Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Vascular biology

  • 240 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 23
  • 24
  • Next →
Common clonal haematopoiesis driver mutations have disparate effects on macrophage cytokines, clonal expansion and atherogenesis
Paul R. Carter, Lauren Kitt, Amanda Rodgers, Nichola Figg, Ang Zhou, Chengrui Zhu, Ziyang Wang, Peter Libby, Stephen Burgess, George S. Vassiliou, Murray CH. Clarke
Paul R. Carter, Lauren Kitt, Amanda Rodgers, Nichola Figg, Ang Zhou, Chengrui Zhu, Ziyang Wang, Peter Libby, Stephen Burgess, George S. Vassiliou, Murray CH. Clarke
View: Text | PDF

Common clonal haematopoiesis driver mutations have disparate effects on macrophage cytokines, clonal expansion and atherogenesis

  • Text
  • PDF
Abstract

Clonal haematopoiesis of indeterminate potential (CHIP) is the expansion of blood stem cells and progeny after somatic mutation. CHIP associates with increased cardiovascular disease (CVD) with inflammation from macrophages a proposed common effector. However, mouse CHIP studies are discordant for clonal expansion and inflammation. Similarly, directionality of association between CHIP and CVD remains debated. We investigated effects of three CHIP mutations on macrophage cytokines, clonal expansion and atherosclerosis in parallel. We find that Tet2 and Dnmt3a mutations increase cytokines and inflammasome activation in Tet2 but decrease in Dnmt3a. However, Jak2 mutant macrophages produced equivalent cytokine as wild-type. In mice, Tet2 mutants clonally expanded, but Dnmt3a and Jak2 mutants didn’t. Expansion was unaffected by systemic inflammation, while hyperlipidemia expanded Tet2-/- cells, but not mono-allelic mutants. Similarly, human Mendelian randomisation showed no effect of serum cytokines or CVD on CHIP risk. Experimental atherosclerosis was increased in females with Tet2 and males with Jak2, but unchanged with Dnmt3a mutations. Together, common CHIP mutations have disparate effects on macrophage cytokines and clonal expansion, and sex-dependent effects on atherogenesis, suggesting a common mechanism across CHIP is unlikely. Thus, CHIP mutations differ in pathophysiology and clinical sequalae across sexes and should be treated as different entities.

Authors

Paul R. Carter, Lauren Kitt, Amanda Rodgers, Nichola Figg, Ang Zhou, Chengrui Zhu, Ziyang Wang, Peter Libby, Stephen Burgess, George S. Vassiliou, Murray CH. Clarke

×

A platelet transcriptomic signature of thromboinflammation predicts cardiovascular risk
Antonia Beitzen-Heineke, Matthew A. Muller, Yuhe Xia, Elliot Luttrell-Williams, Florencia Schlamp, Deepak Voora, Kelly V. Ruggles, Michael S. Garshick, Tessa J. Barrett, Jeffrey S. Berger
Antonia Beitzen-Heineke, Matthew A. Muller, Yuhe Xia, Elliot Luttrell-Williams, Florencia Schlamp, Deepak Voora, Kelly V. Ruggles, Michael S. Garshick, Tessa J. Barrett, Jeffrey S. Berger
View: Text | PDF

A platelet transcriptomic signature of thromboinflammation predicts cardiovascular risk

