Yan et al. report an integrative single-cell transcriptomic analysis of fibrosis-associated lung diseases that reveals cellular and molecular signatures in chronic lung allograft dysfunction. Image credit: Ellen Weiss.
Reproductive disorders can result from a defective action of the neuropeptide gonadotropin-releasing hormone (GnRH), the master regulator of reproduction. We have previously shown that SELENOT, a newly-described thioredoxin-like selenoprotein highly expressed in endocrine and neuroendocrine cells, plays a role in hormone secretion and neuroprotection. However, whether SELENOT is involved in neuro-endocrine regulations in vivo is totally unknown. We found that SELENOT deficiency in the brain impaired sexual behavior, leading to a decline in fertility in both male and female mice. Biochemical and histological analyses of the gonadotrope axis of these mice revealed a higher expression of GnRH, which is associated with circulating luteinizing hormone (LH) excess, and elevated steroid hormones in males and a polycystic ovary syndrome (PCOS)-like phenotype in females. In addition, SELENOT deficiency impaired LH pulse secretion in both male and female mice. These alterations are reverted after administration of a GnRH antagonist. Together, our data demonstrate for the first time the role of a selenoprotein in the central control of sexual behavior and reproduction, and identify a new redox effector of GnRH neuron activity impacting both male and female reproductive function.
Ben Yamine Mallouki, Loubna Boukhzar, Ludovic Dumont, Azénor Abgrall, Marjorie Gras, Agathe Prieur, David Alexandre, David Godefroy, Yves Tillet, Luca Grumolato, Nathalie Rives, Fatiha Chigr, Youssef Anouar
Carolina M. Larrain, Jack H. Victory, Priyanka P. Desai, Lindsay R. Friedman, Hannah Stepp, Rachel Ashe, Kirsten Remmert, Surajit Sinha, Emily C. Smith, Nicole Russell, Tracey Pu, Alyssa V. Eade, Justine F. Burke, Jason Ho, Michael B. Yaffe, David E. Kleiner, Keith Schmidt, William D. Figg, Jonathan M. Hernandez
The present study aims to explore the role and possible underlying mechanisms of histone lactylation modifications in diabetes-associated cognitive impairment (DACD). In this study, behavioral tests, Hematoxylin & Eosin (HE) staining, and immunohistochemistry were used to evaluate cognitive function and the extent of cerebral tissue injury. We quantified the levels of lactic acid and Pan-lysine lactylation (Pan Kla) in the brains of type 2 diabetes mellitus (T2DM) mice and in high glucose–treated microglia. We also identified all Kla sites in isolated microglia. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were subsequently conducted to identify the functions and pathways that were enriched at the differentially expressed modification sites. cleavage under targets and tagmentation (CUT&Tag) technology was used to identify candidate genes that are regulated by H3K18la. Small interfering RNA (siRNA) and H3K18R mutant sequences were used to knock down crucial components in key signaling pathways to assess the effects of histone lactylation on microglial polarization. We found that lactic acid levels were significantly greater in the brains of T2DM mice and high glucose-treated microglia than in those of their corresponding controls, which increased the level of Pan-Kla. We discovered that lactate can directly stimulate an increase in H3K18la. The global landscape of the lactylome reveals information about modification sites, indicating a correlation between the upregulation of H3K18la and protein lactylation and Toll-like receptor signaling. CUT&Tag demonstrated that enhanced H3K18la directly stimulates the nuclear factor kappa-B (NF-κB) signaling pathway by increasing binding to the promoter of Toll Like Receptor 4 (TLR4), thereby promoting M1 microglial polarization. The present study demonstrated that enhanced H3K18la directly stimulates TLR4 signaling to promote M1 microglial polarization, thereby facilitating DACD phenotypes. Targeting such loop may be a potential therapeutic approach for the treatment of DACD.
Ying Yang, Fei Chen, Lulu Song, Liping Yu, Jinping Zhang, Bo Zhang
X-linked myotubular myopathy (XLMTM) due to MTM1 mutations is a rare and often lethal congenital myopathy. Its downstream molecular and cellular mechanisms are currently incompletely understood. The most abundant protein in muscle, myosin, has been implicated in the pathophysiology of other congenital myopathies. Hence, in the present study, we aimed to define whether myosin is also dysfunctional in XLMTM and whether it thus may constitute a potential drug target. To this end, we used skeletal muscle tissue from human patients and canine/mouse models; we performed Mant-ATP chase experiments coupled with X-ray diffraction analyses and LC/MS-based proteomics studies. In XLMTM humans, we found that myosin molecules are structurally disordered and preferably adopt their ATP-consuming biochemical state. This phosphorylation-related (mal)adaptation was mirrored by a striking remodelling of the myofibre energetic proteome in XLMTM dogs. In line with these, we confirmed an accrued myosin ATP consumption in mice lacking MTM1. Hence, we treated these, with a myosin ATPase inhibitor, mavacamten. After a four-week treatment period, we observed a partial restoration of the myofibre proteome, especially proteins involved in cytoskeletal, sarcomeric and energetic pathways. Altogether, our study highlights myosin inhibition as a new potential drug mechanism for the complex XLMTM muscle phenotype.
Elise Gerlach Melhedegaard, Fanny Rostedt, Charlotte Gineste, Robert A.E. Seaborne, Hannah F. Dugdale, Vladimir Belhac, Edmar Zanoteli, Michael W. Lawlor, David L. Mack, Carina Wallgren-Pettersson, Anthony L. Hessel, Heinz Jungbluth, Jocelyn Laporte, Yoshihiko Saito, Ichizo Nishino, Julien Ochala, Jenni Laitila
Chronic liver injury results in activation of quiescent Hepatic Stellate Cells (qHSCs) into Collagen Type I-producing activated HSCs that make liver fibrotic. We identified ETS1/2 (E26 transformation-specific transcription factors 1/2) as lineage-specific transcription factors regulating HSC phenotypes. Here we investigated the role of ETS1/2 in HSCs in liver fibrosis using toxic liver injury models and 3D human liver spheroids. Liver fibrosis was induced in wild-type and HSC-specific Ets1 (Ets1ΔHSC) and Ets2 (Ets2ΔHSC) knockout mice by administration of carbon tetrachloride for 6 weeks, following cessation of liver injury for 2 weeks. Liver fibrosis was more severe in Ets1ΔHSC, and to lesser extent in Ets2ΔHSC, compared to wild-type mice. Regression of liver fibrosis was suppressed only in Ets1ΔHSC, indicating Ets1 as the predominant isoform maintaining quiescent-like phenotype in HSCs. Similar results were obtained in a MASH model using 3D human liver spheroids. Knockdown of ETS1 in human HSCs caused upregulation of fibrogenic genes in MASH human liver spheroids and prevented fibrosis regression. ETS1 regulated the qHSC phenotype via CRTC2/PGC1α/PPARγ pathway. Knockdown of CRTC2 (cAMP response element-binding protein (CREB)-regulated transcription co-activator 2) abrogated PPARγ responses and facilitated HSC activation. These findings suggest that ETS1 may represent a therapeutic target for anti-fibrotic therapy.
Wonseok Lee, Xiao Liu, Sara Brin Rosenthal, Charlene Miciano, Sadatsugu Sakane, Kanani Hokutan, Debanjan Dhar, Hyun Young Kim, David A. Brenner, Tatiana Kisseleva