Angiopoietin-like 3 (ANGPTL3) is a major regulator of lipoprotein metabolism. ANGPTL3 deficiency results in lower levels of triglycerides, LDL-cholesterol (LDL-C), and HDL-cholesterol (HDL-C), and may protect from cardiovascular disease. ANGPTL3 oligomerizes with ANGPTL8 to inhibit lipoprotein lipase (LPL), the enzyme responsible for plasma triglyceride hydrolysis. Independent of ANGPTL8, oligomers of ANGPTL3 can inhibit endothelial lipase (EL), which regulates circulating HDL-C and LDL-C levels through the hydrolysis of lipoprotein phospholipids. The N-terminal region of ANGPTL3 is necessary for both oligomerization and lipase inhibition. However, our understanding of the specific residues that contribute to these functions is incomplete. In this study, we performed mutagenesis of the N-terminal region to identify residues important for EL inhibition and oligomerization. We also assessed the presence of different ANGPTL3 species in human plasma. We identified a motif important for lipase inhibition, and protein structure prediction suggested that this region interacted directly with EL. We also found that recombinant ANGPTL3 formed a homotrimer and was unable to inhibit EL activity when trimerization was disrupted. Surprisingly, we observed that human plasma contained more monomeric ANGPTL3 than trimeric ANGPTL3. An important implication of these findings is that previous correlations between circulating ANGPTL3 and circulating triglyceride-rich lipoproteins need to be revisited.
Sydney G. Walker, Yan Q. Chen, Kelli L. Sylvers-Davie, Alex Dou, Eugene Y. Zhen, Yuewei Qian, Yi Wen, Mariam E. Ehsani, Sydney A. Smith, Rakshya Thapa, Maxwell J. Mercer, Lucy Langmack, Bharat Raj Bhattarai, Michael Ploug, Robert J. Konrad, Brandon S.J. Davies
Recent evidence suggests that cellular metabolism, including glycolysis and fatty acid synthesis in lymphatic endothelial cells (LECs), plays essential roles in developing functional lymphatic systems. Site-1 protease (S1P) proteolytically activates membrane-bound latent transcription factor sterol regulatory element-binding proteins (SREBPs), which are required to induce lipid biosynthesis. In this study, we generated mice with pan-endothelial or LEC-specific deficiency of either S1P or SREBP2. Mouse embryos with pan-endothelial deletion of S1P showed defective lymphatic vessel migration in skin and lymphedema, while their blood vasculature formation was relatively normal. Mice lacking S1P in LECs or SREBP2 in LECs exhibited chylous ascites, reduced lipogenic gene expression, and reduced VEGFR3 expression and progressively developed wasting, resulting in postnatal death by approximately 8 weeks of age. Additionally, mice with SREBP2 deletion in LECs exhibited dilated lacteal and mesenteric lymphatics and accumulation of lipids in the lacteal before weaning age, indicating apparent lymphatic malfunctioning. These data indicate that S1P-SREBP2–mediated cholesterol biosynthesis is pivotal in lymphatic vascular development. We also found that treating human dermal LECs with VEGF-C induced proteolytic activation of SREBP2 with concomitant phosphorylation of Akt and the expression of genes involved in cholesterol biosynthesis. Those effects were canceled out by treating the cells with an S1P inhibitor or SREBP inhibitor. These data demonstrate that the S1P/SREBP2 axis is critical in VEGF-C/VEGFR3 mitogenic signaling in LECs.
Yuji Kondo, Yizhi Jiang, Xin Geng, Jianhua Song, Summer Simeroth, J. Michael McDaniel, Pengchun Yu, R. Sathish Srinivasan, Lijun Xia
Macular edema (ME) can cause profound vision impairment and occurs in several prevalent retinal diseases, including diabetic retinopathy (DR), choroidal neovascularization (CNV), retinal vein occlusion, and uveitis. Retinal edema typically results from dysfunction of the blood-retina barrier (BRB), which is associated with increased retinal expression of complement components. It is unclear whether the classical complement pathway has detrimental or protective roles in the context of BRB dysfunction. Here, we characterized Tspan12 KODBM (Disrupted Barrier Maintenance) mice, a mouse model of cystoid edema generated by genetically and pharmacologically manipulating beta-catenin-dependent norrin/frizzled4 (FZD4) signaling. We assessed BRB function, cystoid edema, ERG, and microglia activation outcomes in an aging study with WT, C1qa KO, Tspan12 KODBM, and Tspan12 KODBM;C1qa KO compound mutant mice. Phenotypic analyses and cell-based experiments indicated that C1QA contributes to maintaining basal β-catenin-dependent signaling and that the absence of C1QA exacerbates BRB dysfunction, cystoid edema, and neuroinflammation in Tspan12 KODBM;C1qa compound mutant mice. Activation of β-catenin-dependent signaling by a FZD4/LRP5 agonist antibody modality achieved complete resolution of cystoid edema. This study shows that reducing or enhancing norrin/frizzled4 signaling can increase or decrease cystoid edema, respectively, underscoring its potential as a therapeutic target in ME. Furthermore, this study provides novel insights into the contribution of C1QA to BRB maintenance.
Lingling Zhang, Jacklyn Levey, Md. Abedin, Ha-Neul Jo, Emmanuel Odame, Miranda Howe, Kaia L. Douglas, Elise Thoreen, Scott W. McPherson, Heidi Roehrich, Somasekar Seshagiri, Stephane Angers, Zhe Chen, Harald J. Junge
Insulin resistance impairs benefits of lipid-lowering treatment as evidenced by higher cardiovascular risk in individuals with type 2 diabetes versus those without. Because platelet activity is higher in insulin-resistant patients and promotes atherosclerosis progression, we questioned whether platelets impair inflammation resolution in plaques during lipid-lowering. In mice with obesity and insulin resistance, we induced advanced plaques, then implemented lipid-lowering to promote atherosclerotic plaque inflammation-resolution. Concurrently, mice were treated with either platelet-depleting or control antibodies for 3 weeks. Platelet activation and insulin resistance were unaffected by lipid-lowering. Both antibody-treated groups showed reduced plaque macrophages, but plaque cellular and structural composition differed. In platelet-depleted mice, scRNA seq revealed dampened inflammatory gene expression in plaque macrophages and an expansion of a subset of Fcgr4+ macrophages having features of inflammation-resolving, phagocytic cells. Necrotic core size was smaller and collagen content greater, resembling stable human plaques. Consistent with the mouse results, clinical data showed that patients with lower platelet counts had decreased pro-inflammatory signaling pathways in circulating non-classical monocytes after lipid-lowering. These findings highlight that platelets hinder inflammation-resolution in atherosclerosis during lipid-lowering treatment. Identifying novel platelet-targeted therapies following lipid-lowering treatment in individuals with insulin resistance may be a promising therapeutic approach to promote atherosclerotic plaque inflammation-resolution.
Maria Laskou, Sofie Delbare, Michael Gildea, Ada Weinstock, Vitor De Moura Virginio, Maxwell La Forest, Franziska Krautter, Casey Donahoe, Letizia Amadori, Natalia Eberhardt, Tessa J. Barrett, Chiara Giannarelli, Jeffrey S. Berger, Edward A. Fisher
Coronary artery disease (CAD) is the leading cause of mortality worldwide, with macrophages playing a central role in shaping the inflammatory environment through cytokines, chemokines, and other mediators. Long noncoding RNAs (lncRNAs) are emerging as key regulators of cellular processes due to their interactions with DNA, RNA, microRNAs, and proteins, positioning them as promising therapeutic targets. Through integrative transcriptomic analysis, we identified SPANXA2-OT1 as a primate-specific lncRNA with a potential role in macrophage-mediated inflammation in CAD. Functional studies in primary human macrophages demonstrated that SPANXA2-OT1 is induced by inflammatory stimulation, localized to the cytoplasm, and exerts regulatory effects on chemokine expression and macrophage chemotaxis. Mechanistically, SPANXA2-OT1 acts as a molecular sponge for microRNA-338, thereby influencing the expression of interleukin-8 (IL-8), a critical mediator of monocyte recruitment and inflammatory signaling. Collectively, these findings establish SPANXA2-OT1 as a human-specific regulator of inflammatory pathways in CAD and highlight its translational potential as both a biomarker and therapeutic target.
Prabhash Kumar Jha, Sarvesh Chelvanambi, Yuto Nakamura, Lucas Yuji Umesaki Itto, Aatira Vijay, Adrien Lupieri, Miguel Cantadori Barbeiro, Thanh-Dat Le, Caio Borges Nascimento, Taku Kasai, Mary C. Whelan, Daiki Hosokawa, Dakota Becker-Greene, Sasha A. Singh, Elena Aikawa, Shizuka Uchida, Masanori Aikawa
BACKGROUND Icosapent ethyl (IPE), an ethyl ester of eicosapentaenoic acid (EPA), reduces cardiovascular disease (CVD), but the mechanism remains elusive. We examined the effect of IPE supplementation on lipoprotein subclasses, lipidomes, and pro-atherogenic properties.METHODS Using 3 independent metabolomic platforms, we examined the effect of high-dose IPE supplementation for 28 days on fatty acid profiles, lipoprotein subclasses, lipidomes, and pro-atherogenic properties in normolipidemic volunteers (n = 38).RESULTS IPE supplementation increased lipoprotein EPA on average 4-fold within 7 days, returning to baseline after a 7-day washout. Notably, the incorporation displayed marked interindividual variance, negatively correlating with baseline levels. We identified persistent participant-specific lipoprotein fingerprints despite uniform IPE-induced lipidome remodeling across all lipoprotein classes. This remodeling resulted in reductions in saturated, monounsaturated, and n-6 polyunsaturated fatty acids, resulting in reduced clinical risk markers, including triglyceride, remnant cholesterol, and apolipoprotein B (apoB) levels and 10-year CVD risk score. Of the pro-atherogenic properties tested, IPE significantly reduced apoB lipoprotein binding to proteoglycans, which correlated with lower apoB particle concentration, cholesterol content, and specific lipid species in LDL, including phosphatidylcholine 38:3 previously associated with CVD.CONCLUSION These findings highlight IPE’s rapid, uniform remodeling of lipoproteins and reduced proteoglycan binding, likely contributing to previously observed CVD risk reduction. Persistent interindividual lipidome signatures underscore the potential for personalized therapeutic approaches in atherosclerotic CVD treatment.TRIAL REGISTRATION NCT04152291.FUNDING Jenny and Antti Wihuri Foundation, Research Council of Finland, Sigrid Jusélius Foundation, Finnish Foundation for Cardiovascular Research, Emil Aaltonen Foundation, Ida Montin Foundation, Novo Nordisk Foundation, Finnish Cultural Foundation, and Jane and Aatos Erkko Foundation.
Lauri Äikäs, Petri T. Kovanen, Martina B. Lorey, Reijo Laaksonen, Minna Holopainen, Hanna Ruhanen, Reijo Käkelä, Matti Jauhiainen, Martin Hermansson, Katariina Öörni
Atrial fibrillation (AF) is a prevalent arrhythmia with known detriments such as heart failure, stroke, and cognitive decline even in patients without prior stroke. The mechanisms by which AF leads to cognitive dysfunction are yet unknown and there is a lack of animal models to study this disease process. We previously developed a murine model of spontaneous and prolonged episodes of AF, a double transgenic mouse model with cardiac specific expression of a gain-of-function mutant voltage-gated sodium channel (DTG-AF mice). Herein, we show for the first time a murine model of AF without any cerebral infarcts exhibiting cognitive dysfunction, including impaired visual learning and cognitive flexibility on touchscreen testing. Mesenteric resistance arterial function of DTG-AF mice showed significant loss of myogenic tone, increased wall thickness and distensibility, and mitochondrial dysfunction. Brain pial arteries also showed increased wall thickness and mitochondrial enlargement. Furthermore, DTG-AF mice have decreased brain perfusion on laser speckle contrast imaging compared to controls. Cumulatively, these findings demonstrate AF leads to vascular structural and functional alterations necessary for dynamic cerebral autoregulation resulting in increased cerebral stress and cognitive dysfunction. Expression of mitochondrial catalase (mCAT) to reduce mitochondrial reactive oxygen species (ROS) was sufficient to prevent vascular dysfunction due to AF, restore perfusion, and improve cognitive flexibility.
Pavithran Guttipatti, Ruiping Ji, Najla Saadallah, Uma Mahesh R. Avula, Deniz Z. Sonmez, Albert Fang, Eric Li, Amar D. Desai, Samantha Parsons, Parmanand Dasrat, Christine Sison, Yanping Sun, Chris N. Goulbourne, Steven R. Reiken, Elaine Y. Wan
Atherosclerotic cardiovascular disease is a major contributor to the global disease burden. Atherosclerosis initiation depends on cholesterol accumulation in subendothelial macrophages (Mφs). To clarify the role of Bmal1 in Mφ function and atherosclerosis, we used several global and myeloid-specific Bmal1 deficient mouse models. Myeloid-specific Bmal1 deficient mice had higher Mφ cholesterol and displayed greater atherosclerosis compared to controls. Bmal1-deficient Mφs exhibited: (1) elevated expression of Cd36 and uptake of oxLDL; (2) diminished expression of Abca1 and Abcg1, and decreased cholesterol efflux and reverse cholesterol transport; and (3) reduced Npc1 and Npc2 expression, and diminished cholesterol egress from lysosomes. Molecular studies revealed that Bmal1 directly regulates basal and cyclic expression of Npc1 and Npc2 by binding the E-boxes in their promoters and indirectly regulates the basal and temporal regulation of Cd36 and Abca1/Abcg1 involving Rev-erbα and Znf202 repressors, respectively. In conclusion, Mφ Bmal1 is a key regulator of the uptake of modified lipoproteins, cholesterol efflux, lysosomal cholesterol egress and atherosclerosis, and therefore may be a master regulator of cholesterol metabolism in Mφs. Restoration of Mφ Bmal1 expression or blocking of factors that decrease its activity may be effective in preventing atherosclerosis.
Xiaoyue Pan, John O'Hare, Cyrus Mowdawalla, Samantha Mota, Nan Wang, M. Mahmood Hussain
BACKGROUND. Cardiotoxicity is a major complication of anti-cancer therapy (CTx); yet, the impact of CTx on the human microcirculation is not well defined. This study evaluated the impact of CTx on microvascular function in breast cancer patients. METHODS. Endothelial function and angiogenic potential were assessed in arterioles and adipose biopsies obtained from breast cancer patients before, during, and after CTx (longitudinal and cross-sectional) and in healthy arterioles exposed to doxorubicin (Dox), trastuzumab (TZM), or paclitaxel (PTX) ex vivo. Conditioned media containing VEGF-B protein was used to test feasibility of a targeted intervention. RESULTS. Patients treated with Dox and/or TZM in vivo developed profound microvascular endothelial dysfunction that persisted for ≥9 months after treatment cessation. Angiogenic potential was reduced during CTx and recovered within one month after cessation. Gene expression related to angiogenesis and inflammation changed over the course of clinical treatment. Isolated adipose arterioles from healthy donors developed endothelial dysfunction when exposed to Dox or TZM ex vivo. In contrast, paclitaxel (PTX), which poses minimal cardiovascular risk, had no impact on vasomotor function. Ex vivo exposure to Dox or PTX suppressed angiogenic potential, whereas TZM had no effect. Treatment with VEGF-B protein preserved endothelial function in healthy arterioles exposed to Dox or TZM ex vivo. CONCLUSION. Breast cancer patients undergoing treatment with Dox and/or TZM develop prolonged microvascular endothelial dysfunction that is recapitulated in healthy arterioles exposed to Dox or TZM ex vivo. Targeted intervention with VEGF-B protects against direct Dox- or TZM-induced vascular toxicity in human arterioles ex vivo. FUNDING. National Institutes of Health grant R01 HL133029, HL173549 (AMB). National Institutes of Health grant T32 HL134643 (JDT, STH). American Heart Association grant SFRN847970 (AMB, DDG). We Care Foundation Grant (AMB, ALK). Medical College of Wisconsin Cardiovascular Center Pre-PPG Grant (AMB). Advancing a Healthier Wisconsin – Redox Biology Grant (AMB). Jenny and Antti Wihuri Foundation (RMK).
Janée D. Terwoord, Laura E. Norwood Toro, Shelby N. Hader, Stephen T. Hammond, Joseph C. Hockenberry, Jasmine Linn, Ibrahim Y. Vazirabad, Amanda L. Kong, Alison J. Kriegel, Ziqing Liu, Riikka M. Kivelä, Gillian Murtagh, David D. Gutterman, Andreas M. Beyer
Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease with no effective pharmacological interventions. While single-cell transcriptomics has advanced our understanding of AAA, it lacks spatial context. Here, we employed Seq-Scope, an ultra-high-resolution spatial transcriptomic technology, to decipher the spatial landscape of angiotensin II–induced AAA in Apoe–/– mice. Our analysis revealed the heterogeneity of macrophages, fibroblasts, and smooth muscle cells (SMCs), with specific responses in different layers of the AAA tissue. SMCs in the inner layers showed associations with Mgp-expressing fibroblasts and GPNMB-expressing macrophages, whereas the outer layers had different dominant cell types. Notably, GPNMB-expressing macrophages were concentrated near SMCs in regions of severe elastic lamina damage. Immunofluorescent staining confirmed their colocalization, and scRNA-seq reanalysis independently validated the presence of GPNMB-high macrophages in AAA tissues, highlighting their involvement in inflammation and tissue remodeling. Moreover, we discovered that macrophage-derived soluble GPNMB induces SMC phenotypic switching, reducing contractile markers while increasing cytokines and metalloproteinases. This effect was partly mediated by CD44 signaling. These findings suggest that GPNMB-high macrophages contribute to AAA development by driving SMC dysfunction. This study highlights the importance of high-resolution spatial transcriptomics in complementing single-cell transcriptomics, offering valuable insights into molecular and cellular responses in the AAA microenvironment.
Guizhen Zhao, Chun-Seok Cho, Hongyu Liu, Yongha Hwang, Yichen Si, Myungjin Kim, Yongjie Deng, Yang Zhao, Chao Xue, Yanhong Guo, Lin Chang, Dogukan Mizrak, Bo Yang, Hyun Min Kang, Jifeng Zhang, Jun Hee Lee, Y. Eugene Chen
No posts were found with this tag.