  • Text
  • PDF
Abstract

BACKGROUND Platelets are increasingly recognized as active participants in immune signaling and systemic inflammation. Upon activation, platelets form monocyte platelet aggregates (MPA) representing the crossroads of thrombosis and inflammation. We hypothesized that platelet transcriptomics could capture this thromboinflammatory axis and identify individuals at elevated cardiovascular risk.METHODS: MPA levels, defined as CD14+CD61+ cells, were measured using flow cytometry at 2 time points, 4 weeks apart, in healthy individuals Platelets were isolated and sequenced. Individuals were categorized as MPAhi or MPAlo based on consistently high or low MPA levels across time points.RESULTS Among 149 participants (median age 52 years, 57% female, 50% non-White), MPAhi individuals exhibited increased expression of platelet activation markers P-selectin (P < 0.001), PAC-1 (P = 0.021), and CD40L (P < 0.001) and enriched immune signaling pathways. Informed by MPA levels and derived from the platelet transcriptome, we developed a 42-gene thromboinflammation platelet signature (TIPS), which correlated with MPA levels in multiple cohorts and was reproducible over time. TIPS was elevated in patients with COVID-19 (P = 0.0002) and myocardial infarction (Padj = 0.008), and as in predicted future cardiovascular events in patients who underwent lower extremity revascularization after a median follow-up of 18 months (adjusted for age, sex, race, and ethnicity [adjHR] 1.55, P = 0.006). Notably, TIPS was modifiable by ticagrelor (P = 0.002) but not aspirin.CONCLUSION These findings establish MPA as a biomarker of thromboinflammation and introduce TIPS, a platelet RNA signature, that captures thromboinflammation and provides a promising tool for cardiovascular risk stratification and a potential therapeutic target.TRIAL REGISTRATION NCT04369664FUNDING NIH R35HL144993, NIH R01HL139909, and AHA 16SFRN2873002 to JSB, DFG Walter-Benjamin-Programme 537070747 to AB.

Authors

Antonia Beitzen-Heineke, Matthew A. Muller, Yuhe Xia, Elliot Luttrell-Williams, Florencia Schlamp, Deepak Voora, Kelly V. Ruggles, Michael S. Garshick, Tessa J. Barrett, Jeffrey S. Berger

×

Insights into KIF11 pathogenesis in Microcephaly-Lymphedema-Chorioretinopathy syndrome from a lymphatic perspective
Kazim Ogmen, Sara E. Dobbins, Rose Yinghan Behncke, Ines Martinez-Corral, Ryan C.S. Brown, Michelle Meier, Sascha Ulferts, Nils Rouven Hansmeier, Ege Sackey, Ahlam Alqahtani, Christina Karapouliou, Dionysios Grigoriadis, Juan C. Del Rey Jimenez, Michael Oberlin, Denise Williams, Arzu Ekici, Kadri Karaer, Steve Jeffery, Peter Mortimer, Kristiana Gordon, Kazuhide S. Okuda, Benjamin M. Hogan, Taija Mäkinen, René Hägerling, Sahar Mansour, Silvia Martin-Almedina, Pia Ostergaard
Kazim Ogmen, Sara E. Dobbins, Rose Yinghan Behncke, Ines Martinez-Corral, Ryan C.S. Brown, Michelle Meier, Sascha Ulferts, Nils Rouven Hansmeier, Ege Sackey, Ahlam Alqahtani, Christina Karapouliou, Dionysios Grigoriadis, Juan C. Del Rey Jimenez, Michael Oberlin, Denise Williams, Arzu Ekici, Kadri Karaer, Steve Jeffery, Peter Mortimer, Kristiana Gordon, Kazuhide S. Okuda, Benjamin M. Hogan, Taija Mäkinen, René Hägerling, Sahar Mansour, Silvia Martin-Almedina, Pia Ostergaard
View: Text | PDF

Insights into KIF11 pathogenesis in Microcephaly-Lymphedema-Chorioretinopathy syndrome from a lymphatic perspective

  • Text
  • PDF
Abstract

Pathogenic variants in kinesin KIF11 underlie microcephaly-lymphedema-chorioretinopathy (MLC) syndrome. Although well known for regulating spindle dynamics ensuring successful cell division, the association of KIF11 (encoding EG5) with development of the lymphatic system, and how KIF11 pathogenic variants lead to lymphatic dysfunction and lymphedema remain unknown. Using patient-derived lymphoblastoid cells, we demonstrated that MLC patients carrying pathogenic stop-gain variants in KIF11 have reduced mRNA and protein levels. Lymphoscintigraphy showed reduced tracer absorption, and intestinal lymphangiectasia was detected in one patient, pointing to impairment of lymphatic function caused by KIF11 haploinsufficiency. We revealed that KIF11 is expressed in early human and mouse development with the lymphatic markers VEGFR3, Podoplanin and PROX1. In zebrafish, scRNA-seq identified kif11 specifically expressed in endothelial precursors. In human lymphatic endothelial cells (LECs), EG5 inhibition with Ispinesib, reduced VEGFC-driven AKT phosphorylation, migration and spheroid sprouting. KIF11 knockdown reduced PROX1 and VEGFR3 expression, providing for the first time a link between KIF11 and drivers of lymphangiogenesis and lymphatic identity.

Authors

Kazim Ogmen, Sara E. Dobbins, Rose Yinghan Behncke, Ines Martinez-Corral, Ryan C.S. Brown, Michelle Meier, Sascha Ulferts, Nils Rouven Hansmeier, Ege Sackey, Ahlam Alqahtani, Christina Karapouliou, Dionysios Grigoriadis, Juan C. Del Rey Jimenez, Michael Oberlin, Denise Williams, Arzu Ekici, Kadri Karaer, Steve Jeffery, Peter Mortimer, Kristiana Gordon, Kazuhide S. Okuda, Benjamin M. Hogan, Taija Mäkinen, René Hägerling, Sahar Mansour, Silvia Martin-Almedina, Pia Ostergaard

×

Inhibition of the angiotensin-converting enzyme N-terminal catalytic domain prevents endogenous opioid degradation in brain tissue
Filip Hanak, Jessica L. Swanson, Krzysztof Felczak, Prakashkumar Dobariya, Ursula C.H. Girdwood, Kenneth E. Bernstein, Swati S. More, Patrick E. Rothwell
Filip Hanak, Jessica L. Swanson, Krzysztof Felczak, Prakashkumar Dobariya, Ursula C.H. Girdwood, Kenneth E. Bernstein, Swati S. More, Patrick E. Rothwell
View: Text | PDF

Inhibition of the angiotensin-converting enzyme N-terminal catalytic domain prevents endogenous opioid degradation in brain tissue

  • Text
  • PDF
Abstract

Authors

Filip Hanak, Jessica L. Swanson, Krzysztof Felczak, Prakashkumar Dobariya, Ursula C.H. Girdwood, Kenneth E. Bernstein, Swati S. More, Patrick E. Rothwell

×

Combination of Orai1 inhibitor CM5480 with specific therapy mitigates pulmonary hypertension and its cardiac dysfunction
Anaïs Saint-Martin Willer, Grégoire Ruffenach, Bastien Masson, Kristelle El Jekmek, Angèle Boët, Rui Adão, Mathieu Gourmelon, Antoine Beauvais, Jessica Sabourin, Mary Dutheil, Maria-Rosa Ghigna, Laurent Tesson, Séverine Ménoret, Ignacio Anegon, Fabrice Bauer, Vincent de Montpréville, Sudarshan Hebbar, Carmen Brás-Silva, Kenneth Stauderman, Marc Humbert, Olaf Mercier, David Montani, Véronique Capuano, Fabrice Antigny
Anaïs Saint-Martin Willer, Grégoire Ruffenach, Bastien Masson, Kristelle El Jekmek, Angèle Boët, Rui Adão, Mathieu Gourmelon, Antoine Beauvais, Jessica Sabourin, Mary Dutheil, Maria-Rosa Ghigna, Laurent Tesson, Séverine Ménoret, Ignacio Anegon, Fabrice Bauer, Vincent de Montpréville, Sudarshan Hebbar, Carmen Brás-Silva, Kenneth Stauderman, Marc Humbert, Olaf Mercier, David Montani, Véronique Capuano, Fabrice Antigny
View: Text | PDF

Combination of Orai1 inhibitor CM5480 with specific therapy mitigates pulmonary hypertension and its cardiac dysfunction

  • Text
  • PDF
Abstract

Pulmonary arterial hypertension (PAH) is a rare and incurable disease characterized by progressive narrowing of pulmonary arteries (PA), resulting in right ventricular (RV) hypertrophy, RV failure, and eventually death. Orai1 inhibition has emerged as promising therapeutic approach to mitigate PAH. In this study, we investigated the efficacy of a clinically applicable selective Orai1 inhibitor, CM5480, and its effects when combined with standard PAH therapies in a preclinical PAH model. In male and female monocrotaline PAH-rats, CM5480 monotherapy improved hemodynamics, PA, and RV remodeling, as confirmed by RV catheterization, echocardiography, histology, and unbiased RNA-Seq. Standard PAH therapies, ambrisentan or sildenafil, achieved modest improvements in experimental PAH. In contrast, combination therapies with CM5480 yielded significantly greater benefits in reducing PA remodeling and improving cardiac function compared with monotherapies. Furthermore, in vitro experiments showed that Orai1 knockdown reduced pulmonary endothelial cell dysfunction in PAH and that the Orai1 pathway is independent of standard PAH-targeted pathways in PA smooth muscle cells (PASMCs). Finally, we found enhanced Orai1 expression/function in PASMCs and pulmonary vein SMCs from patients with pulmonary veno-occlusive disease. These findings suggest that Orai1 inhibition represents a potentially novel and complementary therapeutic strategy for PAH by acting at pulmonary vascular and RV levels.

Authors

Anaïs Saint-Martin Willer, Grégoire Ruffenach, Bastien Masson, Kristelle El Jekmek, Angèle Boët, Rui Adão, Mathieu Gourmelon, Antoine Beauvais, Jessica Sabourin, Mary Dutheil, Maria-Rosa Ghigna, Laurent Tesson, Séverine Ménoret, Ignacio Anegon, Fabrice Bauer, Vincent de Montpréville, Sudarshan Hebbar, Carmen Brás-Silva, Kenneth Stauderman, Marc Humbert, Olaf Mercier, David Montani, Véronique Capuano, Fabrice Antigny

×

Angiopoietin-like 3 monomers are abundant in human plasma but are unable to inhibit endothelial lipase
Sydney G. Walker, Yan Q. Chen, Kelli L. Sylvers-Davie, Alex Dou, Eugene Y. Zhen, Yuewei Qian, Yi Wen, Mariam E. Ehsani, Sydney A. Smith, Rakshya Thapa, Maxwell J. Mercer, Lucy Langmack, Bharat Raj Bhattarai, Michael Ploug, Robert J. Konrad, Brandon S.J. Davies
Sydney G. Walker, Yan Q. Chen, Kelli L. Sylvers-Davie, Alex Dou, Eugene Y. Zhen, Yuewei Qian, Yi Wen, Mariam E. Ehsani, Sydney A. Smith, Rakshya Thapa, Maxwell J. Mercer, Lucy Langmack, Bharat Raj Bhattarai, Michael Ploug, Robert J. Konrad, Brandon S.J. Davies
View: Text | PDF

Angiopoietin-like 3 monomers are abundant in human plasma but are unable to inhibit endothelial lipase

  • Text
  • PDF
Abstract

Angiopoietin-like 3 (ANGPTL3) is a major regulator of lipoprotein metabolism. ANGPTL3 deficiency results in lower levels of triglycerides, LDL-cholesterol (LDL-C), and HDL-cholesterol (HDL-C), and may protect from cardiovascular disease. ANGPTL3 oligomerizes with ANGPTL8 to inhibit lipoprotein lipase (LPL), the enzyme responsible for plasma triglyceride hydrolysis. Independent of ANGPTL8, oligomers of ANGPTL3 can inhibit endothelial lipase (EL), which regulates circulating HDL-C and LDL-C levels through the hydrolysis of lipoprotein phospholipids. The N-terminal region of ANGPTL3 is necessary for both oligomerization and lipase inhibition. However, our understanding of the specific residues that contribute to these functions is incomplete. In this study, we performed mutagenesis of the N-terminal region to identify residues important for EL inhibition and oligomerization. We also assessed the presence of different ANGPTL3 species in human plasma. We identified a motif important for lipase inhibition, and protein structure prediction suggested that this region interacted directly with EL. We also found that recombinant ANGPTL3 formed a homotrimer and was unable to inhibit EL activity when trimerization was disrupted. Surprisingly, we observed that human plasma contained more monomeric ANGPTL3 than trimeric ANGPTL3. An important implication of these findings is that previous correlations between circulating ANGPTL3 and circulating triglyceride-rich lipoproteins need to be revisited.

Authors

Sydney G. Walker, Yan Q. Chen, Kelli L. Sylvers-Davie, Alex Dou, Eugene Y. Zhen, Yuewei Qian, Yi Wen, Mariam E. Ehsani, Sydney A. Smith, Rakshya Thapa, Maxwell J. Mercer, Lucy Langmack, Bharat Raj Bhattarai, Michael Ploug, Robert J. Konrad, Brandon S.J. Davies

×

Site-1 protease–mediated cholesterol metabolism is essential for lymphatic development in mice
Yuji Kondo, Yizhi Jiang, Xin Geng, Jianhua Song, Summer Simeroth, J. Michael McDaniel, Pengchun Yu, R. Sathish Srinivasan, Lijun Xia
Yuji Kondo, Yizhi Jiang, Xin Geng, Jianhua Song, Summer Simeroth, J. Michael McDaniel, Pengchun Yu, R. Sathish Srinivasan, Lijun Xia
View: Text | PDF

Site-1 protease–mediated cholesterol metabolism is essential for lymphatic development in mice

  • Text
  • PDF
Abstract

Recent evidence suggests that cellular metabolism, including glycolysis and fatty acid synthesis in lymphatic endothelial cells (LECs), plays essential roles in developing functional lymphatic systems. Site-1 protease (S1P) proteolytically activates membrane-bound latent transcription factor sterol regulatory element-binding proteins (SREBPs), which are required to induce lipid biosynthesis. In this study, we generated mice with pan-endothelial or LEC-specific deficiency of either S1P or SREBP2. Mouse embryos with pan-endothelial deletion of S1P showed defective lymphatic vessel migration in skin and lymphedema, while their blood vasculature formation was relatively normal. Mice lacking S1P in LECs or SREBP2 in LECs exhibited chylous ascites, reduced lipogenic gene expression, and reduced VEGFR3 expression and progressively developed wasting, resulting in postnatal death by approximately 8 weeks of age. Additionally, mice with SREBP2 deletion in LECs exhibited dilated lacteal and mesenteric lymphatics and accumulation of lipids in the lacteal before weaning age, indicating apparent lymphatic malfunctioning. These data indicate that S1P-SREBP2–mediated cholesterol biosynthesis is pivotal in lymphatic vascular development. We also found that treating human dermal LECs with VEGF-C induced proteolytic activation of SREBP2 with concomitant phosphorylation of Akt and the expression of genes involved in cholesterol biosynthesis. Those effects were canceled out by treating the cells with an S1P inhibitor or SREBP inhibitor. These data demonstrate that the S1P/SREBP2 axis is critical in VEGF-C/VEGFR3 mitogenic signaling in LECs.

Authors

Yuji Kondo, Yizhi Jiang, Xin Geng, Jianhua Song, Summer Simeroth, J. Michael McDaniel, Pengchun Yu, R. Sathish Srinivasan, Lijun Xia

×

C1q limits cystoid edema by maintaining basal β-catenin-dependent signaling and blood-retina barrier function
Lingling Zhang, Jacklyn Levey, Md. Abedin, Ha-Neul Jo, Emmanuel Odame, Miranda Howe, Kaia L. Douglas, Elise Thoreen, Scott W. McPherson, Heidi Roehrich, Somasekar Seshagiri, Stephane Angers, Zhe Chen, Harald J. Junge
Lingling Zhang, Jacklyn Levey, Md. Abedin, Ha-Neul Jo, Emmanuel Odame, Miranda Howe, Kaia L. Douglas, Elise Thoreen, Scott W. McPherson, Heidi Roehrich, Somasekar Seshagiri, Stephane Angers, Zhe Chen, Harald J. Junge
View: Text | PDF

C1q limits cystoid edema by maintaining basal β-catenin-dependent signaling and blood-retina barrier function

  • Text
  • PDF
Abstract

Macular edema (ME) can cause profound vision impairment and occurs in several prevalent retinal diseases, including diabetic retinopathy (DR), choroidal neovascularization (CNV), retinal vein occlusion, and uveitis. Retinal edema typically results from dysfunction of the blood-retina barrier (BRB), which is associated with increased retinal expression of complement components. It is unclear whether the classical complement pathway has detrimental or protective roles in the context of BRB dysfunction. Here, we characterized Tspan12 KODBM (Disrupted Barrier Maintenance) mice, a mouse model of cystoid edema generated by genetically and pharmacologically manipulating beta-catenin-dependent norrin/frizzled4 (FZD4) signaling. We assessed BRB function, cystoid edema, ERG, and microglia activation outcomes in an aging study with WT, C1qa KO, Tspan12 KODBM, and Tspan12 KODBM;C1qa KO compound mutant mice. Phenotypic analyses and cell-based experiments indicated that C1QA contributes to maintaining basal β-catenin-dependent signaling and that the absence of C1QA exacerbates BRB dysfunction, cystoid edema, and neuroinflammation in Tspan12 KODBM;C1qa compound mutant mice. Activation of β-catenin-dependent signaling by a FZD4/LRP5 agonist antibody modality achieved complete resolution of cystoid edema. This study shows that reducing or enhancing norrin/frizzled4 signaling can increase or decrease cystoid edema, respectively, underscoring its potential as a therapeutic target in ME. Furthermore, this study provides novel insights into the contribution of C1QA to BRB maintenance.

Authors

Lingling Zhang, Jacklyn Levey, Md. Abedin, Ha-Neul Jo, Emmanuel Odame, Miranda Howe, Kaia L. Douglas, Elise Thoreen, Scott W. McPherson, Heidi Roehrich, Somasekar Seshagiri, Stephane Angers, Zhe Chen, Harald J. Junge

×

Platelets impair the resolution of inflammation in atherosclerotic plaques in insulin-resistant mice after lipid-lowering
Maria Laskou, Sofie Delbare, Michael Gildea, Ada Weinstock, Vitor De Moura Virginio, Maxwell La Forest, Franziska Krautter, Casey Donahoe, Letizia Amadori, Natalia Eberhardt, Tessa J. Barrett, Chiara Giannarelli, Jeffrey S. Berger, Edward A. Fisher
Maria Laskou, Sofie Delbare, Michael Gildea, Ada Weinstock, Vitor De Moura Virginio, Maxwell La Forest, Franziska Krautter, Casey Donahoe, Letizia Amadori, Natalia Eberhardt, Tessa J. Barrett, Chiara Giannarelli, Jeffrey S. Berger, Edward A. Fisher
View: Text | PDF

Platelets impair the resolution of inflammation in atherosclerotic plaques in insulin-resistant mice after lipid-lowering

  • Text
  • PDF
Abstract

Insulin resistance impairs benefits of lipid-lowering treatment as evidenced by higher cardiovascular risk in individuals with type 2 diabetes versus those without. Because platelet activity is higher in insulin-resistant patients and promotes atherosclerosis progression, we questioned whether platelets impair inflammation resolution in plaques during lipid-lowering. In mice with obesity and insulin resistance, we induced advanced plaques, then implemented lipid-lowering to promote atherosclerotic plaque inflammation-resolution. Concurrently, mice were treated with either platelet-depleting or control antibodies for 3 weeks. Platelet activation and insulin resistance were unaffected by lipid-lowering. Both antibody-treated groups showed reduced plaque macrophages, but plaque cellular and structural composition differed. In platelet-depleted mice, scRNA seq revealed dampened inflammatory gene expression in plaque macrophages and an expansion of a subset of Fcgr4+ macrophages having features of inflammation-resolving, phagocytic cells. Necrotic core size was smaller and collagen content greater, resembling stable human plaques. Consistent with the mouse results, clinical data showed that patients with lower platelet counts had decreased pro-inflammatory signaling pathways in circulating non-classical monocytes after lipid-lowering. These findings highlight that platelets hinder inflammation-resolution in atherosclerosis during lipid-lowering treatment. Identifying novel platelet-targeted therapies following lipid-lowering treatment in individuals with insulin resistance may be a promising therapeutic approach to promote atherosclerotic plaque inflammation-resolution.

Authors

Maria Laskou, Sofie Delbare, Michael Gildea, Ada Weinstock, Vitor De Moura Virginio, Maxwell La Forest, Franziska Krautter, Casey Donahoe, Letizia Amadori, Natalia Eberhardt, Tessa J. Barrett, Chiara Giannarelli, Jeffrey S. Berger, Edward A. Fisher

×

A systems approach to target discovery identifies the role of lncRNA-SPANXA2-OT1 in macrophage chemotaxis
Prabhash Kumar Jha, Sarvesh Chelvanambi, Yuto Nakamura, Lucas Yuji Umesaki Itto, Aatira Vijay, Adrien Lupieri, Miguel Cantadori Barbeiro, Thanh-Dat Le, Caio Borges Nascimento, Taku Kasai, Mary C. Whelan, Daiki Hosokawa, Dakota Becker-Greene, Sasha A. Singh, Elena Aikawa, Shizuka Uchida, Masanori Aikawa
Prabhash Kumar Jha, Sarvesh Chelvanambi, Yuto Nakamura, Lucas Yuji Umesaki Itto, Aatira Vijay, Adrien Lupieri, Miguel Cantadori Barbeiro, Thanh-Dat Le, Caio Borges Nascimento, Taku Kasai, Mary C. Whelan, Daiki Hosokawa, Dakota Becker-Greene, Sasha A. Singh, Elena Aikawa, Shizuka Uchida, Masanori Aikawa
View: Text | PDF

A systems approach to target discovery identifies the role of lncRNA-SPANXA2-OT1 in macrophage chemotaxis

  • Text
  • PDF
Abstract

Coronary artery disease (CAD) is the leading cause of mortality worldwide, with macrophages playing a central role in shaping the inflammatory environment through cytokines, chemokines, and other mediators. Long noncoding RNAs (lncRNAs) are emerging as key regulators of cellular processes due to their interactions with DNA, RNA, microRNAs, and proteins, positioning them as promising therapeutic targets. Through integrative transcriptomic analysis, we identified SPANXA2-OT1 as a primate-specific lncRNA with a potential role in macrophage-mediated inflammation in CAD. Functional studies in primary human macrophages demonstrated that SPANXA2-OT1 is induced by inflammatory stimulation, localized to the cytoplasm, and exerts regulatory effects on chemokine expression and macrophage chemotaxis. Mechanistically, SPANXA2-OT1 acts as a molecular sponge for microRNA-338, thereby influencing the expression of interleukin-8 (IL-8), a critical mediator of monocyte recruitment and inflammatory signaling. Collectively, these findings establish SPANXA2-OT1 as a human-specific regulator of inflammatory pathways in CAD and highlight its translational potential as both a biomarker and therapeutic target.

Authors

Prabhash Kumar Jha, Sarvesh Chelvanambi, Yuto Nakamura, Lucas Yuji Umesaki Itto, Aatira Vijay, Adrien Lupieri, Miguel Cantadori Barbeiro, Thanh-Dat Le, Caio Borges Nascimento, Taku Kasai, Mary C. Whelan, Daiki Hosokawa, Dakota Becker-Greene, Sasha A. Singh, Elena Aikawa, Shizuka Uchida, Masanori Aikawa

×
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 23
  • 24
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts