Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Inflammation

  • 444 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 44
  • 45
  • Next →
Type I interferons enhance human dorsal root ganglion nociceptor excitability and induce TRPV1 sensitization
Úrzula Franco-Enzástiga, … , Hemanth Mydugolam, Theodore J. Price
Úrzula Franco-Enzástiga, … , Hemanth Mydugolam, Theodore J. Price
Published September 2, 2025
Citation Information: JCI Insight. 2025. https://doi.org/10.1172/jci.insight.194987.
View: Text | PDF

Type I interferons enhance human dorsal root ganglion nociceptor excitability and induce TRPV1 sensitization

  • Text
  • PDF
Abstract

Type I interferons (IFNs) are critical cytokines for antiviral defense and are linked to painful diseases like rheumatoid arthritis, lupus, and neuropathic pain in humans. IFN-α therapy can cause myalgia, headache, joint and abdominal pain. Studies in rodent models demonstrate that direct action of IFNs on sensory neurons in the dorsal root ganglion (DRG) promotes hyperexcitability but rodent behavioral data on IFNs are conflicting, with reports of both pro- and anti-nociceptive actions. We sought to clarify the action of IFN-α and IFN-β on human DRG (hDRG) nociceptors. We found that IFN receptor subunits IFNAR1 and IFNAR2 are expressed by these neurons and their engagement induces canonical STAT1 signaling and non-canonical MAPK activation as measured by increased phosphorylation of the cap-binding protein eIF4E by MNK1/2 kinases. Using patch clamp electrophysiology, Ca2+-imaging, and multi-electrode arrays we demonstrate that IFN-α and -β increase the excitability of hDRG neurons with acute and long-term exposure. Type I IFNs prolong the duration of capsaicin responses, an effect that is blocked by inhibition of MNK1/2 with eFT508, a specific inhibitor of these kinases. This study supports the conclusion that type I IFNs induce hyperexcitability and TRPV1-sensitization when they interact with IFNAR1/2 in hDRG nociceptors.

Authors

Úrzula Franco-Enzástiga, Keerthana Natarajan, Felipe Espinosa, Rafael Granja-Vazquez, Hemanth Mydugolam, Theodore J. Price

×

Cell-free DNA methylomics identify tissue injury patterns in pediatric ARDS
Nadir Yehya, … , Nilam S. Mangalmurti, Wanding Zhou
Nadir Yehya, … , Nilam S. Mangalmurti, Wanding Zhou
Published September 2, 2025
Citation Information: JCI Insight. 2025. https://doi.org/10.1172/jci.insight.191684.
View: Text | PDF

Cell-free DNA methylomics identify tissue injury patterns in pediatric ARDS

  • Text
  • PDF
Abstract

Authors

Nadir Yehya, Jacob E. Till, Nishi Srivastava, Donglan Zhang, Jason D. Christie, Erica L. Carpenter, Nilam S. Mangalmurti, Wanding Zhou

×

Perivascular inflammation in the progression of aortic aneurysms in Marfan syndrome
Hiroyuki Sowa, … , Hiroshi Akazawa, Issei Komuro
Hiroyuki Sowa, … , Hiroshi Akazawa, Issei Komuro
Published August 28, 2025
Citation Information: JCI Insight. 2025. https://doi.org/10.1172/jci.insight.184329.
View: Text | PDF

Perivascular inflammation in the progression of aortic aneurysms in Marfan syndrome

  • Text
  • PDF
Abstract

Inflammation plays important roles in the pathogenesis of vascular diseases. We here show the involvement of perivascular inflammation in aortic dilatation of Marfan syndrome (MFS). In the aorta of MFS patients and Fbn1C1041G/+ mice, macrophages markedly accumulated in periaortic tissues with increased inflammatory cytokine expression. Metabolic inflammatory stress induced by a high-fat diet (HFD) enhanced vascular inflammation predominantly in periaortic tissues and accelerated aortic dilatation in Fbn1C1041G/+ mice, both of which were inhibited by low-dose pitavastatin. HFD feeding also intensifies structural disorganization of the tunica media in Fbn1C1041G/+ mice, including elastic fiber fragmentation, fibrosis, and proteoglycan accumulation, along with increased activation of TGF-β downstream targets. Pitavastatin treatment mitigated these alterations. For non-invasive assessment of PVAT inflammation in a clinical setting, we developed an automated analysis program for CT images using machine learning techniques to calculate the perivascular fat attenuation index of the ascending aorta (AA-FAI), correlating with periaortic fat inflammation. The AA-FAI was significantly higher in patients with MFS compared to patients without hereditary connective tissue disorders. These results suggest that perivascular inflammation contributes to aneurysm formation in MFS and might be a potential target for preventing and treating vascular events in MFS.

Authors

Hiroyuki Sowa, Hiroki Yagi, Kazutaka Ueda, Masaki Hashimoto, Kohei Karasaki, Qing Liu, Atsumasa Kurozumi, Yusuke Adachi, Tomonobu Yanase, Shun Okamura, Bowen Zhai, Norifumi Takeda, Masahiko Ando, Haruo Yamauchi, Nobuhiko Ito, Minoru Ono, Hiroshi Akazawa, Issei Komuro

×

IL-23 drives uveitis by acting on a population of tissue-resident entheseal T cells
Robert Hedley, … , Andrew D. Dick, David A. Copland
Robert Hedley, … , Andrew D. Dick, David A. Copland
Published August 28, 2025
Citation Information: JCI Insight. 2025. https://doi.org/10.1172/jci.insight.182616.
View: Text | PDF

IL-23 drives uveitis by acting on a population of tissue-resident entheseal T cells

  • Text
  • PDF
Abstract

Recurrent acute anterior uveitis is a frequent extra-articular manifestation of the axial spondyloarthropathies (AxSpA); chronic inflammatory diseases affecting the spine, enthesis, peripheral joints, skin, and gastrointestinal tract. Pathology in AxSpA has been associated with local tissue-resident populations of interleukin (IL)-23 responsive lymphoid cells. Here we characterize a population of ocular T cell defined by CD3+CD4-CD8-CD69+gdTCR+IL-23R+ that reside within the anterior uvea as an ocular entheseal analogue of the mouse eye. Localised cytokine expression demonstrates that uveal IL-23R+ IL-17A-producing cells are both necessary and sufficient to drive uveitis in response to IL-23. This T cell population is also present in humans, occupying extravascular tissues of the anterior uveal compartment. Consistent with the concept of IL-23 as a unifying mediator in AxSpA, we present evidence that IL-23 can also act locally on tissue resident T cells in the anterior compartment of the eye at sites analogous to the enthesis to drive ocular inflammation.

Authors

Robert Hedley, Amy Ward, Colin J. Chu, Sarah E. Coupland, Serafim Kiriakidis, Peter C. Taylor, Stephanie G. Dakin, ORBIT Research Consortium, Christopher D. Buckley, Jonathan Sherlock, Andrew D. Dick, David A. Copland

×

The spleen tyrosine kinase inhibitor entospletinib resolves inflammation to promote repair following acute kidney injury
Esteban E. Elias, … , Justin Chun, Daniel A. Muruve
Esteban E. Elias, … , Justin Chun, Daniel A. Muruve
Published August 22, 2025
Citation Information: JCI Insight. 2025;10(16):e189601. https://doi.org/10.1172/jci.insight.189601.
View: Text | PDF

The spleen tyrosine kinase inhibitor entospletinib resolves inflammation to promote repair following acute kidney injury

  • Text
  • PDF
Abstract

Nonresolving inflammation and maladaptive renal repair contribute to the pathogenesis of acute kidney injury (AKI) transition to chronic kidney disease (CKD). Few therapies have been identified that can modulate these injurious pathways following AKI. Spleen tyrosine kinase (SYK) is an immune regulator expressed in the kidney and a potential therapeutic target for AKI. The effect of the selective SYK inhibitor entospletinib was studied in AKI-to-CKD transition. Entospletinib was administered to mice undergoing unilateral renal ischemia-reperfusion injury (IRI), with kidneys analyzed over 14 days. Single-cell RNA sequencing, digital spatial profiling, intravital microscopy, and flow cytometry were employed to study renal phenotypes. Entospletinib administered before and after IRI protected ischemic kidneys and significantly attenuated the transition to CKD. Entospletinib targeted leukocyte-expressed SYK and prevented neutrophil/monocyte recruitment to the kidney. Entospletinib reduced nonresolving tubulointerstitial inflammation after AKI by blocking activation of mannose receptor-1– and C-type lectin domain family 7 member A–expressing proinflammatory macrophages. The resolution of renal inflammation mediated by entospletinib was associated with a reciprocal increase in resident macrophages, reparative gene expression, preserved tubular integrity, and reduced renal fibrosis. The SYK inhibitor entospletinib resolves renal inflammation and promotes repair following AKI.

Authors

Esteban E. Elias, Arthur Lau, Sisay Getie Belay, Afshin Derakhshani, Graciela Andonegui, Craig N. Jenne, Antoine Dufour, Nathan A. Bracey, Justin Chun, Daniel A. Muruve

×

A prometabolite strategy inhibits cardiometabolic disease in an ApoE–/– murine model of atherosclerosis
Taryn N. Beckman, … , Eugene B. Chang, Jeffrey A. Hubbell
Taryn N. Beckman, … , Eugene B. Chang, Jeffrey A. Hubbell
Published August 8, 2025
Citation Information: JCI Insight. 2025;10(15):e191090. https://doi.org/10.1172/jci.insight.191090.
View: Text | PDF

A prometabolite strategy inhibits cardiometabolic disease in an ApoE–/– murine model of atherosclerosis

  • Text
  • PDF
Abstract

Butyrate, a microbiome-derived short-chain fatty acid with pleiotropic effects on inflammation and metabolism, has been shown to significantly reduce atherosclerotic lesions, rectify routine metabolic parameters such as low-density lipoprotein cholesterol (LDL-C), and reduce systemic inflammation in murine models of atherosclerosis. However, its foul odor, rapid metabolism in the gut and thus low systemic bioavailability limit its therapeutic effectiveness. Our laboratory has engineered an ester-linked L-serine conjugate to butyrate (SerBut) to mask its taste and odor and to coopt amino acid transporters in the gut to increase its systemic bioavailability, as determined by tissue measurements of free butyrate, produced by hydrolysis of SerBut. In an apolipoprotein E–knockout (ApoE)–/– mouse model of atherosclerosis, SerBut reduced systemic LDL-C, proinflammatory cytokines, and circulating neutrophils. SerBut enhanced inhibition of plaque progression and reduced monocyte accumulation in the aorta compared with sodium butyrate. SerBut suppressed liver injury biomarkers alanine transaminase and aspartate aminotransferase and suppressed steatosis in the liver. SerBut overcomes several barriers to the translation of butyrate and shows superior promise in slowing atherosclerosis and liver injury compared with equidosed sodium butyrate.

Authors

Taryn N. Beckman, Lisa R. Volpatti, Salvador Norton de Matos, Anna J. Slezak, Joseph W. Reda, Ada Weinstock, Leah Ziolkowski, Alex Turk, Erica Budina, Shijie Cao, Gustavo Borjas, Jung Woo Kwon, Orlando deLeon, Kirsten C. Refvik, Abigail L. Lauterbach, Suzana Gomes, Eugene B. Chang, Jeffrey A. Hubbell

×

Delineating the short- and long-term impact of ionizing radiation on antigen-inexperienced CD8+ T cell subsets
Mohammad Heidarian, … , John T. Harty, Vladimir P. Badovinac
Mohammad Heidarian, … , John T. Harty, Vladimir P. Badovinac
Published August 5, 2025
Citation Information: JCI Insight. 2025. https://doi.org/10.1172/jci.insight.194201.
View: Text | PDF

Delineating the short- and long-term impact of ionizing radiation on antigen-inexperienced CD8+ T cell subsets

  • Text
  • PDF
Abstract

Radiation-induced lymphopenia (RIL) remains a challenging side effect of radiation therapy, often associated with poor prognosis and reduced overall survival. Although CD8+ T cells are highly radiosensitive, the dynamics of quantitative and qualitative changes to the CD8 T cell pool following exposure to high doses of ionizing radiation (IR) remains understudied. Herein, we sought to determine the long-term impact of sublethal whole body irradiation (WBI) on antigen (Ag)-inexperienced CD8 T cell pool, comprised of naïve (TN) and virtual memory (TVM) CD8+ T cells. We show that although both TN and TVM cells gradually regenerate after WBI-induced loss, TN recovery only occurs through de novo thymic production. Despite the numerical restoration, the subset and phenotypic composition of post-recovery Ag-inexperienced CD8+ T cells do not qualitatively recapitulate the pre-WBI state. Specifically, the frequency of TVM cells is increased, especially during the early stages of recovery. Within the TN subset, a lasting overrepresentation of Ly6C+CD122+ cells and an altered TCR clonotype diversity are also observed. Overall, our data highlight the dynamic changes to the Ag-inexperienced CD8+ T cell pool upon recovery from RIL.

Authors

Mohammad Heidarian, Shravan K. Kannan, Whitney Swanson, Thomas S. Griffith, John T. Harty, Vladimir P. Badovinac

×

Pro-inflammatory macrophages transporting gut-derived bacterial DNA drive autoimmune arthritis in spondyloarthropathy
Benjamin Cai, … , Anne-Sophie Bergot, Ranjeny Thomas
Benjamin Cai, … , Anne-Sophie Bergot, Ranjeny Thomas
Published July 31, 2025
Citation Information: JCI Insight. 2025. https://doi.org/10.1172/jci.insight.188028.
View: Text | PDF

Pro-inflammatory macrophages transporting gut-derived bacterial DNA drive autoimmune arthritis in spondyloarthropathy

  • Text
  • PDF
Abstract

Spondyloarthritis (SpA) is an inflammatory arthritis of the spine and joints associated with intestinal inflammation, in which it is hypothesized that innate immune exposure to entero-invasive species is followed by self/bacterial peptide presentation. However, the mechanisms underlying loss of tolerance to gut bacteria in genetically at-risk individuals are unclear. Curdlan (β-1,3-glucan, dectin-1 ligand)-treated ZAP-70W163C (SKG) mice develop autoimmune arthritis and ileitis associated with Gram-negative faecal dysbiosis. Using gnotobiotic mice, we show that curdlan-treated SKG mice mono-associated with Parabacteroides goldsteinii or Lactobacillus murinus developed ileitis, arthritis and enthesitis, while BALB/c mice were tolerant. Gnotobiotic SKG ileum upregulated Il23a and ER stress genes and lost goblet cells. Whereas bacterial DNA co-localised with neutrophils and inflammatory macrophages in SKG lamina propria, peri-articular bone marrow, entheses and spleen, in BALB/c bacterial DNA co-localised with resident macrophages in lamina propria and spleen. Human psoriatic-arthritis synovial tissue also contained cell-associated peri-vascular bacterial DNA. Curdlan-treated SKG spleen/bone marrow macrophages transferred severe arthritis and expanded Th17 cells in naïve SKG recipients, while BALB/c or germ free-SKG macrophages transferred mild arthritis and regulated Th17 cells. Thus, bacterial DNA and myeloid cells in the gut and their subsequent traffic regulate or enforce T cell pathogenicity in SpA.

Authors

Benjamin Cai, Rabina Giri, Amy J. Cameron, M. Arifur Rahman, Annabelle Small, Christopher Altmann, Yenkai Lim, Linda M. Rehaume, Mark Morrison, Mihir D. Wechalekar, Jakob Begun, Anne-Sophie Bergot, Ranjeny Thomas

×

Regulatory T cells epigenetically reprogrammed from autoreactive effector T cells mitigate established autoimmunity
Tyler R. Colson, … , Alexander N. Poltorak, Xudong Li
Tyler R. Colson, … , Alexander N. Poltorak, Xudong Li
Published July 31, 2025
Citation Information: JCI Insight. 2025. https://doi.org/10.1172/jci.insight.185581.
View: Text | PDF

Regulatory T cells epigenetically reprogrammed from autoreactive effector T cells mitigate established autoimmunity

  • Text
  • PDF
Abstract

Reprogramming autoreactive CD4⁺ effector T (Teff) cells into immunosuppressive regulatory T (Treg) cells represents a promising strategy for treating established autoimmune diseases. However, the stability and function of such reprogrammed Tregs under inflammatory conditions remain unclear. Here, we show that epigenetic activation of core Treg identity genes in Teff cells yields lineage-stable Effector T cell Reprogrammed Tregs (ER-Tregs). A single adoptive transfer of ER-Tregs not only prevents autoimmune neuroinflammation in mice when given before disease onset but also arrests its progression when administered after onset. Compared to Foxp3 overexpressing Teff cells, induced Tregs from naïve precursors, and endogenous Tregs, ER Tregs provide superior protection against autoimmune neuroinflammation. This enhanced efficacy stems from their inherited autoantigen specificity and selectively preserved effector cell transcriptional programs, which together bolster their fitness in inflammatory environments and enhance their suppressive capacity. Our results establish epigenetic reprogramming of autoreactive Teff cells as an effective approach to generate potent, stable Tregs for the treatment of refractory autoimmune conditions.

Authors

Tyler R. Colson, James J. Cameron, Hayley I. Muendlein, Mei-An Nolan, Jamie L. Leiriao, James H. Kim, Alexander N. Poltorak, Xudong Li

×

A vaccination strategy to prevent coxsackie virus B3-induced development of pancreatic cancer
Veethika Pandey, … , DeLisa Fairweather, Peter Storz
Veethika Pandey, … , DeLisa Fairweather, Peter Storz
Published July 31, 2025
Citation Information: JCI Insight. 2025. https://doi.org/10.1172/jci.insight.192629.
View: Text | PDF

A vaccination strategy to prevent coxsackie virus B3-induced development of pancreatic cancer

  • Text
  • PDF
Abstract

Authors

Veethika Pandey, Heike R. Doeppler, Ligia I. Bastea, Alicia K. Fleming Martinez, Barath Shreeder, Brandy H. Edenfield, Keith L. Knutson, DeLisa Fairweather, Peter Storz

×
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 44
  • 45
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts