Latest issue: March 26, 2020

In the issue

Abstract

BACKGROUND Salt-sensitive hypertension is often accompanied by insulin resistance in obese individuals, but the underlying mechanisms are obscure. Microvascular function is known to affect both salt sensitivity of blood pressure and metabolic insulin sensitivity. We hypothesized that excessive salt intake increases blood pressure and decreases insulin-mediated glucose disposal, at least in part by impairing insulin-mediated muscle microvascular recruitment (IMMR).METHODS In 20 lean and 20 abdominally obese individuals, we assessed mean arterial pressure (MAP; 24-hour ambulatory blood pressure measurements), insulin-mediated whole-body glucose disposal (M/I value; hyperinsulinemic-euglycemic clamp technique), IMMR (contrast-enhanced ultrasound), osmolyte and water balance, and excretion of mineralocorticoids, glucocorticoids, and amino and organic acids after a low- and high-salt diet during 7 days in a randomized, double-blind, crossover design.RESULTS On a low-, as compared with a high-salt, intake, MAP was lower, M/I value was lower, and IMMR was greater in both lean and abdominally obese individuals. In addition, natural logarithm IMMR was inversely associated with MAP in lean participants on a low-salt diet only. On a high-salt diet, free water clearance decreased, and excretion of glucocorticoids and of amino acids involved in the urea cycle increased.CONCLUSION Our findings imply that hemodynamic and metabolic changes resulting from alterations in salt intake are not necessarily associated. Moreover, they are consistent with the concept that a high-salt intake increases muscle glucose uptake as a response to high salt–induced, glucocorticoid-driven muscle catabolism to stimulate urea production and thereby renal water conservation.TRIAL REGISTRATION ClinicalTrials.gov, NCT02068781.

Authors

Monica T.J. Schütten, Yvo H.A.M. Kusters, Alfons J.H.M. Houben, Hanneke E. Niessen, Jos op ’t Roodt, Jean L.J.M. Scheijen, Marjo P. van de Waardenburg, Casper G. Schalkwijk, Peter W. de Leeuw, Coen D.A. Stehouwer

×

Abstract

Plasma viral load (VL) and CD4+ T cell count are widely used as biomarkers of HIV type 1 (HIV-1) replication, pathogenesis, and response to antiretroviral therapy (ART). However, the clinical potential of cell-associated (CA) HIV-1 molecular markers is much less understood. Here, we measured CA HIV-1 RNA and DNA in HIV-infected individuals treated with temporary ART initiated during primary HIV-1 infection. We demonstrate substantial predictive value of CA RNA for (a) the virological and immunological response to early ART, (b) the magnitude and time to viral rebound after discontinuation of early ART, and (c) disease progression in the absence of treatment. Remarkably, when adjusted for CA RNA, plasma VL no longer appeared as an independent predictor of any clinical endpoint in this cohort. The potential of CA RNA as an HIV-1 clinical marker, in particular as a predictive biomarker of virological control after stopping ART, should be explored in the context of HIV-1 curative interventions.

Authors

Alexander O. Pasternak, Marlous L. Grijsen, Ferdinand W. Wit, Margreet Bakker, Suzanne Jurriaans, Jan M. Prins, Ben Berkhout

×

Abstract

Detailed spatial information of low–molecular weight compound distribution, especially in the brain, is crucial to understanding their mechanism of actions. Imaging techniques that can directly visualize drugs in the brain at a high resolution will complement existing tools for drug distribution analysis. Here, we performed surface-enhanced Raman scattering (SERS) imaging using a bioorthogonal alkyne tag to visualize drugs directly in situ at a high resolution. Focusing on the selective serotonin reuptake inhibitor S-citalopram (S-Cit), which possesses a nitrile group, we substituted an alkynyl group into its structure and synthesized alkynylated S-Cit (Alk-S-Cit). The brain transitivity and the serotonin reuptake inhibition of Alk-S-Cit were not significantly different as compared with S-Cit. Alk-S-Cit was visualized in the coronal mouse brain section using SERS imaging with silver nanoparticles. Furthermore, SERS imaging combined with fluorescence microscopy allowed Alk-S-Cit to be visualized in the adjacent neuronal membranes, as well as in the brain vessel and parenchyma. Therefore, our multimodal imaging technique is an effective method for detecting low–molecular weight compounds in their original tissue environment and can potentially offer additional information regarding the precise spatial distribution of such drugs.

Authors

Masato Tanuma, Atsushi Kasai, Kazuki Bando, Naoyuki Kotoku, Kazuo Harada, Masafumi Minoshima, Kosuke Higashino, Atsushi Kimishima, Masayoshi Arai, Yukio Ago, Kaoru Seiriki, Kazuya Kikuchi, Satoshi Kawata, Katsumasa Fujita, Hitoshi Hashimoto

×

Abstract

Most prostate cancers depend on androgens for growth, and therefore, the mainstay treatment for advanced, recurrent, or metastatic prostate cancer is androgen deprivation therapy (ADT). A prominent side effect in patients receiving ADT is an obese frailty syndrome that includes fat gain and sarcopenia, defined as the loss of muscle function accompanied by reduced muscle mass or quality. Mice bearing Pten-deficient prostate cancers were examined to gain mechanistic insight into ADT-induced sarcopenic obesity. Castration induced fat gain as well as skeletal muscle mass and strength loss. Catabolic TGF-β family myokine protein levels were increased immediately prior to strength loss, and pan-myokine blockade using a soluble receptor (ActRIIB-Fc) completely reversed the castration-induced sarcopenia. The onset of castration-induced strength and muscle mass loss, as well as the increase in catabolic TGF-β family myokine protein levels, were coordinately accelerated in tumor-bearing mice relative to tumor-free mice. Notably, growth differentiation factor 11 (GDF11) increased in muscle after castration only in tumor-bearing mice, but not in tumor‑free mice. An early surge of GDF11 in prostate tumor tissue and in the circulation suggests that endocrine GDF11 signaling from tumor to muscle is a major driver of the accelerated ADT-induced sarcopenic phenotype. In tumor-bearing mice, GDF11 blockade largely prevented castration-induced strength loss but did not preserve muscle mass, which confirms a primary role for GDF11 in muscle function and suggests an additional role for the other catabolic myokines.

Authors

Chunliu Pan, Neha Jaiswal Agrawal, Yanni Zulia, Shalini Singh, Kai Sha, James L. Mohler, Kevin H. Eng, Joe V. Chakkalakal, John J. Krolewski, Kent L. Nastiuk

×

Abstract

To define cellular mechanisms underlying kidney function and failure, the KPMP analyzes biopsy tissue in a multicenter research network to build cell-level process maps of the kidney. This study aimed to establish a single cell RNA sequencing strategy to use cell-level transcriptional profiles from kidney biopsies in KPMP to define molecular subtypes in glomerular diseases. Using multiple sources of adult human kidney reference tissue samples, 22,268 single cell profiles passed KPMP quality control parameters. Unbiased clustering resulted in 31 distinct cell clusters that were linked to kidney and immune cell types using specific cell markers. Focusing on endothelial cell phenotypes, in silico and in situ hybridization methods assigned 3 discrete endothelial cell clusters to distinct renal vascular beds. Transcripts defining glomerular endothelial cells (GEC) were evaluated in biopsies from patients with 10 different glomerular diseases in the NEPTUNE and European Renal cDNA Bank (ERCB) cohort studies. Highest GEC scores were observed in patients with focal segmental glomerulosclerosis (FSGS). Molecular endothelial signatures suggested 2 distinct FSGS patient subgroups with α-2 macroglobulin (A2M) as a key downstream mediator of the endothelial cell phenotype. Finally, glomerular A2M transcript levels associated with lower proteinuria remission rates, linking endothelial function with long-term outcome in FSGS.

Authors

Rajasree Menon, Edgar A. Otto, Paul Hoover, Sean Eddy, Laura Mariani, Bradley Godfrey, Celine C. Berthier, Felix Eichinger, Lalita Subramanian, Jennifer Harder, Wenjun Ju, Viji Nair, Maria Larkina, Abhijit S. Naik, Jinghui Luo, Sanjay Jain, Rachel Sealfon, Olga Troyanskaya, Nir Hacohen, Jeffrey B. Hodgin, Matthias Kretzler, Kidney Precision Medicine Project (KPMP), Nephrotic Syndrome Study Network (NEPTUNE)

×

Abstract

We report that transgenic mice expressing measles virus nucleocapsid protein (MVNP) in osteoclasts (OCLs) (MVNP mice) are Paget’s disease (PD) models and that OCLs from patients with PD and MVNP mice express high levels of OCL-derived IGF1 (OCL-IGF1). To determine OCL-IGF1’s role in PD and normal bone remodeling, we generated WT and MVNP mice with targeted deletion of Igf1 in OCLs (Igf1-cKO) and MVNP/Igf1-cKO mice, and we assessed OCL-IGF1’s effects on bone mass, bone formation rate, EphB2/EphB4 expression on OCLs and osteoblasts (OBs), and pagetic bone lesions (PDLs). A total of 40% of MVNP mice, but no MVNP/Igf1-cKO mice, had PDLs. Bone volume/tissue volume (BV/TV) was decreased by 60% in lumbar vertebrae and femurs of MVNP/Igf1-cKO versus MVNP mice with PDLs and by 45% versus all MVNP mice tested. Bone formation rates were decreased 50% in Igf1-cKO and MVNP/Igf1-cKO mice versus WT and MVNP mice. MVNP mice had increased EphB2 and EphB4 levels in OCLs/OBs versus WT and MVNP/Igf1-cKO, with none detectable in OCLs/OBs of Igf1-cKO mice. Mechanistically, IL-6 induced the increased OCL-IGF1 in MVNP mice. These results suggest that high OCL-IGF1 levels increase bone formation and PDLs in PD by enhancing EphB2/EphB4 expression in vivo and suggest OCL-IGF1 may contribute to normal bone remodeling.

Authors

Kazuaki Miyagawa, Yasuhisa Ohata, Jesus Delgado-Calle, Jumpei Teramachi, Hua Zhou, David D. Dempster, Mark A. Subler, Jolene J. Windle, John M. Chirgwin, G. David Roodman, Noriyoshi Kurihara

×

Abstract

We hypothesized that skeletal muscle contraction produces a cellular stress signal, triggering adipose tissue lipolysis to sustain fuel availability during exercise. The present study aimed at identifying exercise-regulated myokines, also known as exerkines, able to promote lipolysis. Human primary myotubes from lean healthy volunteers were submitted to electrical pulse stimulation (EPS) to mimic either acute intense or chronic moderate exercise. Conditioned media (CM) experiments with human adipocytes were performed. CM and human plasma samples were analyzed using unbiased proteomic screening and/or ELISA. Real-time qPCR was performed in cultured myotubes and muscle biopsy samples. CM from both acute intense and chronic moderate exercise increased basal lipolysis in human adipocytes. Growth and differentiation factor 15 (GDF15) gene expression and secretion increased rapidly upon skeletal muscle contraction. GDF15 protein was upregulated in CM from both acute and chronic exercise–stimulated myotubes. We further showed that physiological concentrations of recombinant GDF15 protein increased lipolysis in human adipose tissue, while blocking GDF15 with a neutralizing antibody abrogated EPS CM-mediated lipolysis. We herein provide the first evidence to our knowledge that GDF15 is a potentially novel exerkine produced by skeletal muscle contraction and able to target human adipose tissue to promote lipolysis.

Authors

Claire Laurens, Anisha Parmar, Enda Murphy, Deborah Carper, Benjamin Lair, Pauline Maes, Julie Vion, Nathalie Boulet, Coralie Fontaine, Marie Marquès, Dominique Larrouy, Isabelle Harant, Claire Thalamas, Emilie Montastier, Sylvie Caspar-Bauguil, Virginie Bourlier, Geneviève Tavernier, Jean-Louis Grolleau, Anne Bouloumié, Dominique Langin, Nathalie Viguerie, Fabrice Bertile, Stéphane Blanc, Isabelle de Glisezinski, Donal O’Gorman, Cedric Moro

×

Abstract

BACKGROUND Seizure-induced inhibition of respiration plays a critical role in sudden unexpected death in epilepsy (SUDEP). However, the mechanisms underlying seizure-induced central apnea in pediatric epilepsy are unknown.METHODS We studied 8 pediatric patients with intractable epilepsy undergoing intracranial electroencephalography. We recorded respiration during seizures and during electrical stimulation mapping of 174 forebrain sites. A machine-learning algorithm was used to delineate brain regions that inhibit respiration.RESULTS In 2 patients, apnea coincided with seizure spread to the amygdala. Supporting a role for the amygdala in breathing inhibition in children, electrically stimulating the amygdala produced apnea in all 8 subjects (3–17 years old). These effects did not depend on epilepsy type and were relatively specific to the amygdala, as no other site affected breathing. Remarkably, patients were unaware that they had stopped breathing, and none reported dyspnea or arousal, findings critical for SUDEP. Finally, a machine-learning algorithm based on 45 stimulation sites and 210 stimulation trials identified a focal subregion in the human amygdala that consistently produced apnea. This site, which we refer to as the amygdala inhibition of respiration (AIR) site includes the medial subregion of the basal nuclei, cortical and medial nuclei, amygdala transition areas, and intercalated neurons.CONCLUSIONS A focal site in the amygdala inhibits respiration and induces apnea (AIR site) when electrically stimulated and during seizures in children with epilepsy. This site may prove valuable for determining those at greatest risk for SUDEP and as a therapeutic target.FUNDING National Institute of Neurological Disorders and Stroke — Congress of Neurological Surgeons, National Institute of General Medical Sciences, Roy J. Carver Charitable Trust.

Authors

Ariane E. Rhone, Christopher K. Kovach, Gail I.S. Harmata, Alyssa W. Sullivan, Daniel Tranel, Michael A. Ciliberto, Matthew A. Howard, George B. Richerson, Mitchell Steinschneider, John A. Wemmie, Brian J. Dlouhy

×

Abstract

Clonal hematopoiesis of indeterminate potential is prevalent in elderly individuals and associated with increased risks of all-cause mortality and cardiovascular disease. However, mouse models to study the dynamics of clonal hematopoiesis and its consequences on the cardiovascular system under homeostatic conditions are lacking. We developed a model of clonal hematopoiesis using adoptive transfer of unfractionated ten-eleven translocation 2–mutant (Tet2-mutant) bone marrow cells into nonirradiated mice. Consistent with age-related clonal hematopoiesis observed in humans, these mice displayed a progressive expansion of Tet2-deficient cells in multiple hematopoietic stem and progenitor cell fractions and blood cell lineages. The expansion of the Tet2-mutant fraction was also observed in bone marrow–derived CCR2+ myeloid cell populations within the heart, but there was a negligible impact on the yolk sac–derived CCR2– cardiac-resident macrophage population. Transcriptome profiling revealed an enhanced inflammatory signature in the donor-derived macrophages isolated from the heart. Mice receiving Tet2-deficient bone marrow cells spontaneously developed age-related cardiac dysfunction characterized by greater hypertrophy and fibrosis. Altogether, we show that Tet2-mediated hematopoiesis contributes to cardiac dysfunction in a nonconditioned setting that faithfully models human clonal hematopoiesis in unperturbed bone marrow. Our data support clinical findings that clonal hematopoiesis per se may contribute to diminished health span.

Authors

Ying Wang, Soichi Sano, Yoshimitsu Yura, Zhonghe Ke, Miho Sano, Kosei Oshima, Hayato Ogawa, Keita Horitani, Kyung-Duk Min, Emiri Miura-Yura, Anupreet Kour, Megan A. Evans, Maria A. Zuriaga, Karen K. Hirschi, Jose J. Fuster, Eric M. Pietras, Kenneth Walsh

×

Abstract

Immune checkpoint inhibitor (ICI) therapy has shown a significant benefit in the treatment of a variety of cancer entities. However, immune-related adverse events (irAEs) occur frequently and can lead to ICI treatment termination. MicroRNA-146a (miR-146a) has regulatory functions in immune cells. We observed that mice lacking miR-146a developed markedly more severe irAEs compared with WT mice in several irAE target organs in 2 different murine models. miR-146a–/– mice exhibited increased T cell activation and effector function upon ICI treatment. Moreover, neutrophil numbers in the spleen and the inflamed intestine were highly increased in ICI-treated miR-146a–/– mice. Therapeutic administration of a miR-146a mimic reduced irAE severity. To validate our preclinical findings in patients, we analyzed the effect of a SNP in the MIR146A gene on irAE severity in 167 patients treated with ICIs. We found that the SNP rs2910164 leading to reduced miR-146a expression was associated with an increased risk of developing severe irAEs, reduced progression-free survival, and increased neutrophil counts both at baseline and during ICI therapy. In conclusion, we characterized miR-146a as a molecular target for preventing ICI-mediated autoimmune dysregulation. Furthermore, we identified the MIR146A SNP rs2910164 as a biomarker to predict severe irAE development in ICI-treated patients.

Authors

Dominik Marschner, Martina Falk, Nora Rebeka Javorniczky, Kathrin Hanke-Müller, Justyna Rawluk, Annette Schmitt-Graeff, Federico Simonetta, Eileen Haring, Severin Dicks, Manching Ku, Sandra Duquesne, Konrad Aumann, David Rafei-Shamsabadi, Frank Meiss, Patrick Marschner, Melanie Boerries, Robert S. Negrin, Justus Duyster, Robert Zeiser, Natalie Köhler

×

Abstract

Sodium glucose cotransporter 2 (SGLT2) inhibitors are beneficial in halting diabetic kidney disease; however, the complete mechanisms have not yet been elucidated. The epithelial-mesenchymal transition (EMT) is associated with the suppression of sirtuin 3 (Sirt3) and aberrant glycolysis. Here, we hypothesized that the SGLT2 inhibitor empagliflozin restores normal kidney histology and function in association with the inhibition of aberrant glycolysis in diabetic kidneys. CD-1 mice with streptozotocin-induced diabetes displayed kidney fibrosis that was associated with the EMT at 4 months after diabetes induction. Empagliflozin intervention for 1 month restored all pathological changes; however, adjustment of blood glucose by insulin did not. Empagliflozin normalized the suppressed Sirt3 levels and aberrant glycolysis that was characterized by HIF-1α accumulation, hexokinase 2 induction, and pyruvate kinase isozyme M2 dimer formation in diabetic kidneys. Empagliflozin also suppressed the accumulation of glycolysis byproducts in diabetic kidneys. Another SGLT2 inhibitor, canagliflozin, demonstrated similar in vivo effects. High-glucose media induced the EMT, which was associated with Sirt3 suppression and aberrant glycolysis induction, in the HK2 proximal tubule cell line; SGLT2 knockdown suppressed the EMT, with restoration of all aberrant functions. SGLT2 suppression in tubular cells also inhibited the mesenchymal transition of neighboring endothelial cells. Taken together, SGLT2 inhibitors exhibit renoprotective potential that is partially dependent on the inhibition of glucose reabsorption and subsequent aberrant glycolysis in kidney tubules.

Authors

Jinpeng Li, Haijie Liu, Susumu Takagi, Kyoko Nitta, Munehiro Kitada, Swayam Prakash Srivastava, Yuta Takagaki, Keizo Kanasaki, Daisuke Koya

×

Abstract

Severe obesity (SO) affects about 6% of youth in the United States, augmenting the risks for cardiovascular disease and type 2 diabetes. Herein, we obtained paired omental adipose tissue (omVAT) and abdominal subcutaneous adipose tissue (SAT) biopsies from girls with SO undergoing sleeve gastrectomy (SG), to test whether differences in cellular and transcriptomic profiles between omVAT and SAT depots affect insulin sensitivity differently. Following weight loss, these analyses were repeated in a subgroup of subjects having a second SAT biopsy. We found that omVAT displayed smaller adipocytes compared with SAT, increased lipolysis through adipose triglyceride lipase phosphorylation, reduced inflammation, and increased expression of browning/beiging markers. Contrary to omVAT, SAT adipocyte diameter correlated with insulin resistance. Following SG, both weight and insulin sensitivity improved markedly in all subjects. SAT adipocytes’ size became smaller, showing increased lipolysis through perilipin 1 phosphorylation, decreased inflammation, and increased expression in browning/beiging markers. In summary, in adolescent girls with SO, both omVAT and SAT depots showed distinct cellular and transcriptomic profiles. Following weight loss, the SAT depot changed its cellular morphology and transcriptomic profiles into more favorable ones. These changes in the SAT depot may play a fundamental role in the resolution of insulin resistance.

Authors

Elena Tarabra, Jessica Nouws, Alla Vash-Margita, Geoffrey S. Nadzam, Rachel Goldberg, Michelle Van Name, Bridget Pierpont, James R. Knight, Gerald I. Shulman, Sonia Caprio

×

Abstract

Gut barrier dysfunction and gut-derived chronic inflammation play crucial roles in human aging. The gut brush border enzyme intestinal alkaline phosphatase (IAP) functions to inhibit inflammatory mediators and also appears to be an important positive regulator of gut barrier function and microbial homeostasis. We hypothesized that this enzyme could play a critical role in regulating the aging process. We tested the role of several IAP functions for prevention of age-dependent alterations in intestinal homeostasis by employing different loss-of-function and supplementation approaches. In mice, there is an age-related increase in gut permeability that is accompanied by increases in gut-derived portal venous and systemic inflammation. All these phenotypes were significantly more pronounced in IAP-deficient animals. Oral IAP supplementation significantly decreased age-related gut permeability and gut-derived systemic inflammation, resulted in less frailty, and extended lifespan. Furthermore, IAP supplementation was associated with preserving the homeostasis of gut microbiota during aging. These effects of IAP were also evident in a second model system, Drosophilae melanogaster. IAP appears to preserve intestinal homeostasis in aging by targeting crucial intestinal alterations, including gut barrier dysfunction, dysbiosis, and endotoxemia. Oral IAP supplementation may represent a novel therapy to counteract the chronic inflammatory state leading to frailty and age-related diseases in humans.

Authors

Florian Kühn, Fatemeh Adiliaghdam, Paul M. Cavallaro, Sulaiman R. Hamarneh, Amy Tsurumi, Raza S. Hoda, Alexander R. Munoz, Yashoda Dhole, Juan M. Ramirez, Enyu Liu, Robin Vasan, Yang Liu, Ehsan Samarbafzadeh, Rocio A. Nunez, Matthew Z. Farber, Vanita Chopra, Madhu S. Malo, Laurence G. Rahme, Richard A. Hodin

×

Abstract

Pressure overload (PO) cardiac hypertrophy and heart failure are associated with generalized insulin resistance and hyperinsulinemia, which may exacerbate left ventricular (LV) remodeling. While PO activates insulin receptor tyrosine kinase activity that is transduced by insulin receptor substrate 1 (IRS1), the present study tested the hypothesis that IRS1 and IRS2 have divergent effects on PO-induced LV remodeling. We therefore subjected mice with cardiomyocyte-restricted deficiency of IRS1 (CIRS1KO) or IRS2 (CIRS2KO) to PO induced by transverse aortic constriction (TAC). In WT mice, TAC-induced LV hypertrophy was associated with hyperactivation of IRS1 and Akt1, but not IRS2 and Akt2. CIRS1KO hearts were resistant to cardiac hypertrophy and heart failure in concert with attenuated Akt1 activation. In contrast, CIRS2KO hearts following TAC developed more severe LV dysfunction than WT controls, and this was prevented by haploinsufficiency of Akt1. Failing human hearts exhibited isoform-specific IRS1 and Akt1 activation, while IRS2 and Akt2 activation were unchanged. Kinomic profiling identified IRS1 as a potential regulator of cardioprotective protein kinase G–mediated signaling. In addition, gene expression profiling revealed that IRS1 signaling may promote a proinflammatory response following PO. Together, these data identify IRS1 and Akt1 as critical signaling nodes that mediate LV remodeling in both mice and humans.

Authors

Christian Riehle, Eric T. Weatherford, Adam R. Wende, Bharat P. Jaishy, Alec W. Seei, Nicholas S. McCarty, Monika Rech, Qian Shi, Gopireddy R. Reddy, William J. Kutschke, Karen Oliveira, Karla Maria Pires, Joshua C. Anderson, Nikolaos A. Diakos, Robert M. Weiss, Morris F. White, Stavros G. Drakos, Yang K. Xiang, E. Dale Abel

×

Abstract

Semaglutide, a glucagon-like peptide 1 (GLP-1) analog, induces weight loss, lowers glucose levels, and reduces cardiovascular risk in patients with diabetes. Mechanistic preclinical studies suggest weight loss is mediated through GLP-1 receptors (GLP-1Rs) in the brain. The findings presented here show that semaglutide modulated food preference, reduced food intake, and caused weight loss without decreasing energy expenditure. Semaglutide directly accessed the brainstem, septal nucleus, and hypothalamus but did not cross the blood-brain barrier; it interacted with the brain through the circumventricular organs and several select sites adjacent to the ventricles. Semaglutide induced central c-Fos activation in 10 brain areas, including hindbrain areas directly targeted by semaglutide, and secondary areas without direct GLP-1R interaction, such as the lateral parabrachial nucleus. Automated analysis of semaglutide access, c-Fos activity, GLP-1R distribution, and brain connectivity revealed that activation may involve meal termination controlled by neurons in the lateral parabrachial nucleus. Transcriptomic analysis of microdissected brain areas from semaglutide-treated rats showed upregulation of prolactin-releasing hormone and tyrosine hydroxylase in the area postrema. We suggest semaglutide lowers body weight by direct interaction with diverse GLP-1R populations and by directly and indirectly affecting the activity of neural pathways involved in food intake, reward, and energy expenditure.

Authors

Sanaz Gabery, Casper G. Salinas, Sarah J. Paulsen, Jonas Ahnfelt-Rønne, Tomas Alanentalo, Arian F. Baquero, Stephen T. Buckley, Erzsébet Farkas, Csaba Fekete, Klaus S. Frederiksen, Hans Christian C. Helms, Jacob F. Jeppesen, Linu M. John, Charles Pyke, Jane Nøhr, Tess T. Lu, Joseph Polex-Wolf, Vincent Prevot, Kirsten Raun, Lotte Simonsen, Gao Sun, Anett Szilvásy-Szabó, Hanni Willenbrock, Anna Secher, Lotte Bjerre Knudsen

×

Abstract

Systemic juvenile idiopathic arthritis (sJIA) begins with fever, rash, and high-grade systemic inflammation but commonly progresses to a persistent afebrile arthritis. The basis for this transition is unknown. To evaluate a role for lymphocyte polarization, we characterized T cells from patients with acute and chronic sJIA using flow cytometry, mass cytometry, and RNA sequencing. Acute and chronic sJIA each featured an expanded population of activated Tregs uncommon in healthy controls or in children with nonsystemic JIA. In acute sJIA, Tregs expressed IL-17A and a gene expression signature reflecting Th17 polarization. In chronic sJIA, the Th17 transcriptional signature was identified in T effector cells (Teffs), although expression of IL-17A at the protein level remained rare. Th17 polarization was abrogated in patients responding to IL-1 blockade. These findings identify evolving Th17 polarization in sJIA that begins in Tregs and progresses to Teffs, likely reflecting the impact of the cytokine milieu and consistent with a biphasic model of disease pathogenesis. The results support T cells as a potential treatment target in sJIA.

Authors

Lauren A. Henderson, Kacie J. Hoyt, Pui Y. Lee, Deepak A. Rao, A. Helena Jonsson, Jennifer P. Nguyen, Kayleigh Rutherford, Amélie M. Julé, Louis-Marie Charbonnier, Siobhan Case, Margaret H. Chang, Ezra M. Cohen, Fatma Dedeoglu, Robert C. Fuhlbrigge, Olha Halyabar, Melissa M. Hazen, Erin Janssen, Susan Kim, Jeffrey Lo, Mindy S. Lo, Esra Meidan, Mary Beth F. Son, Robert P. Sundel, Matthew L. Stoll, Chad Nusbaum, James A. Lederer, Talal A. Chatila, Peter A. Nigrovic

×

Abstract

Epstein-Barr Virus (EBV) is a ubiquitous virus linked to a variety of lymphoid and epithelial malignancies. In solid organ and hematopoietic stem cell transplant recipients, EBV is causally associated with posttransplant lymphoproliferative disorder (PTLD), a group of heterogeneous lymphoid diseases. EBV+ B cell lymphomas that develop in the context of PTLD are generally attributed to the immunosuppression required to promote graft survival, but little is known regarding the role of EBV genome diversity in the development of malignancy. We deep-sequenced the EBV genome from the peripheral blood of 18 solid organ transplant recipients, including 6 PTLD patients. Sequences from 6 EBV+ spontaneous lymphoblastoid B cell lines (SLCL) were similarly analyzed. The EBV genome from PTLD patients had a significantly greater number of variations than EBV from transplant recipients without PTLD. Importantly, there were 15 nonsynonymous variations, including 8 in the latent cycle gene EBNA3C that were associated with the development of PTLD. One of the nonsynonymous variations in EBNA3C is located within a previously defined T cell epitope. These findings suggest that variations in the EBV genome can contribute to the pathogenesis of PTLD.

Authors

Eden M. Maloney, Vincent A. Busque, Sin Ting Hui, Jiaying Toh, Marcelo Fernandez-Vina, Sheri M. Krams, Carlos O. Esquivel, Olivia M. Martinez

×

Abstract

Duchenne muscular dystrophy (DMD) is a chronic muscle disease characterized by poor myogenesis and replacement of muscle by extracellular matrix. Despite the shared genetic basis, severity of these deficits varies among patients. One source of these variations is the genetic modifier that leads to increased TGF-β activity. While anti–TGF-β therapies are being developed to target muscle fibrosis, their effect on the myogenic deficit is underexplored. Our analysis of in vivo myogenesis in mild (C57BL/10ScSn-mdx/J and C57BL/6J-mdxΔ52) and severe DBA/2J-mdx (D2-mdx) dystrophic models reveals no defects in developmental myogenesis in these mice. However, muscle damage at the onset of disease pathology, or by experimental injury, drives up TGF-β activity in the severe, but not in the mild, dystrophic models. Increased TGF-β activity is accompanied by increased accumulation of fibroadipogenic progenitors (FAPs) leading to fibro-calcification of muscle, together with failure of regenerative myogenesis. Inhibition of TGF-β signaling reduces muscle degeneration by blocking FAP accumulation without rescuing regenerative myogenesis. These findings provide in vivo evidence of early-stage deficit in regenerative myogenesis in D2-mdx mice and implicates TGF-β as a major component of a pathogenic positive feedback loop in this model, identifying this feedback loop as a therapeutic target.

Authors

Davi A.G. Mázala, James S. Novak, Marshall W. Hogarth, Marie Nearing, Prabhat Adusumalli, Christopher B. Tully, Nayab F. Habib, Heather Gordish-Dressman, Yi-Wen Chen, Jyoti K. Jaiswal, Terence A. Partridge

×

Abstract

Ischemic retinopathies are major causes of blindness worldwide. Local hypoxia created by loss of vascular supply leads to tissue injury and aberrant neovascularization in the retina. There is a great need for therapies that enhance revascularization of hypoxic neuroretinal tissue. To test the therapeutic feasibility of human-induced pluripotent stem cell–derived endothelial cells (hiPSC-ECs) for the treatment of ischemic retinopathies, we compared the angiogenic potential of hiPSC-ECs with mature human retinal endothelial cells (HRECs) in response to hypoxia. hiPSC-ECs formed more robust and complex vascular networks in collagen gels, whereas HRECs displayed minimal sprouting. The cells were further tested in the mouse oxygen-induced retinopathy (OIR) model. Retinas with hiPSC-EC injection showed colocalization with host vessels, whereas HRECs lacked such responses. hiPSC-ECs markedly reduced vaso-obliteration and pathological neovascularization. This beneficial effect of hiPSC-ECs was explained by the stromal cell–derived factor-1a (SDF1a)/CXCR4 axis; hiPSC-ECs exhibited much higher cell-surface expression of CXCR4 than HRECs and greater chemotaxis toward SDF1a-embedded 3D collagen hydrogel. Furthermore, treatment with neutralizing antibody to CXCR4 abolished recruitment of hiPSCs in the OIR model. These findings suggest superior angiogenic potential of hiPSC-ECs under hypoxia and underscore the importance of SDF1a/CXCR4 in the reparative function of hiPSC-ECs in ischemic diseases.

Authors

Hongkwan Cho, Bria L. Macklin, Ying-Yu Lin, Lingli Zhou, Michael J. Lai, Grace Lee, Sharon Gerecht, Elia J. Duh

×

Abstract

Lessons from history underline the importance of having direct lines of communication to and from public health officials, who must remain free from policital bias in times of crisis.

Authors

Kathleen L. Collins, Howard Markel, Andrew P. Lieberman

×

In-Press Preview - More

Abstract

Background: Prehospital plasma improves survival in severely injured trauma patients at risk for hemorrhagic shock and transported by air ambulance. We hypothesized that prehospital plasma would be associated with a reduction in immune imbalance and endothelial damage. Methods: We collected blood samples from 405 trauma patients enrolled in the Prehospital Air MedicalPlasma (PAMPer) trial upon hospital admission (0 hours) and 24 hours post admission across 6 U.S. sites(9 level-one trauma centers) with air medical transport services. We assayed samples for 21 inflammatory mediators and 7 markers of endothelial damage. We performed hierarchical clustering analysis (HCA) on principal components of these biomarkers of the immune response and endothelial injury. Regression analysis was used to control for known differences across study arms near the time of randomization and to assess any association with prehospital plasma administration. Results: HCA based on inflammatory mediator and endothelial damage marker concentrations distinguished two patient clusters, each with different injury patterns and outcomes. Patients in cluster A had greater injury severity and incidence of blunt trauma, traumatic brain injury, and mortality. Cluster A patients that received prehospital plasma as compared to standard care fluid resuscitation showed improved 30-day survival. Prehospital plasma did not improve survival in cluster B patients. In an adjusted analysis of themost seriously injured patients (ISS>30), plasma was associated with a an increase in circulating levels of adiponectin, IL-1β, IL-17A, IL-23, and IL-17E upon admission. One day following admission, prehospital plasmas was associated with a reduction in syndecan-1, TM, VEGF, IL-6, IP-10, MCP-1, and TNF-α, and an increase in IL-33, IL-21, IL-23, and IL-17E. Conclusion: This is the first human study to suggest that prehospital plasma may ameliorate the endotheliopathy of trauma and modulate an imbalance between pro-inflammatory (e.g. IL-6, TNF-α, and MCP-1) and protective (e.g. IL-33 and IL-17E) mediators. These effects of early plasma administration may contribute to improved survival in severely injured patients. Trial Registration: ClinicalTrials.gov NCT01818427 Funding: National Institutes of Health T32; U.S. Army Medical Research and Materiel Command W81XWH-12-2-0023; National Institutes of Health R35; National Institutes of Health 1R35GM119526-01; the Office of the Assistant Secretary of Defense for Health Affairs, through the Defense Medical Research and Development Program W81XWH-18-2-0051 and W81XWH-15-PRORP-OCRCA. Opinions, interpretations, conclusions and recommendations are those of the authors and not necessarily endorsed by the Department of Defense.

Authors

Danielle S. Gruen, Joshua B. Brown, Francis X. Guyette, Yoram Vodovotz, Par I. Johansson, Jakob Stensballe, Derek A. Barclay, Jinling Yin, Brian J. Daley, Richard S. Miller, Brian G. Harbrecht, Jeffrey A. Claridge, Herb A. Phelan, Matthew D. Neal, Brian Zuckerbraun, Timothy R. Billiar, Jason L. Sperry

×

Abstract

Glucokinase (GK) is highly expressed in the hypothalamic paraventricular nucleus (PVN); however its role is currently unknown. We found that glucokinase in the PVN acts as part of a glucose sensing mechanism within the PVN that regulates glucose homeostasis by controlling glucagon like peptide 1 (GLP-1) release. GLP-1 is released from enteroendocrine L-cells in response to oral glucose. Here we identify a brain mechanism critical to the release of GLP-1 in response to oral glucose. We show that increasing expression of GK or injection of glucose into the PVN increases GLP-1 release in response to oral glucose. On the contrary decreasing expression of GK or injection of non-metabolisable glucose into the PVN prevents GLP-1 release. Our results demonstrate that glucosensitive GK neurones in the PVN, are critical to the response to oral glucose and subsequent release of GLP-1.

Authors

Yue Ma, Risheka Ratnasabapathy, Ivan De Backer, Chioma Izzi-Engbeaya, Marie-Sophie Nguyen-Tu, Joyceline Cuenco, Ben Jones, Christopher D. John, Brian Y. H. Lam, Guy A. Rutter, Giles Yeo, Waljit Dhillo, James Gardiner

×

Abstract

Capicua (CIC), a member of the high mobility group (HMG)-box superfamily of transcriptional repressors, is frequently mutated in human oligodendrogliomas. But its function in brain development and tumorigenesis remains poorly understood. Here, we report that brain-specific deletion of Cic compromises developmental transition of neuroblast to immature neurons in mouse hippocampus and compromises normal neuronal differentiation. Combined gene expression and ChIP-seq analyses identified VGF as an important CIC-repressed transcriptional surrogate involved in neuronal lineage regulation. Aberrant VGF expression promotes neural progenitor cell proliferation by suppressing their differentiation. Mechanistically, we demonstrated that CIC represses VGF expression by tethering SIN3-HDAC to form a transcriptional corepressor complex. Mass spectrometry analysis of CIC-interacting proteins further identified BRG1 containing mSWI/SNF complex whose function is necessary for transcriptional repression by CIC. Together, this study uncovers a novel regulatory pathway of CIC-dependent neuronal differentiation and may implicate these molecular mechanisms in CIC-dependent brain tumorigenesis.

Authors

Inah Hwang, Heng Pan, Jun Yao, Olivier Elemento, Hongwu Zheng, Jihye Paik

×

Abstract

Hydrocephalus is characterized by abnormal accumulation of cerebrospinal fluid (CSF) in the ventricular cavity. The circulation of CSF in brain ventricles is controlled by the coordinated beating of motile cilia at the surface of ependymal cells (ECs). Here we show that MT1-MMP is highly expressed in olfactory bulb, rostral migratory stream, and ventricular system. Mice deficient for Membrane type-1-MMP (MT1-MMP) develop typical phenotypes observed in hydrocephalus such as dome-shaped skull, dilated ventricles, corpus callosum agenesis and astrocyte hypertrophy during the first two weeks of postnatal development. MT1-MMP deficient mice exhibits reduced and disorganized motile cilia with the impaired maturation of ECs, leading to abnormal CSF flow. Consistent with the defects in motile cilia morphogenesis, the expressions of pro-multiciliogenic genes are significantly decreased with a concomitant hyper-activation of Notch signaling in the wall of lateral ventricles in Mmp14-/- brains. Inhibition of Notch signaling by γ-secretase inhibitor restores ciliogenesis in Mmp14-/- ECs. Taken together, these data suggest that MT1-MMP is required for ciliogenesis and ependymal cell maturation by suppressing Notch signaling during early brain development. Our findings implicate that MT1-MMP is critical for early brain development and loss of MT1-MMP activity gives rise to hydrocephalus.

Authors

Zhixin Jiang, Jin Zhou, Xin Qin, Huiling Zheng, Bo Gao, Xin-guang Liu, Guoxiang Jin, Zhongjun Zhou

×

Abstract

Background: Specific features of the tumor microenvironment (TME) may provide useful prognostic information. We conducted a systematic investigation of the cellular composition and prognostic landscape of TME in gastric cancer. Methods: We evaluated the prognostic significance of major stromal and immune cells within TME. We proposed a composite TME-based risk score and tested it in six independent cohorts of 1,678 patients with gene expression or immunohistochemistry measurements. Further, we devised a new patient classification system based on TME characteristics. Results: We identified natural killer cells, fibroblasts, and endothelial cells as the most robust prognostic markers. The TME risk score combining these cell types was an independent prognostic factor when adjusted for clinicopathologic variables (gene expression: HR [95% CI]: 1.42 [1.22–1.66]; immunohistochemistry: 1.34 [1.24–1.45], P<0.0001). Higher TME risk scores consistently associated with worse survival within every pathologic stage (HR range: 2.18-3.11, P<0.02) and among patients who received surgery only. The TME risk score provided additional prognostic value beyond stage, and combination of the two improved prognostication accuracy (likelihood-ratio test χ2 = 235.4 vs. 187.6, P<0.0001; net reclassification index: 23%). The TME risk score can predict the survival benefit of adjuvant chemotherapy in non-metastatic patients (stage I-III) (interaction test P<0.02). Patients were divided into four TME subtypes that demonstrated distinct genetic and molecular patterns and complemented established genomic and molecular subtypes. Conclusion: We developed and validated a TME-based risk score as an independent prognostic and predictive factor, which has the potential to guide personalized management of gastric cancer.

Authors

Bailiang Li, Yuming Jiang, Guoxin Li, George A. Fisher, Ruijiang Li

×