Issue published April 22, 2021

Go to section:
In vivo visualization of PARP inhibitor pharmacodynamics

In this issue, McDonald et al. show that human PARP inhibitor drug-target engagement can be visualized in vivo, suggesting future applications in precision diagnostics and as a drug discovery tool. The cover image shows PET imaging of a patient with metastatic triple-negative breast cancer prior to (top left) and 1 week after PARP inhibitor treatment (bottom left); immunofluorescence staining of baseline PARP-1 expression demonstrating heterogeneity of protein expression in areas of similar cellularity.

Research Articles
Abstract

It remains unresolved how retinal pigment epithelial cell metabolism is regulated following immune activation to maintain retinal homeostasis and retinal function. We exposed retinal pigment epithelium (RPE) to several stress signals, particularly Toll-like receptor stimulation, and uncovered an ability of RPE to adapt their metabolic preference on aerobic glycolysis or oxidative glucose metabolism in response to different immune stimuli. We have identified interleukin-33 (IL-33) as a key metabolic checkpoint that antagonizes the Warburg effect to ensure the functional stability of the RPE. The identification of IL-33 as a key regulator of mitochondrial metabolism suggests roles for the cytokine that go beyond its extracellular “alarmin” activities. IL-33 exerts control over mitochondrial respiration in RPE by facilitating oxidative pyruvate catabolism. We have also revealed that in the absence of IL-33, mitochondrial function declined and resultant bioenergetic switching was aligned with altered mitochondrial morphology. Our data not only shed new light on the molecular pathway of activation of mitochondrial respiration in RPE in response to immune stressors but also uncover a potentially novel role of nuclear intrinsic IL-33 as a metabolic checkpoint regulator.

Authors

Louis M. Scott, Emma E. Vincent, Natalie Hudson, Chris Neal, Nicholas Jones, Ed C. Lavelle, Matthew Campbell, Andrew P. Halestrap, Andrew D. Dick, Sofia Theodoropoulou

×

Abstract

Although the immune checkpoint role of programmed death ligand 1 (PD-L1) has been established and targeted in cancer immunotherapy, the tumor-intrinsic role of PD-L1 is less appreciated in tumor biology and therapeutics development, partly because of the incomplete mechanistic understanding. Here we demonstrate a potentially novel mechanism by which PD-L1 promotes the epithelial-mesenchymal transition (EMT) in triple-negative breast cancer (TNBC) cells by suppressing the destruction of the EMT transcription factor Snail. PD-L1 directly binds to and inhibits the tyrosine phosphatase PTP1B, thus preserving p38-MAPK activity that phosphorylates and inhibits glycogen synthase kinase 3β (GSK3β). Via this mechanism, PD-L1 prevents the GSK3β-mediated phosphorylation, ubiquitination, and degradation of Snail and consequently promotes the EMT and metastatic potential of TNBC. Significantly, PD-L1 antibodies that confine the tumor-intrinsic PD-L1/Snail pathway restricted TNBC progression in immunodeficient mice. More importantly, targeting both tumor-intrinsic and tumor-extrinsic functions of PD-L1 showed strong synergistic tumor suppression effect in an immunocompetent TNBC mouse model. Our findings support that PD-L1 intrinsically facilitates TNBC progression by promoting the EMT, and this potentially novel PD-L1 signaling pathway could be targeted for better clinical management of PD-L1–overexpressing TNBCs.

Authors

Chunhua Chen, Shiheng Li, Junli Xue, Manlong Qi, Xin Liu, Yan Huang, Jinghua Hu, Haidong Dong, Kun Ling

×

Abstract

Although low circulating levels of the vitamin A metabolite, all-trans retinoic acid (ATRA), are associated with increased risk of cardiovascular events and all-cause mortality, few studies have addressed whether cardiac retinoid levels are altered in the failing heart. Here, we showed that proteomic analyses of human and guinea pig heart failure (HF) were consistent with a decline in resident cardiac ATRA. Quantitation of the retinoids in ventricular myocardium by mass spectrometry revealed 32% and 39% ATRA decreases in guinea pig HF and in patients with idiopathic dilated cardiomyopathy (IDCM), respectively, despite ample reserves of cardiac vitamin A. ATRA (2 mg/kg/d) was sufficient to mitigate cardiac remodeling and prevent functional decline in guinea pig HF. Although cardiac ATRA declined in guinea pig HF and human IDCM, levels of certain retinoid metabolic enzymes diverged. Specifically, high expression of the ATRA-catabolizing enzyme, CYP26A1, in human IDCM could dampen prospects for an ATRA-based therapy. Pertinently, a pan-CYP26 inhibitor, talarozole, blunted the impact of phenylephrine on ATRA decline and hypertrophy in neonatal rat ventricular myocytes. Taken together, we submit that low cardiac ATRA attenuates the expression of critical ATRA-dependent gene programs in HF and that strategies to normalize ATRA metabolism, like CYP26 inhibition, may have therapeutic potential.

Authors

Ni Yang, Lauren E. Parker, Jianshi Yu, Jace W. Jones, Ting Liu, Kyriakos N. Papanicolaou, C. Conover Talbot Jr., Kenneth B. Margulies, Brian O’Rourke, Maureen A. Kane, D. Brian Foster

×

Abstract

Anastomotic leakage (AL) accounts for a major part of in-house mortality in patients undergoing colorectal surgery. Local ischemia and abdominal sepsis are common risk factors contributing to AL and are characterized by upregulation of the hypoxia-inducible factor (HIF) pathway. The HIF pathway is critically regulated by HIF-prolyl hydroxylases (PHDs). Here, we investigated the significance of PHDs and the effects of pharmacologic PHD inhibition (PHI) during anastomotic healing. Ischemic or septic colonic anastomoses were created in mice by ligation of mesenteric vessels or lipopolysaccharide-induced abdominal sepsis, respectively. Genetic PHD deficiency (Phd1–/–, Phd2+/–, and Phd3–/–) or PHI were applied to manipulate PHD activity. Pharmacologic PHI and genetic PHD2 haplodeficiency (Phd2+/–) significantly improved healing of ischemic or septic colonic anastomoses, as indicated by increased bursting pressure and reduced AL rates. Only Phd2+/– (but not PHI or Phd1–/–) protected from sepsis-related mortality. Mechanistically, PHI and Phd2+/– induced immunomodulatory (M2) polarization of macrophages, resulting in increased collagen content and attenuated inflammation-driven immune cell recruitment. We conclude that PHI improves healing of colonic anastomoses in ischemic or septic conditions by Phd2+/–-mediated M2 polarization of macrophages, conferring a favorable microenvironment for anastomotic healing. Patients with critically perfused colorectal anastomosis or abdominal sepsis could benefit from pharmacologic PHI.

Authors

Moritz J. Strowitzki, Gwendolyn Kimmer, Julian Wehrmann, Alina S. Ritter, Praveen Radhakrishnan, Vanessa M. Opitz, Christopher Tuffs, Marvin Biller, Julia Kugler, Ulrich Keppler, Jonathan M. Harnoss, Johannes Klose, Thomas Schmidt, Alfonso Blanco, Cormac T. Taylor, Martin Schneider

×

Abstract

Despite studies implicating adipose tissue T cells (ATT) in the initiation and persistence of adipose tissue inflammation, fundamental gaps in knowledge regarding ATT function impedes progress toward understanding how obesity influences adaptive immunity. We hypothesized that ATT activation and function would have tissue-resident–specific properties and that obesity would potentiate their inflammatory properties. We assessed ATT activation and inflammatory potential within mouse and human stromal vascular fraction (SVF). Surprisingly, murine and human ATTs from obese visceral white adipose tissue exhibited impaired inflammatory characteristics upon stimulation. Both environmental and cell-intrinsic factors are implicated in ATT dysfunction. Soluble factors from obese SVF inhibit ATT activation. Additionally, chronic signaling from macrophage major histocompatibility complex II (MHCII) is necessary for ATT impairment in obese adipose tissue but is independent of increased PD1 expression. To assess intracellular signaling mechanisms responsible for ATT inflammation impairments, single-cell RNA sequencing of ATTs was performed. ATTs in obese adipose tissue exhibit enrichment of genes characteristic of T cell exhaustion and increased expression of coinhibitory receptor Btla. In sum, this work suggests that obesity-induced ATTs have functional characteristics and gene expression resembling T cell exhaustion induced by local soluble factors and cell-to-cell interactions in adipose tissue.

Authors

Cara E. Porsche, Jennifer B. Delproposto, Lynn Geletka, Robert O’Rourke, Carey N. Lumeng

×

Abstract

Despite the recent launch of tolvaptan, the search for safer polycystic kidney disease (PKD) drugs continues. Ciclopirox (CPX) or its olamine salt (CPX-O) is contained in a number of commercially available antifungal agents. CPX is also reported to possess anticancer activity. Several mechanisms of action have been proposed, including chelation of iron and inhibition of iron-dependent enzymes. Here, we show that CPX-O inhibited in vitro cystogenesis of primary human PKD cyst-lining epithelial cells cultured in a 3D collagen matrix. To assess the in vivo role of CPX-O, we treated PKD mice with CPX-O. CPX-O reduced the kidney-to-body weight ratios of PKD mice. The CPX-O treatment was also associated with decreased cell proliferation, decreased cystic area, and improved renal function. Ferritin levels were markedly elevated in cystic kidneys of PKD mice, and CPX-O treatment reduced renal ferritin levels. The reduction in ferritin was associated with increased ferritinophagy marker nuclear receptor coactivator 4, which reversed upon CPX-O treatment in PKD mice. Interestingly, these effects on ferritin appeared independent of iron. These data suggest that CPX-O can induce ferritin degradation via ferritinophagy, which is associated with decreased cyst growth progression in PKD mice. Most importantly these data indicate that CPX-O has the potential to treat autosomal dominant PKD.

Authors

Priyanka S. Radadiya, Mackenzie M. Thornton, Rajni V. Puri, Sireesha Yerrathota, Johnny Dinh-Phan, Brenda Magenheimer, Dharmalingam Subramaniam, Pamela V. Tran, Hao Zhu, Subhashini Bolisetty, James P. Calvet, Darren P. Wallace, Madhulika Sharma

×

Abstract

BACKGROUND Pancreatic cancer is one of the deadliest cancers, with low long-term survival rates. Despite recent advances in treatment, it is important to identify and screen high-risk individuals for cancer prevention. Familial pancreatic cancer (FPC) accounts for 4%–10% of pancreatic cancers. Several germline mutations are related to an increased risk and might offer screening and therapy options. In this study, we aimed to identity of a susceptibility gene in a family with FPC.METHODS Whole exome sequencing and PCR confirmation was performed on the surgical specimen and peripheral blood of an index patient and her sister in a family with high incidence of pancreatic cancer, to identify somatic and germline mutations associated with familial pancreatic cancer. Compartment-specific gene expression data and immunohistochemistry were also queried.RESULTS The identical germline mutation of the PALLD gene (NM_001166108.1:c.G154A:p.D52N) was detected in the index patient with pancreatic cancer and the tumor tissue of her sister. Whole genome sequencing showed similar somatic mutation patterns between the 2 sisters. Apart from the PALLD mutation, commonly mutated genes that characterize pancreatic ductal adenocarcinoma were found in both tumor samples. However, the 2 patients harbored different somatic KRAS mutations (G12D and G12V). Healthy siblings did not have the PALLD mutation, indicating a disease-specific impact. Compartment-specific gene expression data and IHC showed expression in cancer-associated fibroblasts (CAFs).CONCLUSION We identified a germline mutation of the palladin (PALLD) gene in 2 siblings in Europe, affected by familial pancreatic cancer, with a significant overexpression in CAFs, suggesting that stromal palladin could play a role in the development, maintenance, and/or progression of pancreatic cancer.FUNDING DFG SFB 1321

Authors

Lucia Liotta, Sebastian Lange, H. Carlo Maurer, Kenneth P. Olive, Rickmer Braren, Nicole Pfarr, Sebastian Burger, Alexander Muckenhuber, Moritz Jesinghaus, Katja Steiger, Wilko Weichert, Helmut Friess, Roland Schmid, Hana Algül, Philipp J. Jost, Juliane Ramser, Christine Fischer, Anne S. Quante, Maximilian Reichert, Michael Quante

×

Abstract

Millions of people are affected by hearing loss. Hearing loss is frequently caused by noise or aging and often associated with loss of pericytes. Pericytes populate the small vessels in the adult cochlea. However, their role in different types of hearing loss is largely unknown. Using an inducible and conditional pericyte depletion mouse model and noise-exposed mouse model, we show that loss of pericytes leads to marked changes in vascular structure, in turn leading to vascular degeneration and hearing loss. In vitro, using advanced tissue explants from pericyte fluorescence reporter models combined with exogenous donor pericytes, we show that pericytes, signaled by VEGF isoform A165 (VEGFA165), vigorously drive new vessel growth in both adult and neonatal mouse inner ear tissue. In vivo, the delivery of an adeno-associated virus serotype 1–mediated (AAV1–mediated) VEGFA165 viral vector to pericyte-depleted or noise-exposed animals prevented and regenerated lost pericytes, improved blood supply, and attenuated hearing loss. These studies provide the first clear-cut evidence that pericytes are critical for vascular regeneration, vascular stability, and hearing in adults. The restoration of vascular function in the damaged cochlea, including in noise-exposed animals, suggests that VEGFA165 gene therapy could be a new strategy for ameliorating vascular associated hearing disorders.

Authors

Jinhui Zhang, Zhiqiang Hou, Xiaohan Wang, Han Jiang, Lingling Neng, Yunpei Zhang, Qing Yu, George Burwood, Junha Song, Manfred Auer, Anders Fridberger, Michael Hoa, Xiaorui Shi

×

Abstract

Compromised regenerative capacity of lung epithelial cells can lead to cellular senescence, which may precipitate fibrosis. While increased markers of senescence have been reported in idiopathic pulmonary fibrosis (IPF), the origin and identity of these senescent cells remain unclear, and tools to characterize context-specific cellular senescence in human lung are lacking. We observed that the senescent marker p16 is predominantly localized to bronchiolized epithelial structures in scarred regions of IPF and systemic sclerosis–associated interstitial lung disease (SSc-ILD) lung tissue, overlapping with the basal epithelial markers Keratin 5 and Keratin 17. Using in vitro models, we derived transcriptional signatures of senescence programming specific to different types of lung epithelial cells and interrogated these signatures in a single-cell RNA-Seq data set derived from control, IPF, and SSc-ILD lung tissue. We identified a population of basal epithelial cells defined by, and enriched for, markers of cellular senescence and identified candidate markers specific to senescent basal epithelial cells in ILD that can enable future functional studies. Notably, gene expression of these cells significantly overlaps with terminally differentiating cells in stratified epithelia, where it is driven by p53 activation as part of the senescence program.

Authors

Daryle J. DePianto, Jason A. Vander Heiden, Katrina B. Morshead, Kai-Hui Sun, Zora Modrusan, Grace Teng, Paul J. Wolters, Joseph R. Arron

×

Abstract

After 9/11, threat of nuclear attack on American urban centers prompted government agencies to develop medical radiation countermeasures to mitigate hematopoietic acute radiation syndrome (H-ARS) and higher-dose gastrointestinal acute radiation syndrome (GI-ARS) lethality. While repurposing leukemia drugs that enhance bone marrow repopulation successfully treats H-ARS in preclinical models, no mitigator potentially deliverable under mass casualty conditions preserves GI tract. Here, we report generation of an anti-ceramide 6B5 single-chain variable fragment (scFv) and show that s.c. 6B5 scFv delivery at 24 hours after a 90% lethal GI-ARS dose of 15 Gy mitigated mouse lethality, despite administration after DNA repair was complete. We defined an alternate target to DNA repair, an evolving pattern of ceramide-mediated endothelial apoptosis after radiation, which when disrupted by 6B5 scFv, initiates a durable program of tissue repair, permitting crypt, organ, and mouse survival. We posit that successful preclinical development will render anti-ceramide 6B5 scFv a candidate for inclusion in the Strategic National Stockpile for distribution after a radiation catastrophe.

Authors

Jimmy A. Rotolo, Chii Shyang Fong, Sahra Bodo, Prashanth K.B. Nagesh, John Fuller, Thivashnee Sharma, Alessandra Piersigilli, Zhigang Zhang, Zvi Fuks, Vijay K. Singh, Richard Kolesnick

×

Abstract

Sphingosine-1-phosphate lyase insufficiency syndrome (SPLIS) is a rare metabolic disorder caused by inactivating mutations in sphingosine-1-phosphate lyase 1 (SGPL1), which is required for the final step of sphingolipid metabolism. SPLIS features include steroid-resistant nephrotic syndrome and impairment of neurological, endocrine, and hematopoietic systems. Many affected individuals die within the first 2 years. No targeted therapy for SPLIS is available. We hypothesized that SGPL1 gene replacement would address the root cause of SPLIS, thereby serving as a universal treatment for the condition. As proof of concept, we evaluated the efficacy of adeno-associated virus 9–mediated transfer of human SGPL1 (AAV-SPL) given to newborn Sgpl1-KO mice that model SPLIS and die in the first weeks of life. Treatment dramatically prolonged survival and prevented nephrosis, neurodevelopmental delay, anemia, and hypercholesterolemia. STAT3 pathway activation and elevated proinflammatory and profibrogenic cytokines observed in KO kidneys were attenuated by treatment. Plasma and tissue sphingolipids were reduced in treated compared with untreated KO pups. SGPL1 expression and activity were measurable for at least 40 weeks. In summary, early AAV-SPL treatment prevents nephrosis, lipidosis, and neurological impairment in a mouse model of SPLIS. Our results suggest that SGPL1 gene replacement holds promise as a durable and universal targeted treatment for SPLIS.

Authors

Piming Zhao, Gizachew B. Tassew, Joanna Y. Lee, Babak Oskouian, Denise P. Muñoz, Jeffrey B. Hodgin, Gordon L. Watson, Felicia Tang, Jen-Yeu Wang, Jinghui Luo, Yingbao Yang, Sarah King, Ronald M. Krauss, Nancy Keller, Julie D. Saba

×

Abstract

Preexisting cross-reactivity to SARS-CoV-2 occurs in the absence of prior viral exposure. However, this has been difficult to quantify at the population level due to a lack of reliably defined seroreactivity thresholds. Using an orthogonal antibody testing approach, we estimated that about 0.6% of nontriaged adults from the greater Vancouver, Canada, area between May 17 and June 19, 2020, showed clear evidence of a prior SARS-CoV-2 infection, after adjusting for false-positive and false-negative test results. Using a highly sensitive multiplex assay and positive/negative thresholds established in infants in whom maternal antibodies have waned, we determined that more than 90% of uninfected adults showed antibody reactivity against the spike protein, receptor-binding domain (RBD), N-terminal domain (NTD), or the nucleocapsid (N) protein from SARS-CoV-2. This seroreactivity was evenly distributed across age and sex, correlated with circulating coronaviruses’ reactivity, and was partially outcompeted by soluble circulating coronaviruses’ spike. Using a custom SARS-CoV-2 peptide mapping array, we found that this antibody reactivity broadly mapped to spike and to conserved nonstructural viral proteins. We conclude that most adults display preexisting antibody cross-reactivity against SARS-CoV-2, which further supports investigation of how this may impact the clinical severity of COVID-19 or SARS-CoV-2 vaccine responses.

Authors

Abdelilah Majdoubi, Christina Michalski, Sarah E. O’Connell, Sarah Dada, Sandeep Narpala, Jean Gelinas, Disha Mehta, Claire Cheung, Dirk F.H. Winkler, Manjula Basappa, Aaron C. Liu, Matthias Görges, Vilte E. Barakauskas, Mike Irvine, Jennifer Mehalko, Dominic Esposito, Inna Sekirov, Agatha N. Jassem, David M. Goldfarb, Steven Pelech, Daniel C. Douek, Adrian B. McDermott, Pascal M. Lavoie

×

Abstract

Nephrogenic diabetes insipidus (NDI) patients produce large amounts of dilute urine. NDI can be congenital, resulting from mutations in the type-2 vasopressin receptor (V2R), or acquired, resulting from medications such as lithium. There are no effective treatment options for NDI. Activation of PKA is disrupted in both congenital and acquired NDI, resulting in decreased aquaporin-2 phosphorylation and water reabsorption. We show that adenosine monophosphate–activated protein kinase (AMPK) also phosphorylates aquaporin-2. We identified an activator of AMPK, NDI-5033, and we tested its ability to increase urine concentration in animal models of NDI. NDI-5033 increased AMPK phosphorylation by 2.5-fold, confirming activation. It increased urine osmolality in tolvaptan-treated NDI rats by 30%–50% and in V2R-KO mice by 50%. Metformin, another AMPK activator, can cause hypoglycemia, which makes it a risky option for treating NDI patients, especially children. Rats with NDI receiving NDI-5033 showed no hypoglycemia in a calorie-restricted, exercise protocol. Congenital NDI therapy needs to be effective long-term. We administered NDI-5033 for 3 weeks and saw no reduction in efficacy. We conclude that NDI-5033 can improve urine concentration in animals with NDI and holds promise as a potential therapy for patients with congenital NDI due to V2R mutations.

Authors

Janet D. Klein, Ish Khanna, Ram Pillarisetti, Rachael A. Hagan, Lauren M. LaRocque, Eva L. Rodriguez, Jeff M. Sands

×

Abstract

BACKGROUND [18F]FluorThanatrace ([18F]FTT) is a radiolabeled poly (adenosine diphosphate-ribose) polymerase inhibitor (PARPi) that enables noninvasive quantification of PARP with potential to serve as a biomarker for patient selection for PARPi therapy. Here we report for the first time to our knowledge noninvasive in vivo visualization of drug-target engagement during PARPi treatment.METHODS Two single-arm, prospective, nonrandomized clinical trials were conducted at the University of Pennsylvania from May 2017 to March 2020. PARP expression in breast cancer was assessed in vivo via [18F]FTT PET before and after initiation of PARPi treatment and in vitro via [125I]KX1 (an analog of [18F]FTT) binding to surgically removed breast cancer.RESULTS Thirteen patients had baseline [18F]FTT PET. Nine of these then had resection and in vitro evaluation of [18F]FTT uptake with an analog and uptake was blocked with PARPi. Of the other 4 patients, 3 had [18F]FTT PET uptake, and all had uptake blocked with treatment with a therapeutic PARPi. Initial in vivo [18F]FTT tumor uptake ranged from undetectable to robust. Following initiation of PARPi therapy, [18F]FTT uptake was not detectable above background in all cases. In vitro tumor treatment with a PARPi resulted in 82% reduction in [125I]KX1 binding.CONCLUSION [18F]FTT noninvasively quantifies PARP-1 expression. Early results indicate ability to visualize PARPi drug-target engagement in vivo and suggest the utility of further study to test [18F]FTT PET as a predictive and pharmacodynamic biomarker.TRIAL REGISTRATION ClinicalTrials.gov identifiers NCT03083288 and NCT03846167.FUNDING Metavivor Translational Research Award, Susan G. Komen for the Cure (CCR 16376362), Department of Defense BC190315, and Abramson Cancer Center Breakthrough Bike Challenge.

Authors

Elizabeth S. McDonald, Austin R. Pantel, Payal D. Shah, Michael D. Farwell, Amy S. Clark, Robert K. Doot, Daniel A. Pryma, Sean D. Carlin

×

Abstract

Resistance to AR signaling inhibitors (ARSis) in a subset of metastatic castration-resistant prostate cancers (mCRPCs) occurs with the emergence of AR– neuroendocrine prostate cancer (NEPC) coupled with mutations/deletions in PTEN, TP53, and RB1 and the overexpression of DNMTs, EZH2, and/or SOX2. To resolve whether the lack of AR is the driving factor for the emergence of the NE phenotype, molecular, cell, and tumor biology analyses were performed on 23 xenografts derived from patients with PC, recapitulating the full spectrum of genetic alterations proposed to drive NE differentiation. Additionally, phenotypic response to CRISPR/Cas9-mediated AR KO in AR+ CRPC cells was evaluated. These analyses document that (a) ARSi-resistant NEPC developed without androgen deprivation treatment; (b) ARS in ARSi-resistant AR+/NE+ double-positive “amphicrine” mCRPCs did not suppress NE differentiation; (c) the lack of AR expression did not necessitate acquiring a NE phenotype, despite concomitant mutations/deletions in PTEN and TP53, and the loss of RB1 but occurred via emergence of an AR–/NE– double-negative PC (DNPC); (d) despite DNPC cells having homogeneous genetic driver mutations, they were phenotypically heterogeneous, expressing basal lineage markers alone or in combination with luminal lineage markers; and (e) AR loss was associated with AR promoter hypermethylation in NEPCs but not in DNPCs.

Authors

W. Nathaniel Brennen, Yezi Zhu, Ilsa M. Coleman, Susan L. Dalrymple, Lizamma Antony, Radhika A. Patel, Brian Hanratty, Roshan Chikarmane, Alan K. Meeker, S. Lilly Zheng, Jody E. Hooper, Jun Luo, Angelo M. De Marzo, Eva Corey, Jianfeng Xu, Srinivasan Yegnasubramanian, Michael C. Haffner, Peter S. Nelson, William G. Nelson, William B. Isaacs, John T. Isaacs

×

Abstract

The foreskin is a site of heterosexual acquisition of HIV-1 among uncircumcised men. However, some men remain HIV-negative despite repeated, unprotected vaginal intercourse with HIV-positive partners, while others become infected after few exposures. The foreskin microbiome includes a diverse group of anaerobic bacteria that have been linked to HIV acquisition. However, these anaerobes tend to coassociate, making it difficult to determine which species might increase HIV risk and which may be innocent bystanders. Here, we show that 6 specific anaerobic bacterial species, Peptostreptococcus anaerobius, Prevotella bivia, Prevotella disiens, Dialister propionicifaciens, Dialister micraerophilus, and a genetic near neighbor of Dialister succinatiphilus, significantly increased cytokine production, recruited HIV-susceptible CD4+ T cells to the inner foreskin, and were associated with HIV acquisition. This strongly suggests that the penile microbiome increases host susceptibility to HIV and that these species are potential targets for microbiome-based prevention strategies.

Authors

Jessica L. Prodger, Alison G. Abraham, Aaron A.R. Tobian, Daniel E. Park, Maliha Aziz, Kelsey Roach, Ronald H. Gray, Lane Buchanan, Godfrey Kigozi, Ronald M. Galiwango, Joseph Ssekasanvu, James Nnamutete, Joseph Kagaayi, Rupert Kaul, Cindy M. Liu

×

Abstract

Currently, no effective therapies exist for fibrodysplasia ossificans progressiva (FOP), a rare congenital syndrome in which heterotopic bone is formed in soft tissues owing to dysregulated activity of the bone morphogenetic protein (BMP) receptor kinase ALK2 (also known as ACVR1). From a screen of known biologically active compounds, we identified saracatinib as a potent ALK2 kinase inhibitor. In enzymatic and cell-based assays, saracatinib preferentially inhibited ALK2, compared with other receptors of the BMP/TGF-β signaling pathway, and induced dorsalization in zebrafish embryos consistent with BMP antagonism. We further tested the efficacy of saracatinib using an inducible ACVR1Q207D-transgenic mouse line, which provides a model of heterotopic ossification (HO), as well as an inducible ACVR1R206H-knockin mouse, which serves as a genetically and physiologically faithful FOP model. In both models, saracatinib was well tolerated and potently inhibited the development of HO, even when administered transiently following soft tissue injury. Together, these data suggest that saracatinib is an efficacious clinical candidate for repositioning in FOP treatment, offering an accelerated path to clinical proof-of-efficacy studies and potentially significant benefits to individuals with this devastating condition.

Authors

Eleanor Williams, Jana Bagarova, Georgina Kerr, Dong-Dong Xia, Elsie S. Place, Devaveena Dey, Yue Shen, Geoffrey A. Bocobo, Agustin H. Mohedas, Xiuli Huang, Philip E. Sanderson, Arthur Lee, Wei Zheng, Aris N. Economides, James C. Smith, Paul B. Yu, Alex N. Bullock

×

In-Press Preview - More

Abstract

BACKGROUND. The chemokine system of ligands and receptors is implicated in the progression of Alcohol-associated hepatitis (AH). Finding upstream regulators could lead to novel therapies. MOTHODS. The coordinated expression of chemokines in livers of healthy controls (HC) and patients with AH in two distinct cohorts of patients with various chronic liver diseases. Studies in cultured hepatocytes and in tissue-specific knockouts were used for mechanistic insight into a potential upstream regulator of chemokine expression in AH. RESULTS. Selected C-X-C chemokine members of the Interleukin-8 (IL-8) chemokine family and C-C chemokine CCl20 were highly associated with AH compared to HC, but not in patients with liver diseases of other etiologies (NAFLD or HCV). Our previous studies implicate Macrophage migration inhibitory factor (MIF) as a pleiotropic cytokine/chemokine with the potential to coordinately regulate chemokine expression in AH. LPS-stimulated expression of multiple chemokines in cultured hepatocytes was dependent on MIF. Gao-binge ethanol feeding to mice induced a similar coordinated chemokine expression in livers of wild-type mice; this was prevented in hepatocyte-specific Mif knockout (MifΔHep) mice. CONCLUSIONS. This study demonstrates that patients with AH exhibit a specific, coordinately expressed chemokine signature and hepatocyte-derived MIF might drive this inflammatory response.

Authors

Kyle L. Poulsen, Xiude D. Fan, Christopher D. Kibler, Emily Huang, Xiaoqin Wu, Megan R. McMullen, Lin Leng, Richard Bucala, Meritxell Ventura-Cots, Josepmaria Argemi, Ramon Bataller, Laura E. Nagy

×

Abstract

Idiopathic Pulmonary Fibrosis (IPF) is characterized by aberrant repair that diminishes lung function via mechanisms that remain poorly understood. C-C chemokine receptor (CCR10) and its ligand, CCL28, were both elevated in IPF compared with normal donors. CCR10 was highly expressed by various cells from IPF lungs, most notably stage-specific embryonic antigen (SSEA)-4+ mesenchymal progenitor cells (MPCs). In vitro, CCL28 promoted the proliferation of CCR10+ MPCs while CRISPR-Cas9-mediated targeting of CCR10 resulted in the death of MPCs. Following the intravenous injection of various cells from IPF lungs into immunodeficient (NSG) mice, human CCR10+ cells initiated and maintained fibrosis in NSG mice. Eph receptor A3 (EphA3) was among the highest expressed receptor tyrosine kinases detected on IPF CCR10+ cells. Ifabotuzumab-targeted killing of EphA3+ cells significantly reduced the numbers of CCR10+ cells and ameliorated pulmonary fibrosis in humanized NSG mice. Thus, human CCR10+ cells promote pulmonary fibrosis and EphA3 mAb-directed elimination of these cells inhibits lung fibrosis.

Authors

Miriam S. Hohmann, David M. Habiel, Milena S. Espindola, Guanling Huang, Isabelle Jones, Rohan Narayanan, Ana Lucia Coelho, Justin M. Oldham, Imre Noth, Shwu-Fan Ma, Adrianne Kurkciyan, Jonathan L. McQualter, Gianni Carraro, Barry Stripp, Peter Chen, Dianhua Jiang, Paul W. Noble, William Parks, John Woronicz, Geoffrey Yarranton, Lynne A. Murray, Cory M. Hogaboam

×

Abstract

Long noncoding RNAs (lncRNAs) are increasingly implicated in the pathology of diabetic complications. Here we examined the role of lncRNAs in monocyte dysfunction and inflammation associated with human type 2 diabetes mellitus (T2D). RNA-seq analysis of CD14+ monocytes from patients with T2D versus healthy controls revealed downregulation of anti-inflammatory and anti-proliferative genes along with several lncRNAs, including a novel divergent lncRNA DRAIR (Diabetes Regulated anti-inflammatory RNA) and its nearby gene CPEB2. High glucose and palmitic acid downregulated DRAIR in cultured CD14+ monocytes, whereas anti-inflammatory cytokines and monocyte-to-macrophage differentiation upregulated DRAIR via KLF4 transcription factor. DRAIR overexpression increased anti-inflammatory and macrophage differentiation genes but inhibited pro-inflammatory genes. Conversely, DRAIR knockdown attenuated anti-inflammatory genes, promoted inflammatory responses, and inhibited phagocytosis. DRAIR regulated target gene expression through interaction with chromatin, and inhibition of the repressive epigenetic mark H3K9me2 and its corresponding methyltransferase G9a. Mouse orthologous Drair and Cpeb2 were also downregulated in peritoneal macrophages from T2D db/db mice, and Drair knockdown in non-diabetic mice enhanced pro-inflammatory genes in macrophages. Thus, DRAIR modulates inflammatory phenotype of monocytes/macrophages via epigenetic mechanisms, and its downregulation in T2D may promote chronic inflammation. Augmentation of endogenous lncRNAs like DRAIR could serve as novel anti-inflammatory therapies for diabetic complications.

Authors

Marpadga A. Reddy, Vishnu Amaram, Sadhan Das, Vinay Singh Tanwar, Rituparna Ganguly, Mei Wang, Linda Lanting, Linxiao Zhang, Maryam Abdollahi, Zhuo Chen, Xiwei Wu, Sridevi Devaraj, Rama Natarajan

×

Abstract

Clinical phenotyping of term and preterm labor is imprecise, and disagreement persists on categorization relative to underlying pathobiology, which remains poorly understood. We performed RNA sequencing (RNA-seq) of 31 specimens of human uterine myometrium from 10 term and 21 preterm cesarean deliveries with rich clinical context information. A molecular signature of 4,814 transcripts stratified myometrial samples into quiescent (Q) and non-quiescent (NQ) phenotypes, independent of gestational age and incision site. Similar stratifications were achieved using expressed genes in Ca2+ signaling and TGF-β pathways. For maximal parsimony, we evaluated the expression of just two Ca2+ transporter genes, ATP2B4 (encoding PMCA4) and ATP2A2 (coding for SERCA2), and found that their ratio reliably distinguished NQ and Q specimens in the current study, and also in two publically available RNA-seq datasets (GSE50599 and GSE80172), with an overall AUC of 0.94. Cross-validation of the ATP2B4/ATP2A2 ratio by qPCR in an expanded cohort (by 11 additional specimens) achieved complete separation (AUC=1.00) of NQ vs. Q specimens. While providing additional insight into the associations between clinical features of term and preterm labor and myometrial gene expression, our study also offers a practical algorithm for unbiased classification of myometrial biopsies by their overall contractile program.

Authors

William E. Ackerman IV, Catalin S. Buhimschi, Ali Snedden, Taryn L. Summerfield, Guomao Zhao, Irina A. Buhimschi

×

Abstract

The epithelial cell-derived cytokines IL-25, IL-33 and TSLP initiate type 2 inflammation in allergic diseases including asthma. However, the signaling pathway regulating these cytokines expression remains elusive. Since microRNAs are pivotal regulators of gene expression, we profiled microRNA expression in bronchial epithelial brushings from type 2-low and type 2-high asthma patients. MiR-206 was the most highly expressed epithelial microRNA in type 2-high asthma relative to type 2-low asthma but was downregulated in both subsets compared with healthy controls. CD39, an ectonucleotidase degrading ATP, was a target of miR-206 and upregulated in asthma. Allergen-induced acute extracellular ATP accumulation led to miR-206 downregulation and CD39 upregulation in human bronchial epithelial cells, forming a feedback loop to eliminate excessive ATP. Airway ATP levels were markedly elevated and strongly correlated with IL-25 and TSLP expression in asthma patients. Intriguingly, airway miR-206 antagonism increased Cd39 expression, reduced ATP accumulation, suppressed Il-25, Il-33, Tslp expression and group 2 innate lymphoid cell expansion, and alleviated type 2 inflammation in a mouse model of allergic airway inflammation. In contrast, airway miR-206 overexpression had opposite effects. Overall, epithelial miR-206 upregulates airway IL-25, TSLP expression by targeting CD39-extracellular ATP axis, which represents a novel therapeutic target in type 2-high asthma.

Authors

Kan Zhang, Yuchen Feng, Yuxia Liang, Wenliang Wu, Chenli Chang, Dian Chen, Shengchong Chen, Jiali Gao, Gongqi Chen, Lingling Yi, Dan Cheng, Guohua Zhen

×