Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Clinical Research and Public Health

  • 433 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 43
  • 44
  • Next →
Chromosomal instability in circulating tumor cells and cabazitaxel resistance in metastatic castration-resistant prostate cancer
Ossian Longoria, … , Ronald de Wit, Johann de Bono
Ossian Longoria, … , Ronald de Wit, Johann de Bono
Published November 4, 2025
Citation Information: JCI Insight. 2025. https://doi.org/10.1172/jci.insight.196505.
View: Text | PDF

Chromosomal instability in circulating tumor cells and cabazitaxel resistance in metastatic castration-resistant prostate cancer

  • Text
  • PDF
Abstract

BACKGROUND. Predictive biomarkers to guide chemotherapy decisions for metastatic castration resistant prostate cancer (mCRPC) are lacking. Preclinical studies indicate that circulating tumor cell (CTC) studies of chromosomal instability (CTC-CIN) can predict taxane resistance. METHODS. The CARD trial randomized subjects with mCRPC progressing within a year of treatment with an androgen receptor pathway inhibitor (ARPI; enzalutamide or abiraterone acetate plus prednisolone/prednisone) to cabazitaxel or the alternative ARPI. As a pre-planned biomarker analysis, CTCs were isolated from blood samples obtained at baseline; cycle two, and end of treatment. Associations between baseline CTC and CTC-CIN counts with imaging-based progression free survival (ibPFS), overall survival (OS), time to prostate-specific antigen (PSA) progression, RECIST 1.1 objective response rate (ORR), and PSA50 response rate (PRR) were assessed. RESULTS. High baseline CTC-CIN counts significantly associated with worse OS after adjustment for confounding variables (median OS, 15.3 vs 8.9 months; univariate HR, 2.16; 95% CI, 1.52 – 3.06; p < 0.001; multivariate HR, 1.56; 95% CI, 1.01 – 2.43; p = 0.047). Detectable CTC-CIN counts at baseline may predict a lack of ibPFS and OS benefit when comparing cabazitaxel to ARPI. CONCLUSION. This preplanned biomarker analysis of CARD confirms that CTC-CIN counts are a clinically useful prognostic and predictive biomarker of taxane resistance in mCRPC. Detectable CTC-CIN at baseline defines a patient subpopulation with unmet clinical needs in which alternative therapeutics should be tested. TRIAL REGISTRATION. CARD ClinicalTrials.gov number, NCT02485691. FUNDING. Funded by Sanofi and Epic Sciences.

Authors

Ossian Longoria, Jan Rekowski, Santosh Gupta, Nick Beije, Klaus Pantel, Eleni Efstathiou, Cora Sternberg, Daniel Castellano, Karim Fizazi, Bertrand Tombal, Adam Sharp, Oliver Sartor, Sandrine Macé, Christine Geffriaud-Ricouard, Richard Wenstrup, Ronald de Wit, Johann de Bono

×

Lower, more frequent cisplatin dosing minimizes hearing loss in head and neck cancer
Katharine A. Fernandez, … , Nicole C. Schmitt, Lisa L. Cunningham
Katharine A. Fernandez, … , Nicole C. Schmitt, Lisa L. Cunningham
Published October 22, 2025
Citation Information: JCI Insight. 2025;10(20):e196230. https://doi.org/10.1172/jci.insight.196230.
View: Text | PDF

Lower, more frequent cisplatin dosing minimizes hearing loss in head and neck cancer

  • Text
  • PDF
Abstract

BACKGROUND Cisplatin is often the cytotoxic drug of choice for chemoradiation therapy (CRT) for head and neck squamous cell carcinoma (HNSCC), but it can lead to irreversible hearing loss. There may be similar oncologic outcomes but different toxicity profiles depending on whether cisplatin is given at 75–100 mg/m2 every 3 weeks or 30–40 mg/mg2 weekly. This study compares cisplatin-induced hearing loss in patients with HNSCC receiving similar cumulative doses of cisplatin administered either on higher-dose or lower-dose treatment schedules.METHODS Using the Enhancing Cancer Hearing Outcomes (ECHO) dataset from 5 academic centers, we conducted a multicenter retrospective cohort study of adults (≥18 years) with HNSCC receiving cisplatin-based CRT. Participants were grouped by cisplatin dose schedule: every 3 weeks (≥75 mg/m²) or weekly (<75 mg/m²). Hearing loss was assessed using American Speech-Language-Hearing Association (ASHA) and Common Terminology Criteria for Adverse Events (CTCAE) v5.0 threshold shift criteria based on audiograms obtained ≤120 days before and after treatment. Risk differences and predictors of hearing loss were evaluated using χ2 analyses and multivariate regression. Kaplan-Meier curves assessed overall and disease-free survival.RESULTS Among 564 participants (1,127 ears), lower-dose weekly cisplatin was associated with significantly lower incidence of hearing loss (ASHA criteria: 57% vs. 82%; CTCAE criteria: 39% vs. 69%). CTCAE grade ≥2 hearing loss occurred in 18% of the weekly group versus 50% of the 3-week group. Multivariate analysis confirmed treatment schedule as an independent predictor of ototoxicity. Two-year survival outcomes did not differ between groups.CONCLUSIONS Weekly low-dose cisplatin significantly reduced the incidence and severity of hearing loss without compromising survival, supporting its broader use in CRT for HNSCC.

Authors

Katharine A. Fernandez, Abu S. Chowdhury, Amanda Bonczkowski, Paul D. Allen, Maura H. Campbell, David S. Lee, Charvi Malhotra, Brandi R. Page, Deborah A. Mulford, Candice Evita Ortiz, Peter L. Santa Maria, Peter Kullar, Saad A. Khan, Shawn D. Newlands, Nicole C. Schmitt, Lisa L. Cunningham

×

Effects of iron repletion on brain iron content, myelination, neural network activation, and cognition
Eldad A. Hod, … , Steven L. Spitalnik, Gary M. Brittenham
Eldad A. Hod, … , Steven L. Spitalnik, Gary M. Brittenham
Published October 21, 2025
Citation Information: JCI Insight. 2025. https://doi.org/10.1172/jci.insight.194442.
View: Text | PDF

Effects of iron repletion on brain iron content, myelination, neural network activation, and cognition

  • Text
  • PDF
Abstract

BACKGROUND. Blood donation increases the risk of iron deficiency, but its impact on brain iron, myelination, and neurocognition remains unclear. METHODS. This ancillary study enrolled 67 iron-deficient blood donors, 19–73 years of age, participating in a double-blind, randomized trial. After donating blood, positive and negative susceptibility were measured using Quantitative Susceptibility Mapping (QSM) magnetic resonance imaging (MRI) to estimate brain iron and myelin levels, respectively. Furthermore, neurocognitive function was evaluated using the NIH Toolbox, and neural network activation patterns were assessed during neurocognitive tasks using functional MRI (fMRI). Donors were randomized to intravenous iron repletion (one-gram iron) or placebo, and outcome measures repeated approximately four months later. RESULTS. Iron repletion corrected systemic iron deficiency and led to trends toward increased whole brain iron (P=0.04) and myelination (P=0.02), with no change in the placebo group. Although overall cognitive performance did not differ significantly between groups, iron-treated participants showed improved engagement of functional neural networks (e.g., memory pattern activation during speed tasks, P<0.001). Brain region-specific changes in iron and myelin correlated with cognitive performance: iron in the putamen correlated with working memory scores (P<0.01), and thalamic myelination correlated with attention and inhibitory control (P<0.01). CONCLUSION. Iron repletion in iron-deficient blood donors may influence brain iron, myelination, and function, with region-specific changes in iron and myelination linked to distinct cognitive domains. REGISTRATION. ClinicalTrials.gov NCT02990559. FUNDING. NIH grants HL133049, HL139489, and UL1TR001873.

Authors

Eldad A. Hod, Christian Habeck, Hangwei Zhuang, Alexey Dimov, Pascal Spincemaille, Debra Kessler, Zachary C. Bitan, Yona Feit, Daysha Fliginger, Elizabeth F. Stone, David Roh, Lisa Eisler, Stephen Dashnaw, Elise Caccappolo, Donald J. McMahon, Yaakov Stern, Yi Wang, Steven L. Spitalnik, Gary M. Brittenham

×

Icosapent ethyl–induced lipoprotein remodeling and its impact on cardiovascular disease risk markers in normolipidemic individuals
Lauri Äikäs, … , Martin Hermansson, Katariina Öörni
Lauri Äikäs, … , Martin Hermansson, Katariina Öörni
Published October 8, 2025
Citation Information: JCI Insight. 2025;10(19):e193637. https://doi.org/10.1172/jci.insight.193637.
View: Text | PDF

Icosapent ethyl–induced lipoprotein remodeling and its impact on cardiovascular disease risk markers in normolipidemic individuals

  • Text
  • PDF
Abstract

BACKGROUND Icosapent ethyl (IPE), an ethyl ester of eicosapentaenoic acid (EPA), reduces cardiovascular disease (CVD), but the mechanism remains elusive. We examined the effect of IPE supplementation on lipoprotein subclasses, lipidomes, and pro-atherogenic properties.METHODS Using 3 independent metabolomic platforms, we examined the effect of high-dose IPE supplementation for 28 days on fatty acid profiles, lipoprotein subclasses, lipidomes, and pro-atherogenic properties in normolipidemic volunteers (n = 38).RESULTS IPE supplementation increased lipoprotein EPA on average 4-fold within 7 days, returning to baseline after a 7-day washout. Notably, the incorporation displayed marked interindividual variance, negatively correlating with baseline levels. We identified persistent participant-specific lipoprotein fingerprints despite uniform IPE-induced lipidome remodeling across all lipoprotein classes. This remodeling resulted in reductions in saturated, monounsaturated, and n-6 polyunsaturated fatty acids, resulting in reduced clinical risk markers, including triglyceride, remnant cholesterol, and apolipoprotein B (apoB) levels and 10-year CVD risk score. Of the pro-atherogenic properties tested, IPE significantly reduced apoB lipoprotein binding to proteoglycans, which correlated with lower apoB particle concentration, cholesterol content, and specific lipid species in LDL, including phosphatidylcholine 38:3 previously associated with CVD.CONCLUSION These findings highlight IPE’s rapid, uniform remodeling of lipoproteins and reduced proteoglycan binding, likely contributing to previously observed CVD risk reduction. Persistent interindividual lipidome signatures underscore the potential for personalized therapeutic approaches in atherosclerotic CVD treatment.TRIAL REGISTRATION NCT04152291.FUNDING Jenny and Antti Wihuri Foundation, Research Council of Finland, Sigrid Jusélius Foundation, Finnish Foundation for Cardiovascular Research, Emil Aaltonen Foundation, Ida Montin Foundation, Novo Nordisk Foundation, Finnish Cultural Foundation, and Jane and Aatos Erkko Foundation.

Authors

Lauri Äikäs, Petri T. Kovanen, Martina B. Lorey, Reijo Laaksonen, Minna Holopainen, Hanna Ruhanen, Reijo Käkelä, Matti Jauhiainen, Martin Hermansson, Katariina Öörni

×

Characterization of anti-cancer therapy-induced microvascular dysfunction in breast cancer patients with proof-of-concept of targeted intervention
Janée D. Terwoord, … , David D. Gutterman, Andreas M. Beyer
Janée D. Terwoord, … , David D. Gutterman, Andreas M. Beyer
Published September 30, 2025
Citation Information: JCI Insight. 2025. https://doi.org/10.1172/jci.insight.194316.
View: Text | PDF

Characterization of anti-cancer therapy-induced microvascular dysfunction in breast cancer patients with proof-of-concept of targeted intervention

  • Text
  • PDF
Abstract

BACKGROUND. Cardiotoxicity is a major complication of anti-cancer therapy (CTx); yet, the impact of CTx on the human microcirculation is not well defined. This study evaluated the impact of CTx on microvascular function in breast cancer patients. METHODS. Endothelial function and angiogenic potential were assessed in arterioles and adipose biopsies obtained from breast cancer patients before, during, and after CTx (longitudinal and cross-sectional) and in healthy arterioles exposed to doxorubicin (Dox), trastuzumab (TZM), or paclitaxel (PTX) ex vivo. Conditioned media containing VEGF-B protein was used to test feasibility of a targeted intervention. RESULTS. Patients treated with Dox and/or TZM in vivo developed profound microvascular endothelial dysfunction that persisted for ≥9 months after treatment cessation. Angiogenic potential was reduced during CTx and recovered within one month after cessation. Gene expression related to angiogenesis and inflammation changed over the course of clinical treatment. Isolated adipose arterioles from healthy donors developed endothelial dysfunction when exposed to Dox or TZM ex vivo. In contrast, paclitaxel (PTX), which poses minimal cardiovascular risk, had no impact on vasomotor function. Ex vivo exposure to Dox or PTX suppressed angiogenic potential, whereas TZM had no effect. Treatment with VEGF-B protein preserved endothelial function in healthy arterioles exposed to Dox or TZM ex vivo. CONCLUSION. Breast cancer patients undergoing treatment with Dox and/or TZM develop prolonged microvascular endothelial dysfunction that is recapitulated in healthy arterioles exposed to Dox or TZM ex vivo. Targeted intervention with VEGF-B protects against direct Dox- or TZM-induced vascular toxicity in human arterioles ex vivo. FUNDING. National Institutes of Health grant R01 HL133029, HL173549 (AMB). National Institutes of Health grant T32 HL134643 (JDT, STH). American Heart Association grant SFRN847970 (AMB, DDG). We Care Foundation Grant (AMB, ALK). Medical College of Wisconsin Cardiovascular Center Pre-PPG Grant (AMB). Advancing a Healthier Wisconsin – Redox Biology Grant (AMB). Jenny and Antti Wihuri Foundation (RMK).

Authors

Janée D. Terwoord, Laura E. Norwood Toro, Shelby N. Hader, Stephen T. Hammond, Joseph C. Hockenberry, Jasmine Linn, Ibrahim Y. Vazirabad, Amanda L. Kong, Alison J. Kriegel, Ziqing Liu, Riikka M. Kivelä, Gillian Murtagh, David D. Gutterman, Andreas M. Beyer

×

Virologic characteristics of SARS-CoV-2 infection across evolving omicron subvariants
Julie Boucau, … , Mark J. Siedner, Amy K. Barczak
Julie Boucau, … , Mark J. Siedner, Amy K. Barczak
Published September 9, 2025
Citation Information: JCI Insight. 2025. https://doi.org/10.1172/jci.insight.192228.
View: Text | PDF

Virologic characteristics of SARS-CoV-2 infection across evolving omicron subvariants

  • Text
  • PDF
Abstract

Background. The SARS-CoV-2 virus has evolved subvariants since the emergence of the omicron variant in 2021. Whether these changes impact viral shedding and transmissibility is not known. Methods. POSITIVES is a prospective longitudinal cohort of individuals with mild SARS-CoV-2 infection. Ambulatory, immunocompetent participants who did not receive antivirals self-administered 6 anterior nasal swabs over 15 days. Samples were analyzed by qPCR to quantify viral RNA, semi-quantitative viral culture to detect shedding of replication-competent virus, and whole genome sequencing to classify subvariants. Our predictor of interest was omicron subvariant: BA.1x, BA.2x, BA.4/5x, XBB.x and JN.x. Outcomes included RNA levels and duration of shedding replication-competent virus. We additionally explored whether the duration and severity of symptom correlated with duration of viral shedding and whether symptoms are a valid marker for ending isolation. Results. The median peak nasal SARS-CoV-2 RNA (6.0-6.3 log10 RNA copies/mL), median days to peak RNA (4-5 days), median days to undetectable viral RNA (10-12 days) and median days to negative viral culture (3.5-6 days) was similar across omicron subvariants. Number and severity of symptoms were also similar. For all subvariants, a sizeable percentage (range 28.2-52.0%) shed replication-competent virus after fever resolution and improvement of symptoms. Conclusion. Despite ongoing viral evolution, key aspects of viral dynamics of SARS-CoV-2 infection, including the duration of shedding replication-competent virus, have not substantially changed across omicron subvariants. Replication-competent shedding of these subvariants is detected for a large proportion of people who meet criteria for ending isolation. Funding. This work was supported by the National Institutes of Health (NIH), the Massachusetts Consortium on Pathogen Readiness, and the Massachusetts General Hospital Department of Medicine.

Authors

Julie Boucau, Owen T. Glover, Caitlin Marino, Gregory E. Edelstein, Manish C. Choudhary, Yijia Li, Brooke M. Leeman, Zahra Reynolds, Karry Su, Dessie Tien, Chase B. Mandell, Eliza Passell, Andrew Alexandrescu, Emory Abar, Mamadou Barry, Dibya Ghimire, Tammy D. Vyas, Jatin M. Vyas, Jacob E. Lemieux, Jonathan Z. Li, Mark J. Siedner, Amy K. Barczak

×

Randomized trial of activated vitamin D for acute kidney injury prevention in critically ill patients
David E. Leaf, … , Edy Y. Kim, Sushrut S. Waikar
David E. Leaf, … , Edy Y. Kim, Sushrut S. Waikar
Published September 9, 2025
Citation Information: JCI Insight. 2025. https://doi.org/10.1172/jci.insight.193523.
View: Text | PDF

Randomized trial of activated vitamin D for acute kidney injury prevention in critically ill patients

  • Text
  • PDF
Abstract

BACKGROUND. Active vitamin D metabolites, including 25-hydroxyvitamin D (25D) and 1,25-dihydroxyvitamin D (1,25D), have potent immunomodulatory effects that attenuate acute kidney injury (AKI) in animal models. METHODS. We conducted a phase 2, randomized, double-blind, multiple-dose, 3-arm clinical trial comparing oral calcifediol (25D), calcitriol (1,25D), and placebo among 150 critically ill adult patients at high-risk of moderate-to-severe AKI. The primary endpoint was a hierarchical composite of death, kidney replacement therapy (KRT), and kidney injury (baseline-adjusted mean change in serum creatinine), each assessed within 7 days following enrollment using a rank-based procedure. Secondary endpoints included new or progressive AKI and a composite of KRT or death. Hypercalcemia was the key safety endpoint. We also performed RNA sequencing on circulating CD14+ monocytes collected immediately prior to randomization and two days later. RESULTS. The global rank score for the primary endpoint was similar among calcifediol (n = 51) vs. placebo (n = 49) treated patients (P = 0.85) and for calcitriol (n = 50) versus placebo-treated patients (P = 0.58). Secondary endpoints also occurred at similar rates across groups. Hypercalcemia occurred in one patient in the calcifediol group (1.7%), one patient in the calcitriol group (2.0%), and none of the patients in the placebo group. Compared to placebo, calcitriol upregulated more individual genes and pathways in circulating monocytes than did calcifediol, including pathways involving interferon (IFN)-α, IFN-γ, oxidative phosphorylation, DNA repair, and heme metabolism. CONCLUSION. Treatment with calcifediol or calcitriol in critically ill adults upregulated multiple genes and pathways involving immunomodulation, DNA repair, and heme metabolism, but did not attenuate AKI. TRIAL REGISTRATION. ClinicalTrials.gov (NCT02962102). FUNDING. NIH/NIDDK grant K23DK106448 (Leaf) and NIH/NHLBI grant R01HL16687 (Kim)

Authors

David E. Leaf, Tushar Shenoy, Kevin Zinchuk, Shruti Gupta, Julie-Alexia Dias, Daniel Sanchez-Almanzar, Adit A. Ginde, Humra Athar, Changde Cheng, Tomoyoshi Tamura, Edy Y. Kim, Sushrut S. Waikar

×

Pediatric T cell and B cell responses to SARS-CoV-2 infection
L. Benjamin Hills, … , Matthew S. Kelly, Shane Crotty
L. Benjamin Hills, … , Matthew S. Kelly, Shane Crotty
Published September 4, 2025
Citation Information: JCI Insight. 2025. https://doi.org/10.1172/jci.insight.196032.
View: Text | PDF

Pediatric T cell and B cell responses to SARS-CoV-2 infection

  • Text
  • PDF
Abstract

BACKGROUND. Understanding age-associated differences in acute and memory adaptive immunity to SARS-CoV-2 and how this contributes to more favorable outcomes in children is critically important. METHODS. We evaluated SARS-CoV-2–specific T cell, B cell, and antibody responses in 329 peripheral blood samples collected from non-hospitalized children, adolescents, and adults at three timepoints, including acute and memory timepoints. RESULTS. Most children produced robust CD4+ T cell responses during infection and developed memory CD4+ T cells; however, young children <4 years old often had undetectable CD4+ T cell responses compared to older children and adults. Young children also generated reduced frequencies of memory B cells; despite this, they mounted substantial and durable neutralizing antibody responses. CD4+ T cell responses in children were biased towards non-spike epitopes, especially in asymptomatic cases. Memory B cells in children were preferentially classical memory or, paradoxically, CXCR3+. CONCLUSION. These findings support the concept that the kinetics and composition of T and B cell responses shift across age groups and may be associated with milder COVID-19 outcomes in children.

Authors

L. Benjamin Hills, Numana Bhat, Jillian H. Hurst, Amber Myers, Thomas W. Burke, Micah T. McClain, Elizabeth Petzold, Alexandre T. Rotta, Nicholas A. Turner, Alba Grifoni, Daniela Weiskopf, Yvonne Dogariu, Genevieve G. Fouda, Sallie R. Permar, Alessandro Sette, Christopher W. Woods, Matthew S. Kelly, Shane Crotty

×

Glucagon-like peptide-1 receptor agonism improves lung cancer outcomes and tumor growth control
Akhil Goud Pachimatla, … , Joseph Barbi, Sai Yendamuri
Akhil Goud Pachimatla, … , Joseph Barbi, Sai Yendamuri
Published August 26, 2025
Citation Information: JCI Insight. 2025. https://doi.org/10.1172/jci.insight.195484.
View: Text | PDF

Glucagon-like peptide-1 receptor agonism improves lung cancer outcomes and tumor growth control

  • Text
  • PDF
Abstract

BACKGROUND. Emerging evidence indicates a reduced incidence of multiple cancers in users of Glucagon-like peptide-1 receptor agonists (GLP-1RAs), drugs widely used for glycemic control and weight reduction that modulate several key regulators of metabolism. We sought to examine their association with non-small cell lung cancer (NSCLC) outcomes in overweight and obese patients and gain mechanistic insights from mouse models. METHODS. Two clinical cohorts of overweight and obese NSCLC patients—one undergoing surgical resection (n=1,177, 71 GLP-1RA users) and another receiving immune checkpoint inhibitors (ICIs; n=300, 10 GLP-1RA users), were propensity score matched for relevant covariates and analyzed for clinical outcomes. RESULTS. GLP-1RA use was associated with increased recurrence-free survival in overweight and obese patients (HR=0.41 [95%CI=0.16-1.04], p=0.026) after lobectomy. GLP-1RA treatment reduced tumor burden in obese but not normal-weight mice and altered the frequency and phenotypes of leukocyte populations and gene expression patterns in obese tumors, crucial to cancer progression and anti-tumor immunity. Concurrent GLP-1RA and immunotherapy was associated with improved overall (0.41 [0.16-1.01], 0.027) and progression-free survival (HR=0.31, [0.10-0.94], 0.019) for patients with advanced NSCLC. CONCLUSIONS. In our cohort, GLP-1RAs enhanced lung cancer-specific clinical outcomes and augment immunotherapy efficacy. Preclinical evidence suggested this effect to be obesity-restricted and mediated by immune modulation of the tumor microenvironment. FUNDING. This work was supported by a generous donation from Mr. George Duke to SY; W81XWH-21-1-0377, (GM147497), and RSG-22-071-01-TBE to VRS; 1R01 CA255515-01A1 to SY and JB; and NIH/NCI Cancer Center Support Grants P30CA013696 and P30CA016056.

Authors

Akhil Goud Pachimatla, Bailey Fitzgerald, Joyce Ogidigo, Meera Bhatia, Randall J. Smith Jr., Kalyan Ratnakaram, Sukumar Kalvapudi, Yeshwanth Vedire, Deschana Washington, Robert Vethanayagam rr, Hua-Hsin Hsiao, Spencer Rosario, Viraj R. Sanghvi, Joseph Barbi, Sai Yendamuri

×

Longitudinal single-cell analysis of glucagon-like peptide-2 treatment in the patients with short bowel syndrome
Yumi Kudo, … , Akihiro Fujino, Tomohisa Sujino
Yumi Kudo, … , Akihiro Fujino, Tomohisa Sujino
Published August 7, 2025
Citation Information: JCI Insight. 2025. https://doi.org/10.1172/jci.insight.194497.
View: Text | PDF

Longitudinal single-cell analysis of glucagon-like peptide-2 treatment in the patients with short bowel syndrome

  • Text
  • PDF
Abstract

BACKGROUND. Glucagon-like peptide-2 (GLP-2) analogs are used clinically to enhance nutrient absorption in patients with short bowel syndrome (SBS); however, the precise mechanism remains unclear. To address this, the study aimed to clarify the dynamics of intestinal epithelial cells and immune cells in patients with SBS treated with GLP-2 analogs. METHODS. Five male patients diagnosed with SBS, all of whom received treatment with the GLP-2 analog teduglutide, were included in the study. We conducted longitudinal single-cell RNA sequencing (scRNA-seq) analysis of intestinal tissue from SBS patients over a year, integrating microbiome composition analysis. RESULTS. After treatment, the alpha diversity of the gut microbiome increased, indicating a more varied microbial environment. ScRNA-seq analysis revealed a reduction of T helper 2 cells and an increase in regulatory T (Treg) cells, suggesting a shift towards an immunoregulatory intestinal environment. Additionally, nutrient-absorbing enterocyte-Top2 and middle clusters expanded, enhancing the absorption capacity, whereas major histocompatibility complex class I/II-expressing enterocyte-Top1 cells declined, potentially modulating immune responses. CONCLUSION. The study findings indicate that GLP-2 analogs reshape intestinal immunity and microbiota, fostering a less inflammatory environment while promoting nutrient uptake efficiency. These insights offer a deeper understanding of the role of GLP-2 analogs in gut adaptation and provide a foundation for refining clinical strategies for SBS treatment. FUNDING. This work was supported by Sakaguchi Memorial Foundation, Grants-in-Aid from the Japanese Society for the Promotion of Science (JSPS) (21K18272, 23H03665, 23H02899, 23K27590, 25K22627, 23K08037), JST FOREST(21457195), and the Takeda Japan Medical Office Funded Research Grant 2022.

Authors

Yumi Kudo, Kentaro Miyamoto, Shohei Suzuki, Akihiko Chida, Anna Tojo, Mai Hasegawa, Arina Shigehara, Ikuko Koya, Yoshinari Ando, Masayasu Sato, Aya Kondo, Tomoko Kumagai, Harunori Deguchi, Yoshiki Sugiyama, Yoko Ito, Koji Shirosaki, Satoko Yamagishi, Yutaro Maeda, Hiroki Kanamori, Motohiro Kano, Mototoshi Kato, Hanako Tsujikawa, Yusuke Yoshimatsu, Kaoru Takabayashi, Koji Okabayashi, Takanori Kanai, Naoki Hosoe, Motohiko Kato, Jonathan Moody, Chung-Chau Hon, Tatsuo Kuroda, Yohei Yamada, Akihiro Fujino, Tomohisa Sujino

×
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 43
  • 44
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts