Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Nephrologies

  • 187 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 18
  • 19
  • Next →
Dissociation of sodium-chloride cotransporter expression and blood pressure during chronic high dietary potassium supplementation
Robert Little, … , Paul A. Welling, Robert A. Fenton
Robert Little, … , Paul A. Welling, Robert A. Fenton
Published January 31, 2023
Citation Information: JCI Insight. 2023. https://doi.org/10.1172/jci.insight.156437.
View: Text | PDF

Dissociation of sodium-chloride cotransporter expression and blood pressure during chronic high dietary potassium supplementation

  • Text
  • PDF
Abstract

Dietary potassium (K+) supplementation is associated with a blood pressure (BP) lowering effect, but not all studies agree. Here we examined the effects of short and long-term K+ supplementation on BP in mice, whether differences depend on the accompanying anion or the sodium (Na+) intake and molecular alterations in the kidney that may underlie BP changes. Relative to the control diet, BP was higher in mice fed a high NaCl (1.57% Na+) for 7 weeks or 2 weeks with a K+-free diet. BP was highest on a K+-free/high NaCl diet. Commensurate with increased abundance and phosphorylation of the thiazide sensitive sodium-chloride-cotransporter (NCC) on the K+-free/high NaCl diet, BP returned to normal with thiazides. Three weeks of a high K+ diet (5% K+) increased BP (predominantly during night-time) independently of dietary Na+ or anion intake. Conversely, 4 days of KCl feeding reduced BP. Both feeding periods resulted in lower NCC levels, but increased levels of cleaved (active) α and γ subunits of the epithelial Na+ channel ENaC. The elevated BP after chronic K+ feeding was reduced by amiloride but not thiazide. Our results suggest that dietary K+ has an optimal threshold where it may be most effective for cardiovascular health.

Authors

Robert Little, Sathish K. Murali, Søren B. Poulsen, Paul R. Grimm, Adrienne Assmus, Lei Cheng, Jessica R. Ivy, Ewout J. Hoorn, Vladimir V. Matchkov, Paul A. Welling, Robert A. Fenton

×

The kidney drug transporter OAT1 regulates gut microbiome–dependent host metabolism
Jeffry C. Granados, … , Geoffrey Chang, Sanjay K. Nigam
Jeffry C. Granados, … , Geoffrey Chang, Sanjay K. Nigam
Published January 24, 2023
Citation Information: JCI Insight. 2023;8(2):e160437. https://doi.org/10.1172/jci.insight.160437.
View: Text | PDF

The kidney drug transporter OAT1 regulates gut microbiome–dependent host metabolism

  • Text
  • PDF
Abstract

Organic anion transporter 1 (OAT1/SLC22A6, NKT) is a multispecific drug transporter in the kidney with numerous substrates, including pharmaceuticals, endogenous metabolites, natural products, and uremic toxins. Here, we show that OAT1 regulates levels of gut microbiome–derived metabolites. We depleted the gut microbiome of Oat1-KO and WT mice and performed metabolomics to analyze the effects of genotype (KO versus WT) and microbiome depletion. OAT1 is an in vivo intermediary between the host and the microbes, with 40 of the 162 metabolites dependent on the gut microbiome also impacted by loss of Oat1. Chemoinformatic analysis revealed that the altered metabolites (e.g., indoxyl sulfate, p-cresol sulfate, deoxycholate) had more ring structures and sulfate groups. This indicates a pathway from gut microbes to liver phase II metabolism, to renal OAT1–mediated transport. The idea that multiple gut-derived metabolites directly interact with OAT1 was confirmed by in vitro transport and magnetic bead binding assays. We show that gut microbiome–derived metabolites dependent on OAT1 are impacted in a chronic kidney disease (CKD) model and human drug-metabolite interactions. Consistent with the Remote Sensing and Signaling Theory, our results support the view that drug transporters (e.g., OAT1, OAT3, OATP1B1, OATP1B3, MRP2, MRP4, ABCG2) play a central role in regulating gut microbe–dependent metabolism, as well as interorganismal communication between the host and microbiome.

Authors

Jeffry C. Granados, Vladimir Ermakov, Koustav Maity, David R. Vera, Geoffrey Chang, Sanjay K. Nigam

×

TFEB-mediated lysosomal exocytosis alleviates high fat diet–induced lipotoxicity in the kidney
Jun Nakamura, … , Andrea Ballabio, Yoshitaka Isaka
Jun Nakamura, … , Andrea Ballabio, Yoshitaka Isaka
Published January 17, 2023
Citation Information: JCI Insight. 2023. https://doi.org/10.1172/jci.insight.162498.
View: Text | PDF

TFEB-mediated lysosomal exocytosis alleviates high fat diet–induced lipotoxicity in the kidney

  • Text
  • PDF
Abstract

Obesity is a major risk factor for end-stage kidney disease. We previously found that lysosomal dysfunction and impaired autophagic flux contributed to lipotoxicity in obesity-related kidney disease, both in humans and experimental animal models. However, the regulatory factors involved in countering renal lipotoxicity are largely unknown. Here we found that palmitic acid (PA) strongly promoted dephosphorylation and nuclear translocation of transcription factor EB (TFEB) by inhibiting the mechanistic target of rapamycin kinase complex 1 (MTORC1) pathway in a Rag GTPase–dependent manner, although these effects gradually diminished after extended treatment. We then investigated the role of TFEB in the pathogenesis of obesity-related kidney disease. Proximal tubular epithelial cell (PTEC)-specific Tfeb-deficient mice fed a high-fat diet (HFD) exhibited greater phospholipid accumulation in enlarged lysosomes, which manifested as multilamellar bodies (MLBs). Activated TFEB mediated lysosomal exocytosis of phospholipids, which help reduce MLB accumulation in PTECs. Furthermore, HFD-fed PTEC-specific Tfeb-deficient mice showed autophagic stagnation and exacerbated injury upon renal ischemia–reperfusion. Finally, higher body mass index was associated with increased vacuolation and decreased nuclear TFEB in the proximal tubules of chronic kidney disease patients. These results indicate a critical role of TFEB-mediated lysosomal exocytosis in counteracting renal lipotoxicity.

Authors

Jun Nakamura, Takeshi Yamamoto, Yoshitsugu Takabatake, Tomoko Namba-Hamano, Satoshi Minami, Atsushi Takahashi, Jun Matsuda, Shinsuke Sakai, Hiroaki Yonishi, Shihomi Maeda, Sho Matsui, Isao Matsui, Takayuki Hamano, Masatomo Takahashi, Maiko Goto, Yoshihiro Izumi, Takeshi Bamba, Miwa Sasai, Masahiro Yamamoto, Taiji Matsusaka, Fumio Niimura, Motoko Yanagita, Shuhei Nakamura, Tamotsu Yoshimori, Andrea Ballabio, Yoshitaka Isaka

×

Low nephron endowment increases susceptibility to renal stress and chronic kidney disease
Pamela I. Good, … , Franklin Costantini, Fangming Lin
Pamela I. Good, … , Franklin Costantini, Fangming Lin
Published January 10, 2023
Citation Information: JCI Insight. 2023. https://doi.org/10.1172/jci.insight.161316.
View: Text | PDF

Low nephron endowment increases susceptibility to renal stress and chronic kidney disease

  • Text
  • PDF
Abstract

Preterm birth results in low nephron endowment and increased risk of acute kidney injury (AKI) and chronic kidney disease (CKD). To understand the pathogenesis of AKI and CKD in preterm humans, we generated novel mouse models with a 30-70% reduction in nephron number by inhibiting or deleting Ret tyrosine kinase in the developing ureteric bud. These mice developed glomerular and tubular hypertrophy followed by the transition to CKD, recapitulating the renal pathological changes seen in humans born preterm. We injected neonatal mice with gentamicin, a ubiquitous nephrotoxic exposure in preterm infants, and detected more severe proximal tubular injury in mice with low nephron number compared to controls with normal nephron number. Mice with low nephron number have reduced proliferative repair with more rapid development of CKD. Furthermore, mice had more profound inflammation with highly elevated levels of MCP-1 and CXCL10, produced in part by damaged proximal tubules. Our study directly links low nephron endowment with postnatal renal hypertrophy, which in this model is maladaptive and results in CKD. Underdeveloped kidneys are more susceptible to gentamicin-induced AKI, suggesting that AKI in the setting of low nephron number is more severe and further increases the risk of CKD in this vulnerable population.

Authors

Pamela I. Good, Ling Li, Holly A. Hurst, Ileana M. Serrano-Herrera, Katherine Xu, Meenakshi Rao, David A. Bateman, Qais Al-Awqati, Vivette D. D'Agati, Franklin Costantini, Fangming Lin

×

Deficiency of CFB attenuates renal tubulointerstitial damage by inhibiting ceramide synthesis in diabetic kidney disease
Zi-jun Sun, … , Min Chen, Ming-hui Zhao
Zi-jun Sun, … , Min Chen, Ming-hui Zhao
Published December 22, 2022
Citation Information: JCI Insight. 2022;7(24):e156748. https://doi.org/10.1172/jci.insight.156748.
View: Text | PDF

Deficiency of CFB attenuates renal tubulointerstitial damage by inhibiting ceramide synthesis in diabetic kidney disease

  • Text
  • PDF
Abstract

Accumulating evidence suggests the pathogenic role of immunity and metabolism in diabetic kidney disease (DKD). Herein, we aimed to investigate the effect of complement factor B (CFB) on lipid metabolism in the development of DKD. We found that in patients with diabetic nephropathy, the staining of Bb, CFB, C3a, C5a, and C5b-9 was markedly elevated in renal tubulointerstitium. Cfb-knockout diabetic mice had substantially milder tubulointerstitial injury and less ceramide biosynthesis. The in vitro study demonstrated that cytokine secretion, endoplasmic reticulum stress, oxidative stress, and cell apoptosis were ameliorated in HK-2 cells transfected with siRNA of CFB under high-glucose conditions. Exogenous ceramide supplementation attenuated the protective effect of CFB knockdown in HK-2 cells, while inhibiting ceramide synthases (CERS) with fumonisin B1 in CFB-overexpressing cells rescued the cell injury. CFB knockdown could downregulate the expression of NF-κB p65, which initiates the transcription of CERS3. Furthermore, C3 knockdown abolished CFB-mediated cytokine secretion, NF-κB signaling activation, and subsequently ceramide biosynthesis. Thus, CFB deficiency inhibited activation of the complement alternative pathway and attenuated kidney damage in DKD, especially tubulointerstitial injury, by inhibiting the NF-κB signaling pathway, further blocking the transcription of CERS, which regulates the biosynthesis of ceramide. CFB may be a promising therapeutic target of DKD.

Authors

Zi-jun Sun, Dong-yuan Chang, Min Chen, Ming-hui Zhao

×

Insulin-like growth factor 2 mRNA-binding protein 3 promotes kidney injury by regulating β-catenin signaling
Dongyan Song, … , Haiyan Fu, Youhua Liu
Dongyan Song, … , Haiyan Fu, Youhua Liu
Published December 15, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.162060.
View: Text | PDF

Insulin-like growth factor 2 mRNA-binding protein 3 promotes kidney injury by regulating β-catenin signaling

  • Text
  • PDF
Abstract

Wnt/β-catenin is a developmental signaling that plays a crucial role in driving kidney fibrosis after injury. Activation of β-catenin is presumed to be regulated through the post-translational protein modification. Little is known about whether β-catenin is also subjected to regulation at the post-transcriptional mRNA level. Here, we report that insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) plays a pivotal role in regulating β-catenin. IGF2BP3 was upregulated in renal tubular epithelium of various animal models and patients with chronic kidney disease. IGF2BP3 not only was a direct downstream target of Wnt/β-catenin but also obligatory for transducing Wnt signal. In vitro, overexpression of IGF2BP3 in kidney tubular cells induced fibrotic responses, whereas knockdown of endogenous IGF2BP3 prevented the expression of injury and fibrosis markers in tubular cells after Wnt3a stimulation. In vivo, exogenous IGF2BP3 promoted β-catenin activation and aggravated kidney fibrosis, while knockdown of IGF2BP3 ameliorated renal fibrotic lesions after obstructive injury. RNA immunoprecipitation and mRNA stability assay revealed that IGF2BP3 directly bound to β-catenin mRNA and stabilized it from degradation. Furthermore, knockdown of IGF2BP3 in tubular cells accelerated β-catenin mRNA degradation in vitro. These studies demonstrate that IGF2BP3 promotes β-catenin signaling and drives kidney fibrosis, which may be mediated through stabilizing β-catenin mRNA. Our findings uncover a new dimension of the complex regulation of Wnt/β-catenin signaling and suggest a potential target for therapeutic intervention of fibrotic kidney diseases.

Authors

Dongyan Song, Jingyue Shang, Yinyi Long, Menghua Zhong, Li Li, Jiongcheng Chen, Yadie Xiang, Huishi Tan, Haili Zhu, Xue Hong, Fan Fan Hou, Haiyan Fu, Youhua Liu

×

Tertiary lymphoid structure signatures are associated with immune checkpoint inhibitor related acute interstitial nephritis
Shailbala Singh, … , Cassian Yee, Jamie S. Lin
Shailbala Singh, … , Cassian Yee, Jamie S. Lin
Published December 6, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.165108.
View: Text | PDF

Tertiary lymphoid structure signatures are associated with immune checkpoint inhibitor related acute interstitial nephritis

  • Text
  • PDF
Abstract

Tertiary lymphoid structures (TLSs) are associated with anti-tumor response following immune checkpoint inhibitor (ICI) therapy, but a commensurate observation of TLS is absent for immune related adverse events (irAEs) i.e. acute interstitial nephritis (AIN). We hypothesized that TLS-associated inflammatory gene signatures are present in AIN and performed NanoString-based gene expression and multiplex 12-chemokine profiling on paired kidney tissue, urine and plasma specimens of 36 participants who developed acute kidney injury (AKI) on ICI therapy: AIN (18), acute tubular necrosis (9), or HTN nephrosclerosis (9). Increased T and B cell scores, a Th1-CD8+ T cell axis accompanied by interferon-g and TNF superfamily signatures were detected in the ICI-AIN group. TLS signatures were significantly increased in AIN cases and supported by histopathological identification. Furthermore, urinary TLS signature scores correlated with ICI-AIN diagnosis but not paired plasma. Urinary CXCL9 correlated best to tissue CXCL9 expression (rho 0.75, p < 0.001) and the ability to discriminate AIN vs. non-AIN (AUC 0.781, p-value 0.003). For the first time, we report the presence of TLS signatures in irAEs, define distinctive immune signatures, identify chemokine markers distinguishing ICI-AIN from common AKI etiologies and demonstrate that urine chemokine markers may be used as a surrogate for ICI-AIN diagnoses.

Authors

Shailbala Singh, James P. Long, Amanda Tchakarov, Yanlan Dong, Cassian Yee, Jamie S. Lin

×

TYRO3 agonist as a novel therapy for glomerular disease
Fang Zhong, … , Kyung Lee, John He
Fang Zhong, … , Kyung Lee, John He
Published December 1, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.165207.
View: Text | PDF

TYRO3 agonist as a novel therapy for glomerular disease

  • Text
  • PDF
Abstract

Podocyte injury and loss are key drivers of primary and secondary glomerular diseases, such as focal segmental glomerulosclerosis (FSGS) and diabetic kidney disease (DKD). We previously demonstrated the renoprotective role of protein S (PS) and its cognate tyrosine-protein kinase receptor, TYRO3, in models of FSGS and DKD and that their signaling exerts anti-apoptotic and anti-inflammatory effects to confer protection against podocyte loss. Among the three TAM receptors (TYRO3, AXL, and MER), only TYRO3 expression is largely restricted to podocytes, and glomerular TYRO3 mRNA expression negatively correlates with human glomerular disease progression. We, therefore, posited that the agonism PS-TYRO3 signaling could serve as a potential therapeutic approach to attenuate glomerular disease progression. As PS function is not limited to TYRO3-mediated signal transduction but includes its anticoagulant activity, we focused on the development of TYRO3 agonist as an optimal therapeutic approach to glomerular disease. Among the small molecule TYRO3 agonist compounds screened, compound-10 (C-10) showed a select activation of TYRO3 without any effects on AXL or MER. We also confirmed that C-10 directly binds to TYRO3, but not the other receptors. In vivo, C-10 attenuated proteinuria, glomerular injury, and podocyte loss in mouse models of adriamycin-induced nephropathy and db/db model of type 2 diabetes. Moreover, these renoprotective effects of C-10 are lost in Tyro3 knockout mice, indicating that C-10 is a select agonist of TYRO3 activity that mitigates podocyte injury and glomerular disease. Therefore, C-10, a novel TYRO3 agonist, could be potentially developed as a new therapy for glomerular disease.

Authors

Fang Zhong, Hong Cai, Jia Fu, Zeguo Sun, Zhengzhe Li, David Bauman, Lois Wang, Bhaskar Das, Kyung Lee, John He

×

ZEB2 controls kidney stromal progenitor differentiation and inhibits abnormal myofibroblast expansion and kidney fibrosis
Sudhir Kumar, … , David J. Salant, Weining Lu
Sudhir Kumar, … , David J. Salant, Weining Lu
Published November 29, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.158418.
View: Text | PDF

ZEB2 controls kidney stromal progenitor differentiation and inhibits abnormal myofibroblast expansion and kidney fibrosis

  • Text
  • PDF
Abstract

FOXD1+ derived stromal cells give rise to pericytes and fibroblasts that support the kidney vasculature and interstitium but are also major precursors of myofibroblasts. ZEB2 is a SMAD-interacting transcription factor that is expressed in developing kidney stromal progenitors. Here we show that Zeb2 is essential for normal FOXD1+ stromal progenitor development. Specific deletion of mouse Zeb2 in FOXD1+ stromal progenitors (Zeb2 cKO) leads to abnormal interstitial stromal cell development, differentiation, and kidney fibrosis. Immunofluorescent staining analyses revealed abnormal expression of interstitial stromal cell markers MEIS1/2/3, CDKN1C, and CSPG4 (NG2) in newborn and 3-week-old Zeb2 cKO mouse kidneys. Zeb2 deficient FOXD1+ stromal progenitors also took on a myofibroblast fate that led to kidney fibrosis and kidney failure. Cell marker studies further confirmed that these myofibroblasts expressed pericyte and resident fibroblast markers including PDGFRβ, CSPG4, Desmin, GLI1, and NT5E. Notably, increased interstitial collagen deposition associated with loss of Zeb2 in FOXD1+ stromal progenitors was accompanied by increased expression of activated SMAD1/5/8, SMAD2/3, SMAD4, and AXIN2. Thus, our study identifies a key role of ZEB2 in maintaining the cell fate of FOXD1+ stromal progenitors during kidney development whereas loss of ZEB2 leads to differentiation of FOXD1+ stromal progenitors into myofibroblasts and kidney fibrosis.

Authors

Sudhir Kumar, Xueping Fan, Hila Milo Rasouly, Richa Sharma, David J. Salant, Weining Lu

×

The tryptophan metabolizing enzyme indoleamine 2,3-dioxygenase 1 regulates polycystic kidney disease progression
Dustin T. Nguyen, … , Jelena Klawitter, Katharina Hopp
Dustin T. Nguyen, … , Jelena Klawitter, Katharina Hopp
Published November 24, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.154773.
View: Text | PDF

The tryptophan metabolizing enzyme indoleamine 2,3-dioxygenase 1 regulates polycystic kidney disease progression

  • Text
  • PDF
Abstract

Autosomal dominant polycystic kidney disease (ADPKD), the most common monogenic nephropathy, is characterized by phenotypic variability exceeding genic effects. Dysregulated metabolism and immune cell function are key disease modifiers. The tryptophan metabolites, kynurenines, produced through IDO1, are known immunomodulators. Here, we study the role of tryptophan metabolism in PKD using an orthologous disease model (C57Bl/6J Pkd1RC/RC). We found elevated kynurenine and IDO1 levels in Pkd1RC/RC kidneys versus wildtype. Further, IDO1 levels were increased in ADPKD cell lines. Genetic Ido1 loss in Pkd1RC/RC animals resulted in reduced PKD severity as measured by %kidney weight/body weight and cystic index. Consistent with an immunomodulatory role of kynurenines, Pkd1RC/RC;Ido1-/- mice presented with significant changes in the cystic immune microenvironment (CME) versus controls. Kidney macrophage numbers decreased and CD8+ T cell numbers increased, both known PKD modulators. Also, pharmacological IDO1 inhibition in Pkd1RC/RC mice and kidney specific Pkd2 knockout mice with rapidly progressive PKD resulted in less severe PKD versus controls with similar changes in the CME as in the genetic model. Our data suggest that tryptophan metabolism is dysregulated in ADPKD and that its inhibition results in changes to the CME and slows disease progression, making IDO1 a novel therapeutic target for ADPKD.

Authors

Dustin T. Nguyen, Emily K. Kleczko, Nidhi Dwivedi, Marie-Louise T. Monaghan, Berenice Y. Gitomer, Michel B. Chonchol, Eric T. Clambey, Raphael A. Nemenoff, Jelena Klawitter, Katharina Hopp

×
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 18
  • 19
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts