Issue published September 10, 2024

Go to section:
Go, flight: a new editorial team in mission control

This issue marks the transition of JCI Insight’s Editorial Board to a new team led by Oliver Eickelberg and colleagues at the University of Pittsburgh. In his inaugural editorial, Dr. Eickelberg shares his vision for the next 5 years and plans to take the journal to even farther reaches.
Image credit: Oliver Eickelberg

Editorial
Abstract

Authors

Oliver Eickelberg

×
Research Articles
Abstract

Alveolar macrophages (AMs) act as gatekeepers of the lung’s immune responses, serving essential roles in recognizing and eliminating pathogens. The transcription factor (TF) early growth response 2 (EGR2) has been recently described as required for mature AMs in mice; however, its mechanisms of action have not been explored. Here, we identified EGR2 as an epigenomic regulator and likely direct proximal transcriptional activator in AMs using epigenomic approaches (RNA sequencing, ATAC sequencing, and CUT&RUN). The predicted direct proximal targets of EGR2 included a subset of AM identity genes and ones related to pathogen recognition, phagosome maturation, and adhesion, such as Clec7a, Atp6v0d2, Itgb2, Rhoc, and Tmsb10. We provided evidence that EGR2 deficiency led to impaired zymosan internalization and reduced the capacity to respond to Aspergillus fumigatus. Mechanistically, the lack of EGR2 altered the transcriptional response, secreted cytokines (i.e., CXCL11), and inflammation-resolving lipid mediators (i.e., RvE1) of AMs during in vivo zymosan-induced inflammation, which manifested in impaired resolution. Our findings demonstrated that EGR2 is a key proximal transcriptional activator and epigenomic bookmark in AMs responsible for select, distinct components of cell identity and a protective transcriptional and epigenomic program against fungi.

Authors

Zsuzsanna Kolostyak, Dora Bojcsuk, Viktoria Baksa, Zsuzsa Mathene Szigeti, Krisztian Bene, Zsolt Czimmerer, Pal Boto, Lina Fadel, Szilard Poliska, Laszlo Halasz, Petros Tzerpos, Wilhelm K. Berger, Andres Villabona-Rueda, Zsofia Varga, Tunde Kovacs, Andreas Patsalos, Attila Pap, Gyorgy Vamosi, Peter Bai, Balazs Dezso, Matthew Spite, Franco R. D’Alessio, Istvan Szatmari, Laszlo Nagy

×

Abstract

Sex is an often overlooked, yet compulsory, biological variable when performing biomedical research. Periodontitis is a common yet progressively debilitating chronic inflammatory disorder affecting the tissues supporting teeth that ultimately leads to tooth loss if left untreated. The incidence of periodontitis is sex biased, with increased prevalence in males compared with females but with unknown etiology. We performed a sex-specific meta-analysis using publicly available oral microbiome data from different sampling sites of patients with periodontitis and periodontally healthy controls; sex balance was established for each periodontal health condition. Our results show sex-based diversity in oral biofilms of individuals with periodontitis but not in their saliva, with increased abundance of several periodontal pathogens in subgingival plaques from females compared with males. We devised a quantitative measure, uniquely defined as the Microsexome Index (MSI), which indicates that sexual dimorphism in subgingival bacterial composition is a distinct feature of reduced microbial diversity during periodontitis but not under healthy conditions. In addition, we found that smoking exacerbates microsexome diversity in supragingival biofilms, particularly during periodontitis. Taken together, we provide insights regarding sex-based diversity in periodontitis, a disease with multiorgan associations, and provide the rationale for further mechanistic, diagnostic, and therapeutic studies.

Authors

Rita Del Pinto, Claudio Ferri, Mario Giannoni, Fabio Cominelli, Theresa T. Pizarro, Davide Pietropaoli

×

Abstract

Neutrophilia occurs in patients infected with SARS-CoV-2 (COVID-19) and is predictive of poor outcomes. Here, we link heterogenous neutrophil populations to disease severity in COVID-19. We identified neutrophils with features of cellular aging and immunosuppressive capacity in mild COVID-19 and features of neutrophil immaturity and activation in severe disease. The low-density neutrophil (LDN) number in circulating blood correlated with COVID-19 severity. Many of the divergent neutrophil phenotypes in COVID-19 were overrepresented in the LDN fraction and were less detectable in normal-density neutrophils. Functionally, neutrophils from patients with severe COVID-19 displayed defects in neutrophil extracellular trap formation and reactive oxygen species production. Soluble factors secreted by neutrophils from these patients inhibited T cell proliferation. Neutrophils from patients with severe COVID-19 had increased expression of arginase-1 protein, a feature that was retained in convalescent patients. Despite this increase in intracellular expression, there was a reduction in arginase-1 release by neutrophils into serum and culture supernatants. Furthermore, neutrophil-mediated T cell suppression was independent of arginase-1. Our results indicate the presence of dysfunctional, activated, and immature neutrophils in severe COVID-19.

Authors

Amrita Dwivedi, Aisling Ui Mhaonaigh, Makala Carroll, Bahareh Khosravi, Isabella Batten, Robert Seán Ballantine, Stuart Hendricken Phelan, Laura O’Doherty, Angel Mary George, Jacklyn Sui, Heike C. Hawerkamp, Padraic G. Fallon, Elnè Noppe, Sabina Mason, Niall Conlon, Clíona Ni Cheallaigh, Conor M. Finlay, Mark A. Little, Bioresource on behalf of the St James’s and Tallaght Trinity Allied Researchers (STTAR)

×

Abstract

In humans, lymph nodes are the primary site of measles virus (MeV) replication. To understand the immunological events that occur at this site, we infected human lymphoid tissue explants using a pathogenic strain of MeV that expresses GFP. We found that MeV infected 5%–15% of cells across donors. Using single-cell RNA-Seq and flow cytometry, we found that while most of the 29 cell populations identified in the lymphoid culture were susceptible to MeV, there was a broad preferential infection of B cells and reduced infection of T cells. Further subsetting of T cells revealed that this reduction may be driven by the decreased infection of naive T cells. Transcriptional changes in infected B cells were dominated by an interferon-stimulated gene (ISG) signature. To determine which of these ISGs were most substantial, we evaluated the proteome of MeV-infected Raji cells by mass spectrometry. We found that IFIT1, IFIT2, IFIT3, ISG15, CXCL10, MX2, and XAF1 proteins were the most highly induced and positively correlated with their expression in the transcriptome. These data provide insight into the immunological events that occur in lymph nodes during infection and may lead to the development of therapeutic interventions.

Authors

Joshua A. Acklin, Aum R. Patel, Andrew P. Kurland, Shu Horiuchi, Arianna S. Moss, Emma J. DeGrace, Satoshi Ikegame, Jillian Carmichael, Shreyas Kowdle, Patricia A. Thibault, Naoko Imai, Hideki Ueno, Benjamin Tweel, Jeffrey R. Johnson, Brad R. Rosenberg, Benhur Lee, Jean K. Lim

×

Abstract

Bladder cancer (BLCA) mortality is higher in African American (AA) patients compared with European American (EA) patients, but the molecular mechanism underlying race-specific differences are unknown. To address this gap, we conducted comprehensive RNA-Seq, proteomics, and metabolomics analysis of BLCA tumors from AA and EA. Our findings reveal a distinct metabolic phenotype in AA BLCA characterized by elevated mitochondrial oxidative phosphorylation (OXPHOS), particularly through the activation of complex I. The results provide insight into the complex I activation–driven higher OXPHOS activity resulting in glutamine-mediated metabolic rewiring and increased disease progression, which was also confirmed by [U]13C-glutamine tracing. Mechanistic studies further demonstrate that knockdown of NDUFB8, one of the components of complex I in AA BLCA cells, resulted in reduced basal respiration, ATP production, GLS1 expression, and proliferation. Moreover, preclinical studies demonstrate the therapeutic potential of targeting complex I, as evidenced by decreased tumor growth in NDUFB8-depleted AA BLCA tumors. Additionally, genetic and pharmacological inhibition of GLS1 attenuated mitochondrial respiration rates and tumor growth potential in AA BLCA. Taken together, these findings provide insight into BLCA disparity for targeting GLS1-Complex I for future therapy.

Authors

Karthik Reddy Kami Reddy, Danthasinghe Waduge Badrajee Piyarathna, Jun Hyoung Park, Vasanta Putluri, Chandra Sekhar Amara, Abu Hena Mostafa Kamal, Jun Xu, Daniel Kraushaar, Shixia Huang, Sung Yun Jung, Livia S. Eberlin, Jabril R. Johnson, Rick A. Kittles, Leomar Y. Ballester, Krishna Parsawar, M. Minhaj Siddiqui, Jianjun Gao, Adriana Langer Gramer, Roni J. Bollag, Martha K. Terris, Yair Lotan, Chad J. Creighton, Seth P. Lerner, Arun Sreekumar, Benny Abraham Kaipparettu, Nagireddy Putluri

×

Abstract

Diamond-Blackfan anemia syndrome (DBA) is a ribosomopathy associated with loss-of-function variants in more than 20 ribosomal protein (RP) genes. Here, we report the genetic, functional, and biochemical dissection of 2 multigenerational pedigrees with variants in RPL17, a large ribosomal subunit protein–encoding gene. Affected individuals had clinical features and erythroid proliferation defects consistent with DBA. Further, RPL17/uL22 depletion resulted in anemia and micrognathia in zebrafish larvae, and in vivo complementation studies indicated that RPL17 variants were pathogenic. Lymphoblastoid cell lines (LCLs) derived from patients displayed a ribosomal RNA maturation defect reflecting haploinsufficiency of RPL17. The proteins encoded by RPL17 variants were not incorporated into ribosomes, but 10%–20% of 60S ribosomal subunits contained a short form of 5.8S rRNA (5.8SC), a species that is marginal in normal cells. These atypical 60S subunits were actively engaged in translation. Ribosome profiling showed changes of the translational profile, but those are similar to LCLs bearing RPS19 variants. These results link an additional RP gene to DBA. They show that ribosomes can be modified substantially by RPL17 haploinsufficiency but support the paradigm that translation alterations in DBA are primarily related to insufficient ribosome production rather than to changes in ribosome structure or composition.

Authors

Florence Fellmann, Carol Saunders, Marie-Françoise O’Donohue, David W. Reid, Kelsey A. McFadden, Nathalie Montel-Lehry, Cong Yu, Mingyan Fang, Jianguo Zhang, Beryl Royer-Bertrand, Pietro Farinelli, Narjesse Karboul, Jason R. Willer, Lorraine Fievet, Zahurul Alam Bhuiyan, Alissa L.W. Kleinhenz, Julie Jadeau, Joy Fulbright, Carlo Rivolta, Raffaele Renella, Nicholas Katsanis, Jacques S. Beckmann, Christopher V. Nicchitta, Lydie Da Costa, Erica E. Davis, Pierre-Emmanuel Gleizes

×

Abstract

Over 200,000 individuals are diagnosed with lung cancer in the United States every year, with a growing proportion of cases, especially lung adenocarcinoma, occurring in individuals who have never smoked. Women over the age of 50 comprise the largest affected demographic. To understand the genomic drivers of lung adenocarcinoma and therapeutic response in this population, we performed whole genome and/or whole exome sequencing on 73 matched lung tumor/normal pairs from postmenopausal women who participated in the Women’s Health Initiative. Somatic copy number alterations showed little variation by smoking status, suggesting that aneuploidy may be a general characteristic of lung cancer regardless of smoke exposure. Similarly, clock-like and APOBEC mutation signatures were prevalent but did not differ in tumors from smokers and never-smokers. However, mutations in both EGFR and KRAS showed unique allelic differences determined by smoking status that are known to alter tumor response to targeted therapy. Mutations in the MYC-network member MGA were more prevalent in tumors from smokers. Fusion events in ALK, RET, and ROS1 were absent, likely due to age-related differences in fusion prevalence. Our work underscores the profound effect of smoking status, age, and sex on the tumor mutational landscape and identifies areas of unmet medical need.

Authors

Sitapriya Moorthi, Amy Paguirigan, Pushpa Itagi, Minjeong Ko, Mary Pettinger, Anna C.H. Hoge, Anwesha Nag, Neil A. Patel, Feinan Wu, Cassie Sather, Kevin M. Levine, Matthew P. Fitzgibbon, Aaron R. Thorner, Garnet L. Anderson, Gavin Ha, Alice H. Berger

×

Abstract

BACKGROUND A polymorphism in the fat mass and obesity-associated gene (FTO) is linked to enhanced neural sensitivity to food cues and attenuated ghrelin suppression. Risk allele carriers regain more weight than noncarriers after bariatric surgery. It remains unclear how FTO variation affects brain function and ghrelin following surgery.METHODS Resting-state functional magnetic resonance imaging and cue-reactivity functional magnetic resonance imaging with high-/low-caloric food cues were performed before surgery and at 1, 6, and 12 months after surgery to examine brain function in 16 carriers with 1 copy of the rs9939609 A allele (AT) and 26 noncarriers (TT). Behavioral assessments up to 5 years after surgery were also conducted.RESULTS The AT group relative to the TT group had smaller BMI loss at 12–60 months after surgery and lower resting-state activity in posterior cingulate cortex following laparoscopic sleeve gastrectomy (group-by-time interaction effects). Meanwhile, the AT group relative to the TT group showed greater food cue responses in dorsolateral prefrontal cortex (DLPFC), dorsomedial prefrontal cortex (DMPFC), and insula (group effects). There were negative associations of weight loss with ghrelin and greater activation in DLPFC, DMPFC and insula in the AT but not the TT group.CONCLUSION These findings indicate that FTO variation is associated with the evolution of ghrelin signaling and brain function after bariatric surgery, which might hinder weight loss.TRIAL REGISTRATION Chinese Clinical Trial Registry Center, ChiCTR-OOB-15006346.FUNDING This work was supported by the National Natural Science Foundation of China (grant nos. 82172023, 82202252, 82302292); National Key R&D Program of China (no. 2022YFC3500603); Natural Science Basic Research Program of Shaanxi (grant nos. 2022JC-44, 2022JQ-622, 2023-JC-QN-0922, 2023-ZDLSF-07); Fundamental Research Funds for the Central Universities (grant nos. ZYTS23188, XJSJ23190, XJS221201, QTZX23093); and the Intramural Research Program of the National Institute on Alcoholism and Alcohol Abuse (grant no. Y1AA3009).

Authors

Guanya Li, Yang Hu, Wenchao Zhang, Jia Wang, Lijuan Sun, Juan Yu, Peter Manza, Nora D. Volkow, Gang Ji, Gene-Jack Wang, Yi Zhang

×

Abstract

Cantú syndrome is a multisystem disorder caused by gain-of-function (GOF) mutations in KCNJ8 and ABCC9, the genes encoding the pore-forming inward rectifier Kir6.1 and regulatory sulfonylurea receptor SUR2B subunits, respectively, of vascular ATP-sensitive K+ (KATP) channels. In this study, we investigated changes in the vascular endothelium in mice in which Cantú syndrome–associated Kcnj8 or Abcc9 mutations were knocked in to the endogenous loci. We found that endothelium-dependent dilation was impaired in small mesenteric arteries from Cantú mice. Loss of endothelium-dependent vasodilation led to increased vasoconstriction in response to intraluminal pressure or treatment with the adrenergic receptor agonist phenylephrine. We also found that either KATP GOF or acute activation of KATP channels with pinacidil increased the amplitude and frequency of wave-like Ca2+ events generated in the endothelium in response to the vasodilator agonist carbachol. Increased cytosolic Ca2+ signaling activity in arterial endothelial cells from Cantú mice was associated with elevated mitochondrial [Ca2+] and enhanced reactive oxygen species (ROS) and peroxynitrite levels. Scavenging intracellular or mitochondrial ROS restored endothelium-dependent vasodilation in the arteries of mice with KATP GOF mutations. We conclude that mitochondrial Ca2+ overload and ROS generation, which subsequently leads to nitric oxide consumption and peroxynitrite formation, cause endothelial dysfunction in mice with Cantú syndrome.

Authors

Elsayed Metwally, Alfredo Sanchez Solano, Boris Lavanderos, Evan Yamasaki, Pratish Thakore, Conor McClenaghan, Natalia Rios, Rafael Radi, Yumei Feng Earley, Colin G. Nichols, Scott Earley

×

Abstract

Mitochondrial trifunctional protein (TFP) deficiency is an inherited metabolic disorder leading to a block in long-chain fatty acid β-oxidation. Mutations in HADHA and HADHB, which encode the TFP α and β subunits, respectively, usually result in combined TFP deficiency. A single common mutation, HADHA c.1528G>C (p.E510Q), leads to isolated 3-hydroxyacyl-CoA dehydrogenase deficiency. TFP also catalyzes a step in the remodeling of cardiolipin (CL), a phospholipid critical to mitochondrial membrane stability and function. We explored the effect of mutations in TFP subunits on CL and other phospholipid content and composition and the consequences of these changes on mitochondrial bioenergetics in patient-derived fibroblasts. Abnormalities in these parameters varied extensively among different fibroblasts, and some cells were able to maintain basal oxygen consumption rates similar to controls. Although CL reduction was universally identified, a simultaneous increase in monolysocardiolipins was discrepant among cells. A similar profile was seen in liver mitochondria isolates from a TFP-deficient mouse model. Response to new potential drugs targeting CL metabolism might be dependent on patient genotype.

Authors

Eduardo Vieira Neto, Meicheng Wang, Austin J. Szuminsky, Lethicia Ferraro, Erik Koppes, Yudong Wang, Clinton Van’t Land, Al-Walid Mohsen, Geancarlo Zanatta, Areeg H. El-Gharbawy, Tamil S. Anthonymuthu, Yulia Y. Tyurina, Vladimir A. Tyurin, Valerian Kagan, Hülya Bayır, Jerry Vockley

×

Abstract

Elevated numbers of antibody-secreting cells (ASCs) and anti–double-stranded DNA (anti-dsDNA) antibodies are found in nasal polyp (NP) tissue. The presence of anti-dsDNA IgG in tissue prospectively predicts recurrent NP but the characteristics of the source ASCs are unknown. Here, we investigated whether NP B cells expressing the extrafollicular marker EBI2 have increased propensity for autoantibody production and evaluated the molecular characteristics of NP ASCs. NPs showed increased frequencies of anti-dsDNA IgG and total IgG ASCs compared with tonsils, with more pronounced differences among EBI2+ cells. In NPs, EBI2+ cells were frequently double negative (IgD–CD27–) and ASCs. Single-cell RNA-Seq analysis of tonsils and NPs revealed substantial differences in B lineage composition, including differences in percentages of ASCs, germinal centers, proliferative cells, and non-ASCs. NPs exhibited higher expression of specific isotypes (IGHE, IGHA1, IGHA2, and IGHG4) and mature plasma genes, including SDC1 and XBP1, than tonsils. Gene Ontology biological processes indicated upregulated NF-κB and downregulated apoptosis pathways in NP ASCs. Together, these data indicate that NP EBI2+ ASCs secret increased total and anti-dsDNA IgG compared with those from tonsils and had molecular features of mature plasma cell differentiation.

Authors

Junqin Bai, Atsushi Kato, Kathryn E. Hulse, Joshua B. Wechsler, Vikram Gujar, Julie A. Poposki, Regan Harmon, Naruhito Iwasaki, Bao-Feng Wang, Julia H. Huang, Whitney W. Stevens, David B. Conley, Kevin C. Welch, Robert C. Kern, Anju T. Peters, Stephanie C. Eisenbarth, Robert P. Schleimer, Bruce K. Tan

×

Abstract

Antigen presentation by major histocompatibility complex class I (MHC-I) is crucial for T cell–mediated killing, and aberrant surface MHC-I expression is tightly associated with immune evasion. To address MHC-I downregulation, we conducted a high-throughput flow cytometry screen, identifying bleomycin (BLM) as a potent inducer of cell surface MHC-I expression. BLM-induced MHC-I augmentation rendered tumor cells more susceptible to T cells in coculture assays and enhanced antitumor responses in an adoptive cellular transfer mouse model. Mechanistically, BLM remodeled the tumor immune microenvironment, inducing MHC-I expression in a manner dependent on ataxia-telangiectasia mutated/ataxia telangiectasia and Rad3-related–NF-κB. Furthermore, BLM improved T cell–dependent immunotherapeutic approaches, including bispecific antibody therapy, immune checkpoint therapy, and autologous tumor-infiltrating lymphocyte therapy. Importantly, low-dose BLM treatment in mouse models amplified the antitumor effect of immunotherapy without detectable pulmonary toxicity. In summary, our findings repurpose BLM as a potential inducer of MHC-I, enhancing its expression to improve the efficacy of T cell–based immunotherapy.

Authors

Qian Yu, Yu Dong, Xiaobo Wang, Chenxuan Su, Runkai Zhang, Wei Xu, Shuai Jiang, Yongjun Dang, Wei Jiang

×

Abstract

Lung endothelium plays a pivotal role in the orchestration of inflammatory responses to acute pulmonary insults. Mammalian sterile 20-like kinase 1 (Mst1) is a serine/threonine kinase that has been shown to play an important role in the regulation of apoptosis, stress responses, and organ growth. This study investigated the role of Mst1 in lung endothelial activation and acute lung injury (ALI). We found that Mst1 was significantly activated in inflamed lung endothelial cells (ECs) and mouse lung tissues. Overexpression of Mst1 promoted nuclear factor κ-B (NF-κB) activation through promoting JNK and p38 activation in lung ECs. Inhibition of Mst1 by either its dominant negative form (DN-Mst1) or its pharmacological inhibitor markedly attenuated cytokine-induced expression of cytokines, chemokines, and adhesion molecules in lung ECs. Importantly, in a mouse model of lipopolysaccharide-induced (LPS-induced) ALI, both deletion of Mst1 in lung endothelium and treatment of WT mice with a pharmacological Mst1 inhibitor significantly protected mice from LPS-induced ALI. Together, our findings identified Mst1 kinase as a key regulator in controlling lung EC activation and suggest that therapeutic strategies aimed at inhibiting Mst1 activation might be effective in the prevention and treatment of inflammatory lung diseases.

Authors

Zhi-Fu Guo, Nopprarat Tongmuang, Chao Li, Chen Zhang, Louis Hu, Daniel Capreri, Mei-Xing Zuo, Ross Summer, Jianxin Sun

×

Abstract

Congenital myasthenic syndrome-22 (CMS22, OMIM 616224) is a rare genetic disorder caused by deleterious genetic variation in the prolyl endopeptidase-like (PREPL) gene. Previous reports have described patients with deletions and nonsense variants in PREPL, but nothing is known about the effect of missense variants in the pathology of CMS22. In this study, we have functionally characterized missense variants in PREPL from 3 patients with CMS22, all with hallmark phenotypes. Biochemical evaluation revealed that these missense variants do not impair hydrolase activity, thereby challenging the conventional diagnostic criteria and disease mechanism. Structural analysis showed that the variants affect regions most likely involved in intraprotein or protein-protein interactions. Indeed, binding to a selected group of known interactors was differentially reduced for the 3 variants. The importance of nonhydrolytic functions of PREPL was investigated in catalytically inactive PREPL p.Ser559Ala cell lines, which showed that hydrolytic activity of PREPL is needed for normal mitochondrial function but not for regulating AP1-mediated transport in the transgolgi network. In conclusion, these studies showed that CMS22 can be caused not only by deletion and truncation of PREPL but also by missense variants that do not necessarily result in a loss of hydrolytic activity of PREPL.

Authors

Yenthe Monnens, Anastasia Theodoropoulou, Karen Rosier, Kritika Bhalla, Alexia Mahy, Roeland Vanhoutte, Sandra Meulemans, Edoardo Cavani, Aleksandar Antanasijevic, Irma Lemmens, Jennifer A. Lee, Catherine J. Spellicy, Richard J. Schroer, Ricardo A. Maselli, Chamindra G. Laverty, Patrizia Agostinis, David J. Pagliarini, Steven Verhelst, Maria J. Marcaida, Anne Rochtus, Matteo Dal Peraro, John W.M. Creemers

×

Abstract

Emerging studies suggest that various parental exposures affect offspring cardiovascular health, yet the specific mechanisms, particularly the influence of paternal cardiovascular disease (CVD) risk factors on offspring cardiovascular health, remain elusive. The present study explores how paternal hypercholesterolemia affects offspring atherosclerosis development using the LDL receptor-deficient (LDLR–/–) mouse model. We found that paternal high-cholesterol diet feeding led to significantly increased atherosclerosis in F1 female, but not male, LDLR–/– offspring. Transcriptomic analysis highlighted that paternal hypercholesterolemia stimulated proatherogenic genes, including Ccn1 and Ccn2, in the intima of female offspring. Sperm small noncoding RNAs (sncRNAs), particularly transfer RNA–derived (tRNA-derived) small RNAs (tsRNAs) and rRNA-derived small RNAs (rsRNAs), contribute to the intergenerational transmission of paternally acquired metabolic phenotypes. Using a newly developed PANDORA-Seq method, we identified that high-cholesterol feeding elicited changes in sperm tsRNA/rsRNA profiles that were undetectable by traditional RNA-Seq, and these altered sperm sncRNAs were potentially key factors mediating paternal hypercholesterolemia-elicited atherogenesis in offspring. Interestingly, high-cholesterol feeding altered sncRNA biogenesis–related gene expression in the epididymis but not testis of LDLR–/– sires; this may have led to the modified sperm sncRNA landscape. Our results underscore the sex-specific intergenerational effect of paternal hypercholesterolemia on offspring cardiovascular health and contribute to the understanding of chronic disease etiology originating from parental exposures.

Authors

Rebecca Hernandez, Xiuchun Li, Junchao Shi, Tejasvi R. Dave, Tong Zhou, Qi Chen, Changcheng Zhou

×

Abstract

The goal of this study was to determine if transplantation of enteric neural stem cells (ENSCs) can rescue the enteric nervous system, restore gut motility, reduce colonic inflammation, and improve survival in the Ednrb-KO mouse model of Hirschsprung disease (HSCR). ENSCs were isolated from mouse intestine, expanded to form neurospheres, and microinjected into the colons of recipient Ednrb-KO mice. Transplanted ENSCs were identified in recipient colons as cell clusters in “neo-ganglia.” Immunohistochemical evaluation demonstrated extensive cell migration away from the sites of cell delivery and across the muscle layers. Electrical field stimulation and optogenetics showed significantly enhanced contractile activity of aganglionic colonic smooth muscle following ENSC transplantation and confirmed functional neuromuscular integration of the transplanted ENSC-derived neurons. ENSC injection also partially restored the colonic migrating motor complex. Histological examination revealed a significant reduction in inflammation in ENSC-transplanted aganglionic recipient colon compared with that of sham-operated mice. Interestingly, mice that received cell transplant also had prolonged survival compared with controls. This study demonstrates that ENSC transplantation can improve outcomes in HSCR by restoring gut motility and reducing the severity of Hirschsprung-associated enterocolitis, the leading cause of death in human HSCR.

Authors

Ahmed A. Rahman, Takahiro Ohkura, Sukhada Bhave, Weikang Pan, Kensuke Ohishi, Leah Ott, Christopher Han, Abigail Leavitt, Rhian Stavely, Alan J. Burns, Allan M. Goldstein, Ryo Hotta

×

Abstract

HIV-associated neurocognitive impairment (HIV-NCI) affects 15%–50% of people with HIV (PWH), despite viral suppression with antiretroviral therapy (ART). HIV neuropathogenesis is mediated, in part, by transmigration of infected CD14+CD16+ monocytes across the blood-brain barrier (BBB) into the central nervous system (CNS). In the CNS, CD14+CD16+ monocytes contribute to infection and activation of parenchymal cells, resulting in production of neurotoxic viral and host factors that cause neuronal damage. Mechanisms by which CD14+CD16+ monocytes contribute to HIV-NCI have not been characterized in a study population of PWH on ART without contribution from confounders that affect cognition (e.g., substance use, hepatitis C virus coinfection). We assessed cognitive function, PBMC transmigration across the BBB, and neuronal health markers in a well-defined cohort of 56 PWH on ART using stringent criteria to eliminate confounding factors. We demonstrated that PWH on ART with HIV-NCI have significantly increased transmigration of their CD14+CD16+ monocytes across the BBB compared with those with normal cognition. We showed that hypertension and diabetes may be effect modifiers on the association between CD14+CD16+ monocyte transmigration and cognition. This study underscored the persistent role of CD14+CD16+ monocytes in HIV-NCI, even in PWH with viral suppression, suggesting them as potential targets for therapeutic interventions.

Authors

Veronica Veksler, Rosiris Leon-Rivera, Lazar Fleysher, Jairo Gonzalez, Johnny A. Lopez, Leah H. Rubin, Susan Morgello, Joan W. Berman

×

Abstract

Primary ciliary dyskinesia (PCD) is a genetic condition that results in dysmotile cilia. The repercussions of cilia dysmotility and gene variants on the multiciliated cell remain poorly understood. We used single-cell RNA-Seq, proteomics, and advanced microscopy to compare primary culture epithelial cells from patients with PCD, their heterozygous mothers, and healthy individuals, and we induced pluripotent stem cells (iPScs) generated from a patient with PCD. Transcriptomic analysis revealed unique signatures in PCD airway cells compared with their mothers’ cells and the cells of healthy individuals. Gene expression in heterozygous mothers’ cells diverged from both control and PCD cells, marked by increased inflammatory and cellular stress signatures. Primary and iPS-derived PCD multiciliated cells had increased expression of glutathione-S-transferases GSTA2 and GSTA1, as well as NRF2 target genes, accompanied by elevated levels of reactive oxygen species (ROS). Immunogold labeling in human cilia and proteomic analysis of the ciliated organism Chlamydomonas reinhardtii demonstrated that GSTA2 localizes to motile cilia. Loss of human GSTA2 and C. reinhardtii GSTA resulted in slowed cilia motility, pointing to local cilia regulatory roles. Our findings identify cellular responses unique to PCD variants and independent of environmental stress and uncover a dedicated ciliary GSTA2 pathway essential for normal motility that may be a therapeutic target.

Authors

Jeffrey R. Koenitzer, Deepesh Kumar Gupta, Wang Kyaw Twan, Huihui Xu, Nicholas Hadas, Finn J. Hawkins, Mary Lou Beermann, Gervette M. Penny, Nathan T. Wamsley, Andrew Berical, Michael B. Major, Susan K. Dutcher, Steven L. Brody, Amjad Horani

×

Abstract

Thrombospondin-1 (TSP1) is a matricellular protein associated with the regulation of cell migration through direct binding interactions with integrin proteins and by associating with other receptors known to regulate integrin function, including CD47 and CD36. We previously demonstrated that deletion of an epithelial TSP1 receptor, CD47, attenuates epithelial wound repair following intestinal mucosal injury. However, the mechanisms by which TSP1 contributes to intestinal mucosal repair remain poorly understood. Our results show upregulated TSP1 expression in colonic mucosal wounds and impaired intestinal mucosal wound healing in vivo upon intestinal epithelium–specific loss of TSP1 (VillinCre/+ Thbs1fl/fl or Thbs1ΔIEC mice). We report that exposure to exogenous TSP1 enhanced migration of intestinal epithelial cells in a CD47- and TGF-β1–dependent manner and that deficiency of TSP1 in primary murine colonic epithelial cells resulted in impaired wound healing. Mechanistically, TSP1 modulated epithelial actin cytoskeletal dynamics through suppression of RhoA activity, activation of Rho family small GTPase (Rac1), and changes in filamentous-actin bundling. Overall, TSP1 was found to regulate intestinal mucosal wound healing via CD47 and TGF-β1, coordinate integrin-containing cell–matrix adhesion dynamics, and remodel the actin cytoskeleton in migrating epithelial cells to enhance cell motility and promote wound repair.

Authors

Zachary S. Wilson, Arturo Raya-Sandino, Jael Miranda, Shuling Fan, Jennifer C. Brazil, Miguel Quiros, Vicky Garcia-Hernandez, Qingyang Liu, Chang H. Kim, Kurt D. Hankenson, Asma Nusrat, Charles A. Parkos

×

Abstract

The role of different biological variables including biological sex, age, and sex hormones in Human immunodeficiency virus (HIV) cure approaches is not well understood. The γc-cytokine IL-15 is a clinically relevant cytokine that promotes immune activation and mediates HIV reactivation from latency. In this work, we examined the interplay that biological sex, age, and sex hormones 17β-estradiol, progesterone, and testosterone may have on the biological activity of IL-15. We found that IL-15–mediated CD4+ T cell activation was higher in female donors than in male donors. This difference was abrogated at high 17β-estradiol concentration. Additionally, there was a positive correlation between age and both IL-15–mediated CD8+ T cell activation and IFN-γ production. In a primary cell model of latency, biological sex, age, or sex hormones did not influence the ability of IL-15 to reactivate latent HIV. Finally, 17β-estradiol did not consistently affect reactivation of translation-competent reservoirs in CD4+ T cells from people living with HIV who are antiretroviral therapy (ART) suppressed. Our study has found that biological sex and age, but not sex hormones, may influence some of the biological activities of IL-15. Understanding how different biological variables may affect HIV cure therapies will help us evaluate current and future clinical trials aimed toward HIV cure in diverse populations.

Authors

Carissa S. Holmberg, Callie Levinger, Marie Abongwa, Cristina Ceriani, Nancie M. Archin, Marc Siegel, Mimi Ghosh, Alberto Bosque

×

Abstract

The clinical therapy for treating acute myocardial infarction is primary percutaneous coronary intervention (PPCI). PPCI is effective at reperfusing the heart; however, the rapid reintroduction of blood can cause ischemia-reperfusion (I/R). Reperfusion injury is responsible for up to half of the total myocardial damage, but there are no pharmacological interventions to reduce I/R. We previously demonstrated that inhibiting monocarboxylate transporter 4 (MCT4) and redirecting pyruvate toward oxidation can blunt hypertrophy. We hypothesized that this pathway might be important during I/R. Here, we establish that the pyruvate-lactate axis plays a role in determining myocardial salvage following injury. After I/R, the mitochondrial pyruvate carrier (MPC), required for pyruvate oxidation, is upregulated in the surviving myocardium. In cardiomyocytes lacking the MPC, there was increased cell death and less salvage after I/R, which was associated with an upregulation of MCT4. To determine the importance of pyruvate oxidation, we inhibited MCT4 with a small-molecule drug (VB124) at reperfusion. This strategy normalized reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨ), and Ca2+, increased pyruvate entry to the TCA cycle, increased oxygen consumption, and improved myocardial salvage and functional outcomes following I/R. Our data suggest normalizing pyruvate-lactate metabolism by inhibiting MCT4 is a promising therapy to mitigate I/R injury.

Authors

Joseph R. Visker, Ahmad A. Cluntun, Jesse N. Velasco-Silva, David R. Eberhardt, Luis Cedeño-Rosario, Thirupura S. Shankar, Rana Hamouche, Jing Ling, Hyoin Kwak, J. Yanni Hillas, Ian Aist, Eleni Tseliou, Sutip Navankasattusas, Dipayan Chaudhuri, Gregory S. Ducker, Stavros G. Drakos, Jared Rutter

×
Corrigendum

In-Press Preview - More

Abstract

Pulmonary veno-occlusive disease (PVOD) is a rare but severe form of pulmonary hypertension characterized by the obstruction of pulmonary arteries and veins, causing increased pulmonary artery pressure and leading to right ventricular (RV) heart failure. PVOD is often resistant to conventional pulmonary arterial hypertension (PAH) treatments and has a poor prognosis, with a median survival time of 2 to 3 years after diagnosis. We previously showed that the administration of a chemotherapy agent mitomycin C (MMC) in rats mediates PVOD through the activation of the eukaryotic initiation factor 2 (eIF2) kinase protein kinase R (PKR) and the integrated stress response (ISR), resulting in the impairment of vascular endothelial junctional structure and barrier function. Here, we demonstrate that aged rats over one year exhibit more severe vascular remodeling and RV hypertrophy than young adult rats following MMC treatment. This is attributed to an age-associated elevation of basal ISR activity and depletion of protein phosphatase 1, leading to prolonged eIF2 phosphorylation and sustained ISR activation. Pharmacological blockade of PKR or ISR mitigates PVOD phenotypes in both age groups, suggesting that targeting the PKR-ISR axis could be a potential therapeutic strategy for PVOD.

Authors

Amit Prabhakar, Meetu Wadhwa, Rahul Kumar, Prajakta Ghatpande, Aneta Gandjeva, Rubin M. Tuder, Brian B. Graham, Giorgio Lagna, Akiko Hata

×

Abstract

Spinal muscular atrophy (SMA) is a recessive, developmental disorder caused by the genetic loss or mutation of the gene SMN1 (Survival of Motor Neuron 1). SMA is characterized by neuromuscular symptoms and muscle weakness. Several years ago, SMA treatment underwent a radical transformation, with the approval of three different SMN-dependent disease modifying therapies. This includes two SMN2 splicing therapies - Risdiplam and Nusinersen. One main challenge for Type II SMA patients treated with these drugs is ongoing muscle fatigue, limited mobility, and other skeletal problems. To date, few molecular studies have been conducted on SMA-patient derived tissues after treatment, limiting our understanding of what targets remain after the principal spinal cord targeted therapies are applied. Therefore, we collected paravertebral muscle from eight Type II patients undergoing spinal surgery for scoliosis and seven controls. We used RNA-sequencing to characterize their transcriptional profiles and correlate these with muscle histology. Despite the limited cohort size and heterogeneity, we observed a consistent loss of oxidative phosphorylation machinery of the mitochondria, a decrease in mitochondrial DNA copy number, and a correlation between signals of cellular stress, denervation and increased fibrosis. This work provides new putative targets for combination therapies for Type II SMA.

Authors

Fiorella Grandi, Stéphanie Astord, Sonia Pezet, Elèna Gidaja, Sabrina Mazzucchi, Maud Chapart, Stéphane Vasseur, Kamel Mamchaoui, Piera Smeriglio

×

Abstract

Despite advances in sequencing technologies, a molecular diagnosis remains elusive in many Mendelian disease patients. Current short-read clinical sequencing approaches cannot provide chromosomal phase information or epigenetic information without further sample processing, which is not routinely done and can result in an incomplete molecular diagnosis in patients. The ability to provide phased genetic and epigenetic information from a single sequencing run would improve the diagnostic rate of Mendelian conditions. Here we describe Targeted Long-read Sequencing of Mendelian Disease genes (TaLon-SeqMD) using a real-time adaptive sequencing approach. Optimization of bioinformatic targeting enabled selective enrichment of multiple disease-causing regions of the human genome. Haplotype-resolved variant calling and simultaneous resolution of epigenetic base modification could be achieved in a single sequencing run. The TaLon-SeqMD approach was validated in a cohort of 18 subjects with previous genetic testing targeting 373 inherited retinal disease (IRD) genes, yielding the complete molecular diagnosis in each case. This approach was then applied in two IRD cases with inconclusive testing, which uncovered non-coding and structural variants that were difficult to characterize by standard short-read sequencing. Overall, these results demonstrate TaLon-SeqMD as an approach to provide rapid phased-variant calling to provide the molecular basis of Mendelian diseases.

Authors

Kenji Nakamichi, Jennifer Huey, Riccardo Sangermano, Emily M. Place, Kinga M. Bujakowska, Molly Marra, Lesley A. Everett, Paul Yang, Jennifer R. Chao, Russell N. Van Gelder, Debarshi Mustafi

×

Abstract

Epstein Barr virus (EBV) contributes to around 2% of all tumors worldwide. Simultaneously, more than 90% of healthy human adults persistently carry EBV without clinical symptoms. In most EBV carriers it is thought that virus-induced tumorigenesis is prevented by cell-mediated immunity. Specifically, memory CD8+ T cells recognize EBV-infected cells during latent and lytic infection. Using a symptomatic primary infection model, similar to infectious mononucleosis (IM), we found EBV-induced CD8+ tissue-resident memory T cells (TRMs) in mice with a humanized immune system. These human TRMs were preferentially established after intranasal EBV infection in nasal-associated lymphoid tissues (NALT), equivalent to tonsils, the primary site of EBV infection in humans. They expressed canonical TRM markers, including CD69, CD103, and BLIMP-1, as well as Granzyme B, CD107a and CCL5. Despite cytotoxic activity and cytokine production ex vivo, these TRMs demonstrated reduced CD27 expression and proliferation and failed to control EBV viral loads in the NALT during infection although effector memory T cells (TEMs) controlled viral titers in spleen and blood. Overall, TRMs are established in mucosal lymphoid tissues by EBV infection, but primarily systemic CD8+ T cell expansion seems to control viral loads in the context of IM-like infection.

Authors

Daniel Kirchmeier, Yun Deng, Lisa Rieble, Michelle Böni, Fabienne Läderach, Patrick Schuhmachers, Alma Delia Valencia-Camargo, Anita Murer, Nicole Caduff, Bithi Chatterjee, Obinna Chijioke, Kyra Zens, Christian Münz

×

Abstract

Immune cell mediated inflammation is important in normal tissue regeneration but can be pathologic in diabetic wounds. Limited literature exists on the role of CD4+T cells in normal or diabetic wound repair, however, the imbalance of CD4+TH17/Treg cells has been found to promote inflammation in other diabetic tissues. Here, using human tissue and murine transgenic models, we identified that the histone methyltransferase MLL1 directly regulates the TH17 transcription factor RORγ via an H3K4me3 mechanism and increases expression of Notch receptors and downstream Notch signaling. Further, we found that Notch receptor signaling regulates CD4+TH cell differentiation and is critical for normal wound repair, and loss of upstream Notch pathway mediators or receptors in CD4+T cells resulted in the loss of CD4+TH cell differentiation in wounds. In diabetes, MLL1 and Notch-receptor signaling were upregulated in wound CD4+TH cells, driving CD4+ T cells towards the TH17 cell phenotype. Treatment of diabetic wound CD4T cells with a small molecule inhibitor of MLL1 (MI-2) yielded a significant reduction in CD4+TH17 cells and IL17A. This is the first study to identify the MLL1-mediated mechanisms responsible for regulating the TH17/Treg balance in normal and diabetic wounds and define the complex role of Notch signaling in CD4+T cells in wounds, where increased or decreased Notch signaling both result in pathologic wound repair. Therapeutic targeting of MLL1 in diabetic CD4+TH cells may decrease pathologic inflammation through regulation of CD4+T cell differentiation.

Authors

William J. Melvin, Tyler M. Bauer, Kevin D. Magnum, Christopher O. Audu, James Shadiow, Emily Barrett, Amrita Joshi, Jadie Y. Moon, Rachel Bogel, Purba Mazumder, Sonya J. Wolf, Steven Kunkel, Johann E. Gudjonsson, Frank M. Davis, Katherine A. Gallagher

×