Lo Cascio et al. identified quisinostat as a potent second-generation HDAC inhibitor that penetrates the blood-brain barrier and sensitizes GBM tumors to radiation therapy. The cover image shows an artistic interpretation of how quisinostat treatment increases histone acetylation and relaxation of the chromatin. Quisinostat induces DNA damage and further synergizes with radiation to sensitize GBM cells. Combinatorial treatment with quisinostat and radiation can lead cells to two fates: cell death or the adoption of a neuronal-like cell fate. Image credit: Costanza Lo Cascio, Michael Gallagher, and Shwetal Mehta.
We previously showed that ablation of tumor hypoxia can sensitize tumors to immune checkpoint blockade (ICB). Here, we used a Kras+/G12DTP53+/R172HPdx1-Cre (KPC) derived model of pancreatic adenocarcinoma (PDAC) to examine the tumor response and adaptive resistance mechanisms involved in response to two established methods of hypoxia-reducing therapy: the hypoxia-activated prodrug TH-302 and vascular endothelial growth factor receptor 2 (VEGFR-2) blockade. The combination of both modalities normalized tumor vasculature, increased DNA damage and cell death, and delayed tumor growth. In contrast to prior cancer models, the combination did not alleviate overall tissue hypoxia or sensitize these KPC tumors to ICB therapy despite qualitative improvements to the CD8 T cell response. Bulk-tumor RNA sequencing, flow cytometry, and adoptive myeloid cell transfer suggested that treated tumor cells increased their capacity to recruit granulocytic myeloid derived suppressor cells (G-MDSC) through CCL9 secretion. Blockade of the CCL9-CCR1 axis could limit G-MDSC migration, and depletion of Ly6G-positive cells could sensitize tumors to the combination of TH-302 and anti-VEGFR-2 with ICB. Together, these data suggest that pancreatic tumors modulate G-MDSC migration as an adaptive response to vascular normalization, and that these immunosuppressive myeloid cells act in a setting of persistent hypoxia to maintain adaptive immune resistance.
Arthur Liu, Seth T. Gammon, Federica Pisaneschi, Akash Boda, Casey R. Ager, David Piwnica-Worms, David S. Hong, Michael A. Curran
Three-dimensional engineered cardiac tissue (ECT) using purified human induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) has emerged as an appealing model system for the study of human cardiac biology and disease. A recent study reported widely-used metabolic (lactate) purification of monolayer hiPSC-CM cultures results in an ischemic cardiomyopathy-like phenotype compared to magnetic antibody-based cell sorting (MACS) purification, complicating the interpretation of studies using lactate-purified hiPSC-CMs. Herein, our objective was to determine if use of lactate relative to MACS-purified hiPSC-CMs impacts the properties of resulting hiPSC-ECTs. Therefore, hiPSC-CMs were differentiated and purified using either lactate-based media or MACS. Global proteomics revealed lactate-purified hiPSC-CMs displayed a differential phenotype over MACS hiPSC-CMs. hiPSC-CMs were then integrated into 3D hiPSC-ECTs and cultured for four weeks. Structurally, there was no significant difference in sarcomere length between lactate and MACS hiPSC-ECTs. Assessment of isometric twitch force and Ca2+ transients measurements revealed similar functional performance between purification methods. High-resolution mass spectrometry (MS)-based quantitative proteomics showed no significant difference in protein pathway expression or myofilament proteoforms. Taken together, this study demonstrates lactate- and MACS-purified hiPSC-CMs generate ECTs with comparable structural, functional, and proteomic features, and suggests lactate purification does not result in an irreversible change in hiPSC-CM phenotype.
Kalina J. Rossler, Willem J. De Lange, Morgan W. Mann, Timothy J. Aballo, Jake A. Melby, Jianhua Zhang, Gina Kim, Elizabeth F. Bayne, Yanlong Zhu, Emily T. Farrell, Timothy J. Kamp, J. Carter Ralphe, Ying Ge
Benign prostatic hyperplasia (BPH) is the nodular proliferation of the prostate transition zone in older men, leading to urinary storage and voiding problems that can be recalcitrant to therapy. Decades ago, John McNeal proposed that BPH originates with the “reawakening” of embryonic inductive activity by adult prostate stroma, which spurs new ductal proliferation and branching morphogenesis. Here, by laser microdissection and transcriptional profiling of the BPH stroma adjacent to hyperplastic branching ducts, we identified secreted factors likely mediating stromal induction of prostate glandular epithelium and coinciding processes. The top stromal factors were Insulin Like Growth Factor 1 (IGF1) and C-X-C Motif Chemokine Ligand 13 (CXCL13), which we confirmed by RNA in situ hybridization to be co-expressed in BPH fibroblasts, along with their cognate receptors (IGF1R and CXCR5) on adjacent epithelium. In contrast, IGF1 but not CXCL13 was expressed in human embryonic prostate stroma. Finally, we demonstrated that IGF1 is necessary for the generation of BPH-1 cell spheroids and patient-derived BPH cell organoids in three-dimensional culture. Our findings partially support historic speculations on the etiology of BPH, and provide what we believe to be new molecular targets for rational therapies directed against the underlying processes driving BPH.
Anna S. Pollack, Christian A. Kunder, Noah Brazer, Zhewei Shen, Sushama Varma, Robert B. West, Gerald R. Cunha, Laurence S. Baskin, James D. Brooks, Jonathan R. Pollack
Syndromic ciliopathies and retinal degenerations are large heterogeneous groups of genetic diseases. Pathogenic variants in the CFAP418 gene may cause both disorders, and its protein sequence is evolutionarily conserved. However, the disease mechanism underlying CFAP418 mutations has not been explored. Here, we apply quantitative lipidomic, proteomic, and phosphoproteomic profiling and affinity purification coupled with mass spectrometry to address the molecular function of CFAP418 in retinas. We show that CFAP418 protein binds to lipid metabolism precursor phosphatidic acid (PA) and mitochondrion-specific lipid cardiolipin but does not form a tight and static complex with proteins. Loss of Cfap418 in mice disturbs membrane lipid homeostasis and membrane-protein association, which subsequently causes mitochondrial defects and membrane remodeling abnormalities across multiple vesicular trafficking pathways in photoreceptors, especially the endosomal sorting complexes required for transport (ESCRT) pathway. Ablation of Cfap418 also increases the activity of PA-binding protein kinase Cα in the retina. Overall, our results indicate that membrane lipid imbalance is a pathological mechanism underlying syndromic ciliopathies and retinal degenerations, which is associated with other known causative genes of these diseases.
Anna M. Clark, Dongmei Yu, Grace Neiswanger, Daniel Zhu, Junhuang Zou, J. Alan Maschek, Thomas Burgoyne, Jun Yang
Increased mitochondrial function may render some cancers vulnerable to mitochondrial inhibitors. Since mitochondrial function is regulated partly by mitochondrial DNA copy number (mtDNAcn), accurate measurements of mtDNAcn could help reveal which cancers are driven by increased mitochondrial function and may be candidates for mitochondrial inhibition. However, prior studies have employed bulk macrodissections that fail to account for cell type-specific or tumor cell heterogeneity in mtDNAcn. These studies have often produced unclear results, particularly in prostate cancer. Herein, we developed a multiplex in situ method to spatially quantify cell type specific mtDNAcn. We show that mtDNAcn is increased in luminal cells of high-grade prostatic intraepithelial neoplasia (HGPIN), is increased in prostatic adenocarcinomas (PCa), and is further elevated in metastatic castration-resistant prostate cancer. Increased PCa mtDNAcn was validated by two orthogonal methods and is accompanied by increases in mtRNAs and enzymatic activity. Mechanistically, MYC inhibition in prostate cancer cells decreases mtDNA replication and expression of several mtDNA replication genes, and MYC activation in the mouse prostate leads to increased mtDNA levels in the neoplastic prostate cells. Our in situ approach also revealed elevated mtDNAcn in precancerous lesions of the pancreas and colon/rectum, demonstrating generalization across cancer types using clinical tissue samples.
Jiayu Chen, Qizhi Zheng, Jessica L. Hicks, Levent Trabzonlu, Busra Ozbek, Tracy Jones, Ajay M. Vaghasia, Tatianna C. Larman, Rulin Wang, Mark C. Markowski, Samuel R. Denmeade, Kenneth J. Pienta, Ralph H. Hruban, Emmanuel S. Antonarakis, Anuj Gupta, Chi V. Dang, Srinivasan Yegnasubramanian, Angelo M. De Marzo
JCI This Month is a digest of the research, reviews, and other features published each month.