Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

COVID-19s

  • 108 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 10
  • 11
  • Next →
An extended interval between vaccination and infection enhances hybrid immunity against SARS-CoV-2 variants
Timothy A. Bates, … , Marcel E. Curlin, Fikadu G. Tafesse
Timothy A. Bates, … , Marcel E. Curlin, Fikadu G. Tafesse
Published January 26, 2023
Citation Information: JCI Insight. 2023. https://doi.org/10.1172/jci.insight.165265.
View: Text | PDF

An extended interval between vaccination and infection enhances hybrid immunity against SARS-CoV-2 variants

  • Text
  • PDF
Abstract

As the COVID-19 pandemic continues, long-term immunity against SARS-CoV-2 will be globally important. Official weekly cases have not dropped below 2 million since September of 2020, and continued emergence of novel variants have created a moving target for our immune systems and public health alike. The temporal aspects of COVID-19 immunity, particularly from repeated vaccination and infection, are less well understood than short-term vaccine efficacy. In this study, we explore the impact of combined vaccination and infection, also known as hybrid immunity, and the timing thereof on the quality and quantity of antibodies elicited in a cohort of 96 health care workers. We find robust neutralizing antibody responses among those with hybrid immunity against all variants, including Omicron BA.2, and significantly improved neutralizing titers with longer vaccine-infection intervals up to 400 days. These results indicate that anti-SARS-CoV-2 antibody responses undergo continual maturation following primary exposure by either vaccination or infection for at least 400 days after last antigen exposure. We show that neutralizing antibody responses improved upon secondary boosting with greater potency seen after extended intervals. Our findings may also extend to booster vaccine doses, a critical consideration in future vaccine campaign strategies.

Authors

Timothy A. Bates, Hans C. Leier, Savannah K. McBride, Devin Schoen, Zoe L. Lyski, David D. Xthona Lee, William B. Messer, Marcel E. Curlin, Fikadu G. Tafesse

×

Mucociliary transport deficiency and disease progression in Syrian hamsters with SARS-CoV-2 infection
Qian Li, … , Guillermo J. Tearney, Steven M. Rowe
Qian Li, … , Guillermo J. Tearney, Steven M. Rowe
Published January 10, 2023
Citation Information: JCI Insight. 2023;8(1):e163962. https://doi.org/10.1172/jci.insight.163962.
View: Text | PDF

Mucociliary transport deficiency and disease progression in Syrian hamsters with SARS-CoV-2 infection

  • Text
  • PDF
Abstract

Substantial clinical evidence supports the notion that ciliary function in the airways is important in COVID-19 pathogenesis. Although ciliary damage has been observed in both in vitro and in vivo models, the extent or nature of impairment of mucociliary transport (MCT) in in vivo models remains unknown. We hypothesize that SARS-CoV-2 infection results in MCT deficiency in the airways of golden Syrian hamsters that precedes pathological injury in lung parenchyma. Micro-optical coherence tomography was used to quantitate functional changes in the MCT apparatus. Both genomic and subgenomic viral RNA pathological and physiological changes were monitored in parallel. We show that SARS-CoV-2 infection caused a 67% decrease in MCT rate as early as 2 days postinfection (dpi) in hamsters, principally due to 79% diminished airway coverage of motile cilia. Correlating quantitation of physiological, virological, and pathological changes reveals steadily descending infection from the upper airways to lower airways to lung parenchyma within 7 dpi. Our results indicate that functional deficits of the MCT apparatus are a key aspect of COVID-19 pathogenesis, may extend viral retention, and could pose a risk factor for secondary infection. Clinically, monitoring abnormal ciliated cell function may indicate disease progression. Therapies directed toward the MCT apparatus deserve further investigation.

