BACKGROUND. Lymphopenia and failure of lymphocytes to mount an early IFN-γ response correlate with increased mortality in COVID-19. Given the essential role of CD4 helper and CD8 cytotoxic cells in eliminating viral pathogens, this profound loss in lymphocytes may impair patients’ ability to eliminate the virus. IL-7 is a pleiotropic cytokine that is obligatory for lymphocyte survival and optimal function. METHODS. We conducted a prospective, double-blind, randomized, placebo-controlled trial of CYT107, recombinant human IL-7, in 109 critically-ill lymphopenic COVID-19 patients. The primary endpoint was to assess CYT107’s effect on lymphocyte recovery with secondary clinical endpoints including safety, ICU and hospital length-of-stay, incidence of secondary infections, and mortality. RESULTS. CYT107 was well-tolerated without precipitating a cytokine storm or worsening pulmonary function. Absolute lymphocyte counts increased in both groups without significant difference between CYT107 and placebo. COVID-19 patients receiving CYT107 but not concomitant antiviral medications, known inducers of lymphopenia, had a final lymphocyte count that was 43% greater than placebo (p=0.067). There were significantly fewer treatment-emergent adverse events in CYT107 versus placebo-treated patients (p<0.001), consistent with a beneficial drug effect. Importantly, CYT107 treated patients had 44% fewer hospital-acquired infections versus placebo-treated patients (p=0.014). CONCLUSIONS. Given that hospital-acquired infections are responsible for a large percentage of COVID-19 deaths, this effect of CYT107 to decrease nosocomial infections could substantially reduce late morbidity and mortality in this highly lethal disease. The strong safety profile of CYT107 and its excellent tolerability provide support for trials of CYT107 in other potential pandemic respiratory viral infections. TRIAL REGISTRATION. NCT04379076, NCT04426201, NCT04442178, NCT04407689; NCT04927169
Manu Shankar-Hari, Bruno Francois, Kenneth E. Remy, Cristina Gutierrez, Stephen Pastores, Thomas Daix, Robin Jeannet, Jane Blood, Andrew H. Walton, Reinaldo Salomao, Georg Auzinger, David Striker, Robert S. Martin, Nitin J. Anand, James Bosanquet, Teresa Blood, Scott Brakenridge, Lyle L. Moldawer, Vidula Vachharajani, Cassian Yee, Felipe Dal-Pizzol, Michel Morre, Frederique Berbille, Marcel van den Brink, Richard Hotchkiss
CD8+ T cells are critical for immune protection against severe COVID-19 during acute infection with SARS-CoV-2. However, the induction of antiviral CD8+ T cell responses varies substantially among infected people, and a better understanding of the mechanisms that underlie such immune heterogeneity is required for pandemic preparedness and risk stratification. In this study, we analyzed SARS-CoV-2-specific CD4+ and CD8+ T cell responses in relation to age, clinical status, and inflammation among patients infected primarily during the initial wave of the pandemic in France or Japan. We found that age-related contraction of the naive lymphocyte pool and systemic inflammation were associated with suboptimal SARS-CoV-2-specific CD4+ and, even more evidently, CD8+ T cell immunity in patients with acute COVID-19. No such differences were observed for humoral immune responses targeting the spike protein of SARS-CoV-2. We also found that the proinflammatory cytokine IL-18, concentrations of which were significantly elevated among patients with severe disease, suppressed the de novo induction and memory recall of antigen-specific CD8+ T cells, including those directed against SARS-CoV-2. These results potentially explain the vulnerability of older adults to infections that elicit a profound inflammatory response, exemplified by acute COVID-19.
Gaëlle Autaa, Laura Papagno, Takuto Nogimori, Andrea Boizard-Moracchini, Daniil Korenkov, Maeva Roy, Koichiro Suzuki, Yuji Masuta, Eoghann White, Sian Llewellyn-Lacey, Yasuo Yoshioka, Francesco Nicoli, David A. Price, Julie Dechanet-Merville, Takuya Yamamoto, Isabelle Pellegrin, Victor Appay
The impact of remdesivir on SARS-CoV-2 diversity and evolution in vivo has remained unclear. In this single-center, retrospective cohort study, we assessed SARS-CoV-2 diversification and diversity over time in a cohort of hospitalized patients who did or did not receive remdesivir. Whole genome sequencing was performed on 98 paired specimens collected from 49 patients before and after remdesivir administration. Genetic divergence between paired specimens was not significantly different from what was observed in paired specimens from patients who did not receive the drug. However, when comparing minority variants, several positions showed preferential diversification after remdesivir treatment, several of which were associated with different variants of concern. Most notably, remdesivir administration resulted in strong selection for a nonsynonymous mutation in nsp12, G671S, previously associated with enhanced viral fitness. This same mutation was found enriched in a second cohort of 143 inpatients with specimens collected after remdesivir administration compared to controls. Only one other mutation previously implicated in remdesivir resistance (nsp12:V792I) was found to be preferentially selected for after remdesivir administration. These data suggest that SARS-CoV-2 variants with enhanced replicative fitness may be selected for in the presence of antiviral therapy as an indirect means to overcome this selective pressure.
Ted Ling-Hu, Lacy M. Simons, Estefany Rios-Guzman, Alexandre M. Carvalho, Maria Francesca R. Agnes, Arghavan Alisoltanidehkordi, Egon A. Ozer, Ramon Lorenzo-Redondo, Judd F. Hultquist
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes Coronavirus disease 2019 (COVID-19), has emerged as a global pandemic pathogen with high mortality. While treatments have been developed to reduce morbidity and mortality of COVID-19, more antivirals with broad-spectrum activities are still needed. Here we identified lonafarnib (LNF), a Food and Drug Administration (FDA)-approved drug inhibitor of cellular farnesyltransferase (FTase), as an effective anti-SARS-CoV-2 agent. LNF inhibited SARS-CoV-2 infection and acted synergistically with known anti-SARS antivirals. LNF was equally active against diverse SARS-CoV-2 variants. Mechanistic studies suggested that LNF targeted multiple steps of viral life cycle. Using other structurally diverse FTase inhibitors and LNF-resistant FTase mutant, we demonstrated a key role of FTase in SARS-CoV-2 life cycle. To demonstrate in vivo efficacy, we infected SARS-CoV-2 susceptible humanized mice expressing human angiotensin-converting enzyme 2 (ACE2) and treated them with LNF. LNF at clinically relevant dose suppressed viral titer in the respiratory tract and improved pulmonary pathology and clinical parameters. Our study demonstrated that LNF, an approved oral drug with excellent human safety data, is a promising antiviral against SARS-CoV-2 that warrants further clinical assessment for treatment of COVID-19 and potentially other viral infections.
Mohsin Khan, Parker Irvin, Seung Bum Park, Hannah M. Ivester, Inna Ricardo-Lax, Madeleine Leek, Ailis Grieshaber, Eun Sun Jang, Sheryl L. Coutermarsh-Ott, Qi Zhang, Nunziata Maio, Jian-Kang Jiang, Bing Li, Wenwei Huang, Amy Q. Wang, Xin Xu, Zongyi Hu, Wei Zheng, Yihong Ye, Tracey Rouault, Charles M. Rice, Irving C. Allen, T. Jake Liang
Widespread vaccination and natural infection have resulted in greatly decreased rates of severe disease, hospitalization and death after subsequent infection or reinfection with SARS-CoV-2. New vaccine formulations are based on circulating strains of virus, which have tended to evolve to more readily transmit human to human and to evade the neutralizing antibody response. An assumption of this approach is that ancestral strains of virus will not recur. Recurrence of these strains could be a problem for individuals not previously exposed to ancestral spike protein by vaccination or infection. Here, we addressed this question by infecting mice with recent SARS-CoV-2 variants and then challenging them with a highly pathogenic mouse-adapted virus closely related to the ancestral Wuhan-1 strain (SARS2-N501YMA30). We found that challenged mice were protected from death and substantial weight loss, even though they generally had low or no neutralizing antibody response to SARS2-N501YMA30 at the time of reinfection. T cell depletion from the previously infected mice did not diminish infection against clinical disease, although it did result in delayed kinetics of virus clearance in the nasal turbinate and in some cases, in the lungs. Levels of tissue resident memory T cells were significantly elevated in the nasal turbinate of previously infected mice compared to mice that had no previous exposure to SARS-CoV-2. However, this phenotype was not seen in lung tissues. Together, these results indicate that the immune response to newly circulating variants afforded protection against re-infection with the ancestral virus that was at least in part T cell based.
Abby Odle, Meenakshi Kar, Abhishek K. Verma, Alan Sariol, David K. Meyerholz, Mehul S. Suthar, Lok-Yin Roy Wong, Stanley Perlman
BACKGROUND The level of nasal spike-specific secretory IgA (sIgA) is inversely correlated with the risk of SARS-CoV-2 Omicron infection. This study aimed to evaluate the safety and immunogenicity of intranasal vaccination using Ad5-S-Omicron (NB2155), a replication-incompetent human type 5 adenovirus carrying Omicron BA.1 spike.METHODS An open-label, single-center, investigator-initiated trial was carried out on 128 health care workers who had never been infected with SARS-CoV-2 and had previously received 2 or 3 injections of inactivated whole-virus vaccines, with the last dose given 3–19 months previously (median 387 days, IQR 333–404 days). Participants received 2 intranasal sprays of NB2155 at 28-day intervals between November 30 and December 30, 2022. Safety was evaluated by solicited adverse events and laboratory tests. The elevation of nasal mucosal spike-specific sIgA and serum neutralizing activities were assessed. All participants were monitored for infection by antigen tests, disease symptoms, and the elevation of nucleocapsid-specific sIgA in the nasal passage.RESULTS The vaccine-related solicited adverse events were mild. Nasal spike-specific sIgA against 10 strains had a mean geometric mean fold increase of 4.5 after the first dose, but it increased much higher to 51.5 after the second dose. Serum neutralizing titers also increased modestly to 128.1 (95% CI 74.4–220.4) against authentic BA.1 and 76.9 (95% CI 45.4–130.2) against BA.5 at 14 days after the second dose. Due to the lifting of the zero-COVID policy in China on December 7, 2022, 57.3% of participants were infected with BA.5 between days 15 and 28 after the first dose, whereas no participants reported having any symptomatic infections between day 3 and day 90 after the second dose. The elevation of nasal nucleocapsid-specific sIgA on days 0, 14, 42, and 118 after the first dose was assessed to verify that these 2-dose participants had no asymptomatic infections.CONCLUSION A 2-dose intranasal vaccination regimen using NB2155 was safe, was well tolerated, and could dramatically induce broad-spectrum spike-specific sIgA in the nasal passage. Preliminary data suggested that the intranasal vaccination may establish an effective mucosal immune barrier against infection and warranted further clinical studies.TRIAL REGISTRATION Chinese Clinical Trial Registry (ChiCTR2300070346).FUNDING Natural Science Foundation of China, Guangzhou Laboratory, The First Affiliated Hospital of Guangzhou Medical University.
Baoqing Sun, Qian Wang, Peiyan Zheng, Xuefeng Niu, Ying Feng, Weijie Guan, Si Chen, Jin Li, Tingting Cui, Yijun Deng, Zhangkai J. Cheng, Yongmei Li, Xinke Zhou, Yi Fang, Wei Wang, Zhongfang Wang, Ling Chen, Nanshan Zhong
Neutrophilia occurs in patients infected with SARS-CoV-2 (COVID-19) and is predictive of poor outcomes. Here, we link heterogenous neutrophil populations to disease severity in COVID-19. We identified neutrophils with features of cellular aging and immunosuppressive capacity in mild COVID-19 and features of neutrophil immaturity and activation in severe disease. The low-density neutrophil (LDN) number in circulating blood correlated with COVID-19 severity. Many of the divergent neutrophil phenotypes in COVID-19 were overrepresented in the LDN fraction and were less detectable in normal-density neutrophils. Functionally, neutrophils from patients with severe COVID-19 displayed defects in neutrophil extracellular trap formation and reactive oxygen species production. Soluble factors secreted by neutrophils from these patients inhibited T cell proliferation. Neutrophils from patients with severe COVID-19 had increased expression of arginase-1 protein, a feature that was retained in convalescent patients. Despite this increase in intracellular expression, there was a reduction in arginase-1 release by neutrophils into serum and culture supernatants. Furthermore, neutrophil-mediated T cell suppression was independent of arginase-1. Our results indicate the presence of dysfunctional, activated, and immature neutrophils in severe COVID-19.
Amrita Dwivedi, Aisling Ui Mhaonaigh, Makala Carroll, Bahareh Khosravi, Isabella Batten, Robert Seán Ballantine, Stuart Hendricken Phelan, Laura O’Doherty, Angel Mary George, Jacklyn Sui, Heike C. Hawerkamp, Padraic G. Fallon, Elnè Noppe, Sabina Mason, Niall Conlon, Clíona Ni Cheallaigh, Conor M. Finlay, Mark A. Little, Bioresource on behalf of the St James’s and Tallaght Trinity Allied Researchers (STTAR)
Prenatal exposure to viral pathogens has been known to cause the development of neuropsychiatric disorders in adulthood. Furthermore, COVID-19 has been associated with a variety of neurological manifestations, raising the question of whether in utero SARS-CoV-2 exposure can affect neurodevelopment, resulting in long-lasting behavioral and cognitive deficits. Using a human ACE-2-knock-in mouse model, we have previously shown that prenatal exposure to SARS-CoV-2 at later stages of development leads to fetal brain infection and gliosis in the hippocampus and cortex. In this study, we aimed to determine if infection of the fetal brain results in long-term neuroanatomical alterations of the cortex and hippocampus, as well as any cognitive deficits in adulthood. Here, we show that infected mice developed slower and weighed less in adulthood. We also found altered hippocampal and amygdala volume and aberrant newborn neuron morphology in the hippocampus of adult mice infected in utero. Furthermore, we observed sex-dependent alterations in anxiety-like behavior and locomotion, as well as hippocampal-dependent spatial memory. Taken together, our study revealed long-lasting neurological and cognitive changes as a result of prenatal SARS-CoV-2 infection, identifying a window for early intervention and highlighting the importance of immunization and antiviral intervention in pregnant women.
Courtney L. McMahon, Erin M. Hurley, Aranis Muniz Perez, Manuel Estrada, Daniel J. Lodge, Jenny Hsieh
Since its emergence, SARS-CoV-2 has been continuously evolving, hampering the effectiveness of current vaccines against COVID-19. mAbs can be used to treat patients at risk of severe COVID-19. Thus, the development of broadly protective mAbs and an understanding of the underlying protective mechanisms are of great importance. Here, we isolated mAbs from donors with breakthrough infection with Omicron subvariants using a single–B cell screening platform. We identified a mAb, O5C2, which possesses broad-spectrum neutralization and antibody-dependent cell-mediated cytotoxic activities against SARS-CoV-2 variants, including EG.5.1. Single-particle analysis by cryo-electron microscopy revealed that O5C2 targeted an unusually large epitope within the receptor-binding domain of spike protein that overlapped with the angiotensin-converting enzyme 2 binding interface. Furthermore, O5C2 effectively protected against BA.5 Omicron infection in vivo by mediating changes in transcriptomes enriched in genes involved in apoptosis and interferon responses. Our findings provide insights into the development of pan-protective mAbs against SARS-CoV-2.
Yi-Hsuan Chang, Min-Feng Hsu, Wei-Nan Chen, Min-Hao Wu, Wye-Lup Kong, Mei-Yeh Jade Lu, Chih-Heng Huang, Fang-Ju Chang, Lan-Yi Chang, Ho-Yang Tsai, Chao-Ping Tung, Jou-Hui Yu, Yali Kuo, Yu-Chi Chou, Li-Yang Bai, Yuan-Chih Chang, An-Yu Chen, Cheng-Cheung Chen, Yi-Hua Chen, Chun-Che Liao, Chih-Shin Chang, Jian-Jong Liang, Yi-Ling Lin, Takashi Angata, Shang-Te Danny Hsu, Kuo-I Lin
BACKGROUND As Omicron is prompted to replicate in the upper airway, neutralizing antibodies (NAbs) delivered through inhalation might inhibit early-stage infection in the respiratory tract. Thus, elucidating the prophylactic efficacy of NAbs via nasal spray addresses an important clinical need.METHODS The applicable potential of a nasal spray cocktail containing 2 NAbs was characterized by testing its neutralizing potency, synergetic neutralizing mechanism, emergency protective and therapeutic efficacy in a hamster model, and pharmacokinetics/pharmacodynamic (PK/PD) in human nasal cavity.RESULTS The 2 NAbs displayed broad neutralizing efficacy against Omicron, and they could structurally compensate each other in blocking the Spike-ACE2 interaction. When administrated through the intranasal mucosal route, this cocktail demonstrated profound efficacy in the emergency prevention in hamsters challenged with authentic Omicron BA.1. The investigator-initiated trial in healthy volunteers confirmed the safety and the PK/PD of the NAb cocktail delivered via nasal spray. Nasal samples from the participants receiving 4 administrations over a course of 16 hours demonstrated potent neutralization against Omicron BA.5 in an ex vivo pseudovirus neutralization assay.CONCLUSION These results demonstrate that the NAb cocktail nasal spray provides a good basis for clinical prophylactic efficacy against Omicron infections.TRIAL REGISTRATION www.chictr.org.cn, ChiCTR2200066525.FUNDING The National Science and Technology Major Project (2017ZX10202203), the National Key Research and Development Program of China (2018YFA0507100), Guangzhou National Laboratory (SRPG22-015), Lingang Laboratory (LG202101-01-07), Science and Technology Commission of Shanghai Municipality (YDZX20213100001556), and the Emergency Project from the Science & Technology Commission of Chongqing (cstc2021jscx-fyzxX0001).
Xinghai Zhang, Feiyang Luo, Huajun Zhang, Hangtian Guo, Junhui Zhou, Tingting Li, Shaohong Chen, Shuyi Song, Meiying Shen, Yan Wu, Yan Gao, Xiaojian Han, Yingming Wang, Chao Hu, Xiaodong Zhao, Huilin Guo, Dazhi Zhang, Yuchi Lu, Wei Wang, Kai Wang, Ni Tang, Tengchuan Jin, Menglu Ding, Shuhui Luo, Cuicui Lin, Tingting Lu, Bingxia Lu, Yang Tian, Chengyong Yang, Guofeng Cheng, Haitao Yang, Aishun Jin, Xiaoyun Ji, Rui Gong, Sandra Chiu, Ailong Huang
No posts were found with this tag.