, suggesting that the therapeutic efficacy of hemoproteins for CO poisoning relates to a high M value, which is the binding affinity for CO relative to oxygen (KA,CO/KA,O2). In a lethal CO poisoning mouse model, StHb, NEMHb, and Mb improved survival by 100%, 100%, and 60%, respectively, compared with saline controls, and were well tolerated in 48-hour toxicology assessments. In conclusion, both StHb and NEMHb have high CO binding affinities and M values and scavenge CO efficiently in vitro and in vivo, highlighting their therapeutic potential for point-of-care antidotal therapy of CO poisoning.

Authors

Qinzi Xu, Jason J. Rose, Xiukai Chen, Ling Wang, Anthony W. DeMartino, Matthew R. Dent, Sagarika Tiwari, Kaitlin Bocian, Xueyin N. Huang, Qin Tong, Charles F. McTiernan, Lanping Guo, Elmira Alipour, Trevor C. Jones, Kamil Burak Ucer, Daniel B. Kim-Shapiro, Jesus Tejero, Mark T. Gladwin

×