Authors

Qian Li, Kadambari Vijaykumar, Scott E. Phillips, Shah S. Hussain, Nha V. Huynh, Courtney M. Fernandez-Petty, Jacelyn E. Peabody Lever, Jeremy B. Foote, Janna Ren, Javier Campos-Gómez, Farah Abou Daya, Nathaniel W. Hubbs, Harrison Kim, Ezinwanne Onuoha, Evan R. Boitet, Lianwu Fu, Hui Min Leung, Linhui Yu, Thomas W. Detchemendy, Levi T. Schaefers, Jennifer L. Tipper, Lloyd J. Edwards, Sixto M. Leal Jr., Kevin S. Harrod, Guillermo J. Tearney, Steven M. Rowe

×

Boosting maternal and neonatal anti–SARS-CoV-2 humoral immunity using a third mRNA vaccine dose
Adva Cahen-Peretz, … , Simcha Yagel, Ofer Beharier
Adva Cahen-Peretz, … , Simcha Yagel, Ofer Beharier
Published January 10, 2023
Citation Information: JCI Insight. 2023;8(1):e158646. https://doi.org/10.1172/jci.insight.158646.
View: Text | PDF

Boosting maternal and neonatal anti–SARS-CoV-2 humoral immunity using a third mRNA vaccine dose

  • Text
  • PDF
Abstract

BACKGROUND. To minimize COVID-19 pandemic burden and spread, 3-dose vaccination campaigns commenced worldwide. Since patients who are pregnant are at increased risk for severe disease, they were recently included in that policy, despite the lack of available evidence regarding the impact of a third boosting dose during pregnancy, underscoring the urgent need for relevant data. We aimed to characterize the effect of the third boosting dose of mRNA Pfizer BNT162b2 vaccine in pregnancy.METHODS. We performed a prospective cohort study of anti–SARS-CoV-2 antibody titers (n = 213) upon delivery in maternal and cord blood of naive fully vaccinated parturients who received a third dose (n = 86) as compared with 2-dose recipients (n = 127).RESULTS. We found a robust surge in maternal and cord blood levels of anti–SARS-CoV-2 titers at the time of delivery, when comparing pregnancies in which the mother received a third boosting dose with 2-dose recipients. The effect of the third boosting dose remained significant when controlling for the trimester of last exposure, suggesting additive immunity extends beyond that obtained after the second dose. Milder side effects were reported following the third dose, as compared with the second vaccine dose, among the fully vaccinated group.CONCLUSION. The third boosting dose of mRNA Pfizer BNT162b2 vaccine augmented maternal and neonatal immunity with mild side effects. These data provide evidence to bolster clinical and public health guidance, reassure patients, and increase vaccine uptake among patients who are pregnant.FUNDING. Israel Science Foundation KillCorona grant 3777/19; Research grant from the “Ofek” Program of the Hadassah Medical Center.

Authors

Adva Cahen-Peretz, Lilah Tsaitlin-Mor, Hadas Allouche Kam, Racheli Frenkel, Maor Kabessa, Sarah M. Cohen, Michal Lipschuetz, Esther Oiknine-Djian, Sapir Lianski, Debra Goldman-Wohl, Asnat Walfisch, Michal Kovo, Michal Neeman, Dana G. Wolf, Simcha Yagel, Ofer Beharier

×

Combined molnupiravir-nirmatrelvir treatment improves effect on SARS-CoV-2 in Macaques
Kyle Rosenke, … , Michael Jarvis, Heinz Feldmann
Kyle Rosenke, … , Michael Jarvis, Heinz Feldmann
Published December 27, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.166485.
View: Text | PDF

Combined molnupiravir-nirmatrelvir treatment improves effect on SARS-CoV-2 in Macaques

  • Text
  • PDF
Abstract

The periodic emergence of SARS-CoV-2 variants of concern (VOCs) with unpredictable clinical severity and ability to escape preexisting immunity emphasizes the continued need for antiviral interventions. Two small molecule inhibitors, molnupiravir (MK-4482), a nucleoside analog, and nirmatrelvir (PF-07321332), a 3C-like protease inhibitor, have recently been approved as monotherapy for use in high risk COVID-19 patients. As preclinical data are only available for rodent and ferret models, we here assessed the efficacy of MK-4482 and PF-07321332 alone and in combination against infection with the SARS-CoV-2 Delta VOC in the rhesus macaque COVID-19 model. Macaques were infected with the SARS-CoV-2 Delta variant and treated with either vehicle, MK-4482, PF-07321332 or a combination of MK-4482 and PF-07321332. Clinical exams were performed at 1, 2 and 4dpi to assess disease and virological parameters. Notably, use of MK-4482 and PF-07321332 in combination improved the individual inhibitory effect of both drugs resulting in milder disease progression, stronger reduction of virus shedding from mucosal tissues of the upper respiratory tract, stronger reduction of viral replication in the lower respiratory tract, and reduced lung pathology. Our data strongly indicate superiority of combined MK-4482 and PF-07321332 treatment of SARS-CoV-2 infections as demonstrated in the closest COVID-19 surrogate model.

Authors

Kyle Rosenke, Matthew C. Lewis, Friederike Feldmann, Eric Bohrnsen, Benjamin Schwarz, Atsushi Okumura, W. Forrest Bohler, Julie Callison, Carl Shaia, Catharine Bosio, Jamie Lovaglio, Greg Saturday, Michael Jarvis, Heinz Feldmann

×

Spatial transcriptomic characterization of COVID-19 pneumonitis identifies immune circuits related to tissue injury
Amy R. Cross, … , Stephen N. Sansom, Fadi Issa
Amy R. Cross, … , Stephen N. Sansom, Fadi Issa
Published December 6, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.157837.
View: Text | PDF

Spatial transcriptomic characterization of COVID-19 pneumonitis identifies immune circuits related to tissue injury

  • Text
  • PDF
Abstract

Severe lung damage in COVID-19 involves complex interactions between diverse populations of immune and stromal cells. In this study, we used a spatial transcriptomics approach to delineate the cells, pathways and genes present across the spectrum of histopathological damage in COVID-19 lung tissue. We applied correlation network-based approaches to deconvolve gene expression data from 46 areas of interest covering >62,000 cells within well preserved lung samples from three patients. Despite substantial inter-patient heterogeneity, we discovered evidence for a common immune cell signaling circuit in areas of severe tissue that involves crosstalk between cytotoxic lymphocytes and pro-inflammatory macrophages. Expression of IFNG by cytotoxic lymphocytes was associated with induction of chemokines including CXCL9, CXCL10 and CXCL11 which are known to promote the recruitment of CXCR3+ immune cells. The tumour necrosis factor (TNF) superfamily members BAFF (TNFSF13B) and TRAIL (TNFSF10) were found to be consistently upregulated in the areas with severe tissue damage. We used published spatial and single cell SARS-CoV-2 datasets to confirm our findings in the lung tissue from additional cohorts of COVID-19 patients. The resulting model of severe COVID-19 immune-mediated tissue pathology may inform future therapeutic strategies.

Authors

Amy R. Cross, Carlos E. de Andrea, María Villalba-Esparza, Manuel F. Landecho, Lucia Cerundolo, Praveen Weeratunga, Rachel E. Etherington, Laura Denney, Graham Ogg, Ling-Pei Ho, Ian S.D. Roberts, Joanna Hester, Paul Klenerman, Ignacio Melero, Stephen N. Sansom, Fadi Issa

×

Longitudinal single-cell analysis of SARS-CoV-2-reactive B cells uncovers persistence of early-formed, antigen specific clones
Lydia Scharf, … , Mats Bemark, Davide Angeletti
Lydia Scharf, … , Mats Bemark, Davide Angeletti
Published November 29, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.165299.
View: Text | PDF

Longitudinal single-cell analysis of SARS-CoV-2-reactive B cells uncovers persistence of early-formed, antigen specific clones

  • Text
  • PDF
Abstract

Understanding persistence and evolution of B cell clones after COVID-19 infection and vaccination is crucial for predicting responses against emerging viral variants and optimizing vaccines. Here, we collected longitudinal samples from severe COVID-19 patients every third to seventh day during hospitalization and every third month after recovery. We profiled the antigen-specific immune cell dynamics by combining single cell RNA-Seq, Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE)-Seq, B cell receptor (BCR)-Seq with oligo-tagged antigen baits. While the proportion of Spike Receptor Binding Domain-specific memory B cells (MBC) increased from 3 months after infection, the other Spike- and Nucleocapsid-specific B cells remained constant. All patients showed ongoing class switching and sustained affinity maturation of antigen specific cells, which was not significantly increased early after vaccine. B cell analysis revealed a polyclonal response with limited clonal expansion; nevertheless, some clones detected during hospitalization, as plasmablasts, persisted for up to one year, as MBC. Monoclonal antibodies derived from persistent B cell families increased their binding and neutralization breadth and started recognizing viral variants by 3 months after infection. Overall, our findings provide important insights into the clonal evolution and dynamics of antigen specific B cell responses in longitudinally sampled COVID-19 infected patients.

Authors

Lydia Scharf, Hannes Axelsson, Aikaterini Emmanouilidi, Nimitha R. Mathew, Daniel J. Sheward, Susannah Leach, Pauline Isakson, Ilya V. Smirnov, Emelie Marklund, Nicolae Miron, Lars-Magnus Andersson, Magnus Gisslén, Ben Murrell, Anna Lundgren, Mats Bemark, Davide Angeletti

×

Severe acute respiratory disease in American mink experimentally infected with SARS-CoV-2
Danielle R. Adney, … , Stephanie N. Seifert, Vincent J. Munster
Danielle R. Adney, … , Stephanie N. Seifert, Vincent J. Munster
Published November 22, 2022
Citation Information: JCI Insight. 2022;7(22):e159573. https://doi.org/10.1172/jci.insight.159573.
View: Text | PDF

Severe acute respiratory disease in American mink experimentally infected with SARS-CoV-2

  • Text
  • PDF
Abstract

An animal model that fully recapitulates severe COVID-19 presentation in humans has been a top priority since the discovery of SARS-CoV-2 in 2019. Although multiple animal models are available for mild to moderate clinical disease, models that develop severe disease are still needed. Mink experimentally infected with SARS-CoV-2 developed severe acute respiratory disease, as evident by clinical respiratory disease, radiological, and histological changes. Virus was detected in nasal, oral, rectal, and fur swabs. Deep sequencing of SARS-CoV-2 from oral swabs and lung tissue samples showed repeated enrichment for a mutation in the gene encoding nonstructural protein 6 in open reading frame 1ab. Together, these data indicate that American mink develop clinical features characteristic of severe COVID-19 and, as such, are uniquely suited to test viral countermeasures.

Authors

Danielle R. Adney, Jamie Lovaglio, Jonathan E. Schulz, Claude Kwe Yinda, Victoria A. Avanzato, Elaine Haddock, Julia R. Port, Myndi G. Holbrook, Patrick W. Hanley, Greg Saturday, Dana Scott, Carl Shaia, Andrew M. Nelson, Jessica R. Spengler, Cassandra Tansey, Caitlin M. Cossaboom, Natalie M. Wendling, Craig Martens, John Easley, Seng Wai Yap, Stephanie N. Seifert, Vincent J. Munster

×

SARS-CoV-2 infection of sustentacular cells disrupts olfactory signaling pathways
Abhishek Kumar Verma, … , David K. Meyerholz, Stanley Perlman
Abhishek Kumar Verma, … , David K. Meyerholz, Stanley Perlman
Published November 15, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.160277.
View: Text | PDF

SARS-CoV-2 infection of sustentacular cells disrupts olfactory signaling pathways

  • Text
  • PDF
Abstract

Loss of olfactory function has been commonly reported in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections. Recovery from anosmia is not well understood. Previous studies showed that sustentacular cells, and occasionally, olfactory sensory neurons (OSNs) in the olfactory epithelium (OE) are infected in SARS-CoV-2-infected patients and experimental animals. Here, we show that SARS-CoV-2 infection of sustentacular cells induces inflammation characterized by infiltration of myeloid cells to the olfactory epithelium and variably increased expression of proinflammatory cytokines. We observed widespread damage to, and loss of cilia on, OSNs, accompanied by downregulation of olfactory receptors and signal transduction molecules involved in olfaction. A consequence of OSN dysfunction was a reduction in the number of neurons in the olfactory bulb expressing tyrosine hydroxylase, consistent with reduced synaptic input. Resolution of the infection, inflammation, and olfactory dysfunction occurred over 3-4 weeks following infection in most but not all animals. We also observed similar patterns of OE infection and anosmia/hyposmia in mice infected with other human coronaviruses such as SARS-CoV and MERS-CoV. Together, these results define the downstream effects of sustentacular cell infection and provide insight into olfactory dysfunction in COVID-19-associated anosmia.

Authors

Abhishek Kumar Verma, Jian Zheng, David K. Meyerholz, Stanley Perlman

×

Bamlanivimab therapy for acute COVID-19 does not blunt SARS-CoV-2-specific memory T cell responses
Sydney I. Ramirez, … , Davey M. Smith, Shane Crotty
Sydney I. Ramirez, … , Davey M. Smith, Shane Crotty
Published November 15, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.163471.
View: Text | PDF

Bamlanivimab therapy for acute COVID-19 does not blunt SARS-CoV-2-specific memory T cell responses

  • Text
  • PDF
Abstract

Despite the widespread use of SARS-CoV-2-specific monoclonal antibody (mAb) therapy for the treatment of acute COVID-19, the impact of this therapy on the development of SARS-CoV-2-specific T cell responses has been unknown, resulting in uncertainty as to whether anti-SARS-CoV-2 mAb administration may result in failure to generate immune memory. Alternatively, it has been suggested that SARS-CoV-2-specific mAb may enhance adaptive immunity to SARS-CoV-2 via a "vaccinal effect." Bamlanivimab (Eli Lilly) is a recombinant human IgG1 that was granted FDA emergency use authorization for the treatment of mild to moderate COVID-19 in those at high risk for progression to severe disease. Here, we compared SARS-CoV-2 specific CD4+ and CD8+ T cell responses of 95 individuals from the ACTIV-2/A5401 clinical trial 28 days after treatment with 700 mg bamlanivimab versus placebo. SARS-CoV-2-specific T cell responses were evaluated using activation induced marker (AIM) assays in conjunction with intracellular cytokine staining. We demonstrate that most individuals with acute COVID-19 develop SARS-CoV-2-specific T cell responses. Overall, our findings suggest that the quantity and quality of SARS-CoV-2-specific T cell memory was robust in individuals who received bamlanivimab for acute COVID-19. Receipt of bamlanivimab during acute COVID-19 neither diminished nor enhanced SARS-CoV-2-specific cellular immunity.

Authors

Sydney I. Ramirez, Alba Grifoni, Daniela Weiskopf, Urvi M. Parikh, Amy Heaps, Farhoud Faraji, Scott F. Sieg, Justin Ritz, Carlee B. Moser, Joseph J. Eron, Judith S. Currier, Paul Klekotka, Alessandro Sette, David A. Wohl, Eric S. Daar, Michael D. Hughes, Kara W. Chew, Davey M. Smith, Shane Crotty

×

Consecutive BNT162b2 mRNA vaccination induces short-term epigenetic memory in innate immune cells
Yuta Yamaguchi, … , Yukinori Okada, Atsushi Kumanogoh
Yuta Yamaguchi, … , Yukinori Okada, Atsushi Kumanogoh
Published October 25, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.163347.
View: Text | PDF

Consecutive BNT162b2 mRNA vaccination induces short-term epigenetic memory in innate immune cells

  • Text
  • PDF
Abstract

Consecutive mRNA vaccinations against SARS-CoV-2 reinforced both innate and adaptive immune responses. However, it remains unclear whether the enhanced innate immune responses are mediated by epigenetic regulation and, if so, whether these effects persist. Using mass cytometry, RNA-seq, and ATAC-seq, we show that BNT162b2 mRNA vaccination upregulated antiviral and IFN-stimulated gene expression in monocytes with greater effects after the second vaccination than those after the first vaccination. Transcription factor-binding motif analysis also revealed enriched IFN regulatory factors and PU.1 motifs in accessible chromatin regions. Importantly, although consecutive BNT162b2 mRNA vaccinations boosted innate immune responses and caused epigenetic changes in isolated monocytes, we showed that these effects occur only transiently and disappear 4 weeks after the second vaccination. Furthermore, single-cell RNA sequencing analysis revealed that a similar gene signature was impaired in the monocytes of unvaccinated COVID-19 patients with acute respiratory distress syndrome. These results reinforce the importance of the innate immune response in the determination of COVID-19 severity but indicate that, unlike adaptive immunity, innate immunity is not unexpectedly sustained even after consecutive vaccination. This study, which focuses on innate immmune memory, may provide novel insights into the vaccine development against infectious diseases.

Authors

Yuta Yamaguchi, Yasuhiro Kato, Ryuya Edahiro, Jonas N. Søndergaard, Teruaki Murakami, Saori Amiya, Shinichiro Nameki, Yuko Yoshimine, Takayoshi Morita, Yusuke Takeshima, Shuhei Sakakibara, Yoko Naito, Daisuke Motooka, Yu-Chen Liu, Yuya Shirai, Yasutaka Okita, Jun Fujimoto, Haruhiko Hirata, Yoshito Takeda, James B. Wing, Daisuke Okuzaki, Yukinori Okada, Atsushi Kumanogoh

×
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 10
  • 11
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts