Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Top read articles in the last 30 days

This list is updated daily and reflects the last month of access data. Articles older than two years will not be shown.

  • Research
Innate immune activation and mitochondrial ROS induce acute and persistent cardiac conduction system dysfunction after COVID-19
Deepthi Ashok, Ting Liu, Misato Nakanishi-Koakutsu, Joseph Criscione, Meghana Prakash, Alexis Tensfeldt, Byunggik Kim, Bryan Ho, Julian Chow, Morgan Craney, Mark J. Ranek, Brian L. Lin, Kyriakos Papanicolaou, Agnieszka Sidor, D. Brian Foster, Hee Cheol Cho, Andrew Pekosz, Jason Villano, Deok-Ho Kim, Brian O’Rourke
Deepthi Ashok, Ting Liu, Misato Nakanishi-Koakutsu, Joseph Criscione, Meghana Prakash, Alexis Tensfeldt, Byunggik Kim, Bryan Ho, Julian Chow, Morgan Craney, Mark J. Ranek, Brian L. Lin, Kyriakos Papanicolaou, Agnieszka Sidor, D. Brian Foster, Hee Cheol Cho, Andrew Pekosz, Jason Villano, Deok-Ho Kim, Brian O’Rourke
View: Text | PDF
Research Article Cardiology Immunology Infectious disease

Innate immune activation and mitochondrial ROS induce acute and persistent cardiac conduction system dysfunction after COVID-19

  • Text
  • PDF
Abstract

Cardiac arrhythmias increase during acute SARS-CoV-2 infection and in long COVID syndrome, by unknown mechanisms. This study explored the acute and long-term effects of COVID-19 on cardiac electrophysiology and the cardiac conduction system (CCS) in a hamster model. Electrocardiograms and subpleural pressures were recorded by telemetry for 4 weeks after SARS-CoV-2 infection, and interferon-stimulated gene expression and macrophage infiltration of the CCS were assessed at 4 days and 4 weeks postinfection. COVID-19 induced pronounced tachypnea and cardiac arrhythmias, including bradycardia and persistent atrioventricular block, though no viral protein expression was detected in the heart. Arrhythmias developed rapidly, partially reversed, and then redeveloped, indicating persistent CCS injury. COVID-19 induced cardiac cytokine expression, connexin mislocalization, and CCS macrophage remodeling. Interestingly, sterile innate immune activation by direct cardiac injection of polyinosinic:polycytidylic acid (PIC) induced arrhythmias similar to those of COVID-19. PIC strongly induced cytokine secretion and interferon signaling in hearts, human induced pluripotent stem cell–derived cardiomyocytes, and engineered heart tissues, accompanied by alterations in excitation-contraction coupling. Importantly, the pulmonary and cardiac effects of COVID-19 were blunted by JAK/STAT inhibition or a mitochondrially targeted antioxidant, indicating that SARS-CoV-2 infection indirectly leads to arrhythmias by innate immune activation and redox stress, which could have implications for long COVID syndrome.

Authors

Deepthi Ashok, Ting Liu, Misato Nakanishi-Koakutsu, Joseph Criscione, Meghana Prakash, Alexis Tensfeldt, Byunggik Kim, Bryan Ho, Julian Chow, Morgan Craney, Mark J. Ranek, Brian L. Lin, Kyriakos Papanicolaou, Agnieszka Sidor, D. Brian Foster, Hee Cheol Cho, Andrew Pekosz, Jason Villano, Deok-Ho Kim, Brian O’Rourke

×

Total views: 2471


The genomic landscape of lung cancer in never-smokers from the Women’s Health Initiative
Sitapriya Moorthi, Amy Paguirigan, Pushpa Itagi, Minjeong Ko, Mary Pettinger, Anna C.H. Hoge, Anwesha Nag, Neil A. Patel, Feinan Wu, Cassie Sather, Kevin M. Levine, Matthew P. Fitzgibbon, Aaron R. Thorner, Garnet L. Anderson, Gavin Ha, Alice H. Berger
Sitapriya Moorthi, Amy Paguirigan, Pushpa Itagi, Minjeong Ko, Mary Pettinger, Anna C.H. Hoge, Anwesha Nag, Neil A. Patel, Feinan Wu, Cassie Sather, Kevin M. Levine, Matthew P. Fitzgibbon, Aaron R. Thorner, Garnet L. Anderson, Gavin Ha, Alice H. Berger
View: Text | PDF
Research Article Genetics Therapeutics

The genomic landscape of lung cancer in never-smokers from the Women’s Health Initiative

  • Text
  • PDF
Abstract

Over 200,000 individuals are diagnosed with lung cancer in the United States every year, with a growing proportion of cases, especially lung adenocarcinoma, occurring in individuals who have never smoked. Women over the age of 50 comprise the largest affected demographic. To understand the genomic drivers of lung adenocarcinoma and therapeutic response in this population, we performed whole genome and/or whole exome sequencing on 73 matched lung tumor/normal pairs from postmenopausal women who participated in the Women’s Health Initiative. Somatic copy number alterations showed little variation by smoking status, suggesting that aneuploidy may be a general characteristic of lung cancer regardless of smoke exposure. Similarly, clock-like and APOBEC mutation signatures were prevalent but did not differ in tumors from smokers and never-smokers. However, mutations in both EGFR and KRAS showed unique allelic differences determined by smoking status that are known to alter tumor response to targeted therapy. Mutations in the MYC-network member MGA were more prevalent in tumors from smokers. Fusion events in ALK, RET, and ROS1 were absent, likely due to age-related differences in fusion prevalence. Our work underscores the profound effect of smoking status, age, and sex on the tumor mutational landscape and identifies areas of unmet medical need.

Authors

Sitapriya Moorthi, Amy Paguirigan, Pushpa Itagi, Minjeong Ko, Mary Pettinger, Anna C.H. Hoge, Anwesha Nag, Neil A. Patel, Feinan Wu, Cassie Sather, Kevin M. Levine, Matthew P. Fitzgibbon, Aaron R. Thorner, Garnet L. Anderson, Gavin Ha, Alice H. Berger

×

Total views: 2421


Icotrokinra induces early and sustained pharmacodynamic responses in phase IIb study of patients with moderate-to-severe psoriasis
David Strawn, James G. Krueger, Robert Bissonnette, Kilian Eyerich, Laura K. Ferris, Amy S. Paller, Andreas Pinter, Dylan Richards, Elizabeth Y. Chen, Kate Paget, Daniel Horowitz, Roohid Parast, Joshua J. Rusbuldt, Jocelyn Sendecki, Sunita Bhagat, Lynn P. Tomsho, Ching-Heng Chou, Marta E. Polak, Brice E. Keyes, Emily Bozenhardt, Yuan Xiong, Wangda Zhou, Cynthia DeKlotz, Paul Newbold, Dawn M. Waterworth, Megan Miller, Takayuki Ota, Ya-Wen Yang, Monica W.L. Leung, Lloyd S. Miller, Carolyn A. Cuff, Bradford McRae, Darren Ruane, Arun K. Kannan
David Strawn, James G. Krueger, Robert Bissonnette, Kilian Eyerich, Laura K. Ferris, Amy S. Paller, Andreas Pinter, Dylan Richards, Elizabeth Y. Chen, Kate Paget, Daniel Horowitz, Roohid Parast, Joshua J. Rusbuldt, Jocelyn Sendecki, Sunita Bhagat, Lynn P. Tomsho, Ching-Heng Chou, Marta E. Polak, Brice E. Keyes, Emily Bozenhardt, Yuan Xiong, Wangda Zhou, Cynthia DeKlotz, Paul Newbold, Dawn M. Waterworth, Megan Miller, Takayuki Ota, Ya-Wen Yang, Monica W.L. Leung, Lloyd S. Miller, Carolyn A. Cuff, Bradford McRae, Darren Ruane, Arun K. Kannan
View: Text | PDF
Clinical Research and Public Health Clinical Research Dermatology Inflammation

Icotrokinra induces early and sustained pharmacodynamic responses in phase IIb study of patients with moderate-to-severe psoriasis

  • Text
  • PDF
Abstract

BACKGROUND Icotrokinra is the first and only targeted oral peptide that selectively binds the IL-23 receptor with high affinity to precisely inhibit IL-23 signaling. Icotrokinra demonstrated high rates of complete skin clearance and durable disease control in the phase IIb trial, FRONTIER-1, and its long-term extension, FRONTIER-2, in participants with moderate-to-severe plaque psoriasis. This study evaluated systemic and skin pharmacodynamic response of icotrokinra and its relationship to clinical response in FRONTIER participants.METHODS FRONTIER-1 participants received icotrokinra or placebo for 16 weeks. FRONTIER-2 followed participants for up to 1 year of treatment; placebo participants transitioned to icotrokinra after week 16. Systemic pharmacodynamic changes were assessed in serum through week 52. Skin pharmacodynamic changes were assessed using transcriptomic analysis of skin biopsies and protein quantification in tape-strip samples through week 16.RESULTS Icotrokinra dose-dependently reduced serum levels of the IL-23/IL-17 axis and psoriasis disease biomarkers through week 52, with maximal reductions observed with the highest 100 mg twice-daily dose. Proteomic analyses showed icotrokinra selectively blocked IL-23–driven inflammation without broader impacts on circulating proteins, including serum IL-23 levels. Sixteen weeks of icotrokinra, but not placebo, reduced expression of psoriasis-associated genes in lesional skin. Icotrokinra treatment also reduced psoriasis-relevant proteins in week 16 lesional skin tape-strips to levels comparable to nonlesional samples.CONCLUSION Icotrokinra induced a dose-dependent pharmacodynamic response, with early (week 4) and sustained (week 52) reductions in biomarkers of IL-23 pathway activation and psoriasis disease severity, which correlated with clinical response.TRIAL REGISTRATION ClinicalTrials.gov: NCT05223868, NCT05364554.FUNDING Johnson & Johnson.

Authors

David Strawn, James G. Krueger, Robert Bissonnette, Kilian Eyerich, Laura K. Ferris, Amy S. Paller, Andreas Pinter, Dylan Richards, Elizabeth Y. Chen, Kate Paget, Daniel Horowitz, Roohid Parast, Joshua J. Rusbuldt, Jocelyn Sendecki, Sunita Bhagat, Lynn P. Tomsho, Ching-Heng Chou, Marta E. Polak, Brice E. Keyes, Emily Bozenhardt, Yuan Xiong, Wangda Zhou, Cynthia DeKlotz, Paul Newbold, Dawn M. Waterworth, Megan Miller, Takayuki Ota, Ya-Wen Yang, Monica W.L. Leung, Lloyd S. Miller, Carolyn A. Cuff, Bradford McRae, Darren Ruane, Arun K. Kannan

×

Total views: 2148


Identification of Sjögren’s disease–associated T cell receptor motifs through deep sequencing
Ananth Aditya Jupudi, Michelle L. Joachims, Christina Lawrence, Charmaine Lopez-Davis, Bhuwan Khatri, Astrid Rasmussen, Kiely Grundahl, R. Hal Scofield, Judith A. James, Joel M. Guthridge, Christopher J. Lessard, Linda F. Thompson, A. Darise Farris
Ananth Aditya Jupudi, Michelle L. Joachims, Christina Lawrence, Charmaine Lopez-Davis, Bhuwan Khatri, Astrid Rasmussen, Kiely Grundahl, R. Hal Scofield, Judith A. James, Joel M. Guthridge, Christopher J. Lessard, Linda F. Thompson, A. Darise Farris
View: Text | PDF
Research Article Immunology

Identification of Sjögren’s disease–associated T cell receptor motifs through deep sequencing

  • Text
  • PDF
Abstract

CD4+ T cells predominate lymphocytic foci found in the salivary glands (SGs) of Sjögren’s disease (SjD) cases. Yet little is known about T cell receptor (TCR) repertoire features that distinguish cases from healthy controls (HCs), the relationship between SG and peripheral blood (PB) repertoires of cases, and antigens recognized by pathogenic T cell clones. We performed deep sequencing of bulk-sorted CD4+CD45RA– PB T cells from SjD cases and matched HCs, and single-cell TCR sequencing of the same T cell population from labial SG biopsies of these cases. We found that clonally expanded SG CD4+ T cells expressed complementarity-determining region 3 (CDR3) sequences that were also detected in multiple copies in the blood of the same individuals with SjD. SjD cases displayed a “private” and restricted PB TCR repertoire with reduced clonotype diversity. We identified SjD-associated TCR motifs with the same putative antigen specificity shared between SGs and PB of cases. Their abundances in PB correlated with reduced salivary flow, linking these T cells with pathogenic disease features. Finally, we discovered 2 Ro60 epitopes eliciting an HLA-restricted immune response from expanded SG T cell clones. The comprehensive characterization of SjD TCR repertoires enables the discovery of target antigens and therapeutic strategies.

Authors

Ananth Aditya Jupudi, Michelle L. Joachims, Christina Lawrence, Charmaine Lopez-Davis, Bhuwan Khatri, Astrid Rasmussen, Kiely Grundahl, R. Hal Scofield, Judith A. James, Joel M. Guthridge, Christopher J. Lessard, Linda F. Thompson, A. Darise Farris

×

Total views: 1960


Inhibition of cell surface GRP78 and activated α2M interaction attenuates kidney fibrosis
Jackie Trink, Ifeanyi Kennedy Nmecha, Katrine Pilely, Renzhong Li, Zi Yang, Sydney Kwiecien, Melissa MacDonald, Bo Gao, Mariam A. Mamai, Chao Lu, Urooj F. Bajwa, Nikhil Uppal, James C. Fredenburgh, Masao Kakoki, Salvatore V. Pizzo, Anthony F. Rullo, Matthew B. Lanktree, Jeffrey I. Weitz, Yaseelan Palarasah, Joan C. Krepinsky
Jackie Trink, Ifeanyi Kennedy Nmecha, Katrine Pilely, Renzhong Li, Zi Yang, Sydney Kwiecien, Melissa MacDonald, Bo Gao, Mariam A. Mamai, Chao Lu, Urooj F. Bajwa, Nikhil Uppal, James C. Fredenburgh, Masao Kakoki, Salvatore V. Pizzo, Anthony F. Rullo, Matthew B. Lanktree, Jeffrey I. Weitz, Yaseelan Palarasah, Joan C. Krepinsky
View: Text | PDF
Research Article Nephrology Therapeutics

Inhibition of cell surface GRP78 and activated α2M interaction attenuates kidney fibrosis

  • Text
  • PDF
Abstract

We recently showed that cell surface translocation of the endoplasmic reticulum–resident protein GRP78, when bound by activated α 2-macroglobulin (α2M*), induces pro-fibrotic responses in glomerular mesangial cells in response to high glucose and regulates activation of the pro-fibrotic cytokine transforming growth factor-β1 (TGF-β1), implicating a pathogenic role in glomerulosclerosis. Interstitial fibrosis, largely mediated by proximal tubular epithelial cells (PTEC) and renal fibroblasts, develops later in kidney disease and correlates with functional decline. Here we investigated whether interstitial fibrosis was mediated by cell surface GRP78 (csGRP78)/α2M*. High glucose and TGF-β1 increased csGRP78 and α2M* in PTEC and renal fibroblasts, and their inhibition prevented fibrotic protein production. Interestingly, for TGF-β1, this depended on inhibition of noncanonical signaling through YAP/TAZ, with Smad3 activation unaffected. In vivo, type 1 diabetic Akita mice overexpressing TGF-β1 were treated with either a neutralizing antibody for csGRP78 (C38) or α2M* (Fα2M) or an inhibitory peptide blocking csGRP78/α2M* interaction, and mice with unilateral ureteral obstruction were treated with Fα2M or inhibitory peptide. Consistently, inhibition by antibody or peptide attenuated fibrosis and pro-fibrotic signaling. These findings show an important role for csGRP78/α2M* in mediating tubulointerstitial fibrosis in both diabetic and nondiabetic kidney disease and support their inhibition as a potential antifibrotic therapeutic intervention.

Authors

Jackie Trink, Ifeanyi Kennedy Nmecha, Katrine Pilely, Renzhong Li, Zi Yang, Sydney Kwiecien, Melissa MacDonald, Bo Gao, Mariam A. Mamai, Chao Lu, Urooj F. Bajwa, Nikhil Uppal, James C. Fredenburgh, Masao Kakoki, Salvatore V. Pizzo, Anthony F. Rullo, Matthew B. Lanktree, Jeffrey I. Weitz, Yaseelan Palarasah, Joan C. Krepinsky

×

Total views: 1893


Stimulation of skeletal stem cells in the growth plate promotes linear bone growth
Dana Trompet, Anastasiia D. Kurenkova, Baoyi Zhou, Lei Li, Ostap Dregval, Anna P. Usanova, Tsz Long Chu, Alexandra Are, Andrei A. Nedorubov, Maria Kasper, Andrei S. Chagin
Dana Trompet, Anastasiia D. Kurenkova, Baoyi Zhou, Lei Li, Ostap Dregval, Anna P. Usanova, Tsz Long Chu, Alexandra Are, Andrei A. Nedorubov, Maria Kasper, Andrei S. Chagin
View: Text | PDF
Research Article Bone biology Stem cells

Stimulation of skeletal stem cells in the growth plate promotes linear bone growth

  • Text
  • PDF
Abstract

Recently, skeletal stem cells were shown to be present in the epiphyseal growth plate (epiphyseal skeletal stem cells, epSSCs), but their function in connection with linear bone growth remains unknown. Here, we explore the possibility that modulating the number of epSSCs can correct differences in leg length. First, we examined regulation of the number and activity of epSSCs by Hedgehog (Hh) signaling. Both systemic activation of Hh pathway with Smoothened agonist (SAG) and genetic activation of Hh pathway by Patched1 (Ptch1) ablation in Pthrp-creER Ptch1fl/fl tdTomato mice promoted proliferation of epSSCs and clonal enlargement. Transient intra-articular administration of SAG also elevated the number of epSSCs. When SAG-containing beads were implanted into the femoral secondary ossification center of 1 leg of rats, this leg was significantly longer 1 month later than the contralateral leg implanted with vehicle-containing beads, an effect that was even more pronounced 2 and 6 months after implantation. We conclude that Hh signaling activates growth plate epSSCs, which effectively leads to increased longitudinal growth of bones. This opens therapeutic possibilities for the treatment of differences in leg length.

Authors

Dana Trompet, Anastasiia D. Kurenkova, Baoyi Zhou, Lei Li, Ostap Dregval, Anna P. Usanova, Tsz Long Chu, Alexandra Are, Andrei A. Nedorubov, Maria Kasper, Andrei S. Chagin

×

Total views: 1859


Identification of Ephrin type-B receptor 4 as a critical mediator of tissue fibrosis
Brian Wu, Starlee S. Lively, Shabana Vohra, Noah Fine, Chiara Pastrello, Anca Maglaviceanu, Osvaldo Espin-Garcia, Evan Pollock-Tahiri, Sayaka Nakamura, Paramvir Kaur, Keemo Delos Santos, Jason S. Rockel, Pratibha Potla, Himanshi Gupta, Poulami Datta, Laura Tang, Jacob Kwon, Akihiro Nakamura, Matthew B. Buechler, Rajiv Gandhi, Jiangping Wu, Boris Hinz, Igor Jurisica, Mohit Kapoor
Brian Wu, Starlee S. Lively, Shabana Vohra, Noah Fine, Chiara Pastrello, Anca Maglaviceanu, Osvaldo Espin-Garcia, Evan Pollock-Tahiri, Sayaka Nakamura, Paramvir Kaur, Keemo Delos Santos, Jason S. Rockel, Pratibha Potla, Himanshi Gupta, Poulami Datta, Laura Tang, Jacob Kwon, Akihiro Nakamura, Matthew B. Buechler, Rajiv Gandhi, Jiangping Wu, Boris Hinz, Igor Jurisica, Mohit Kapoor
View: Text | PDF
Research Article Cell biology Pulmonology

Identification of Ephrin type-B receptor 4 as a critical mediator of tissue fibrosis

  • Text
  • PDF
Abstract

Pulmonary fibrosis (PF) is a pathology associated with interstitial lung diseases (ILDs), including idiopathic pulmonary fibrosis (IPF). Fibrosis promotes continual secretion of extracellular matrix (ECM), producing nonfunctional scar tissue and causing organ failure. This study investigated the tyrosine kinase receptor Ephrin type-B receptor 4 (EphB4) as a mediator of PF. To this end, we generated mice with conditional Col1a2-driven deletion of Ephb4 and used a preclinical mouse model of PF, total and single nuclei RNA (snRNA) sequencing, NanoString, previously published single-cell data, computational analysis, and functional assays of mouse and human healthy control and IPF lung fibroblasts. Col1a2-CreERT–driven Ephb4 deletion, or EphB4 inhibition via NVP-BHG712, markedly protected against bleomycin-induced PF. Total RNA-Seq of fibroblasts isolated from Ephb4-deficient fibrotic mouse lungs exhibited reduced expression of ECM, ER Cargo, and protein trafficking–related genes. NVP-BHG712 reduced expression of these identified genes in mouse lung fibroblasts under fibrotic conditions in vitro. snRNA-Seq of mouse lungs treated with NVP-BHG712 identified transcriptomic changes of ECM genes in specific fibroblast subpopulations. RNA-Seq, computational, and functional assays using mouse and human IPF fibroblasts identified elastin as a key mediator involved in EphB4 signaling. Combined, our data show that EphB4 is a crucial mediator of PF.

Authors

Brian Wu, Starlee S. Lively, Shabana Vohra, Noah Fine, Chiara Pastrello, Anca Maglaviceanu, Osvaldo Espin-Garcia, Evan Pollock-Tahiri, Sayaka Nakamura, Paramvir Kaur, Keemo Delos Santos, Jason S. Rockel, Pratibha Potla, Himanshi Gupta, Poulami Datta, Laura Tang, Jacob Kwon, Akihiro Nakamura, Matthew B. Buechler, Rajiv Gandhi, Jiangping Wu, Boris Hinz, Igor Jurisica, Mohit Kapoor

×

Total views: 1664


Kidney mitochondrial DNA contributes to systemic IL-6 release in sepsis-associated acute kidney injury
Avnee J. Kumar, Katharine Epler, Jing Wang, Alice Shen, Negin Samandari, Mark L. Rolfsen, Laura A. Barnes, Gerald S. Shadel, Alexandra G. Moyzis, Alva G. Sainz, Karlen Ulubabyan, Kefeng Li, Kristen Jepsen, Xinrui Li, Mark M. Fuster, Roger G. Spragg, Roman Sasik, Volker Vallon, Helen Goodluck, Joachim H. Ix, Prabhleen Singh, Mark L. Hepokoski
Avnee J. Kumar, Katharine Epler, Jing Wang, Alice Shen, Negin Samandari, Mark L. Rolfsen, Laura A. Barnes, Gerald S. Shadel, Alexandra G. Moyzis, Alva G. Sainz, Karlen Ulubabyan, Kefeng Li, Kristen Jepsen, Xinrui Li, Mark M. Fuster, Roger G. Spragg, Roman Sasik, Volker Vallon, Helen Goodluck, Joachim H. Ix, Prabhleen Singh, Mark L. Hepokoski
View: Text | PDF
Research Article Inflammation Nephrology

Kidney mitochondrial DNA contributes to systemic IL-6 release in sepsis-associated acute kidney injury

  • Text
  • PDF
Abstract

Mitochondrial dysfunction is a major mechanism of acute kidney injury (AKI), and increased circulating interleukin 6 (IL-6) is associated with systemic inflammation and death due to sepsis. We tested whether kidney mitochondrial DNA (mtDNA) contributes to IL-6 release in sepsis-associated AKI via Toll-like receptor 9 (TLR9). In a murine model of sepsis via cecal ligation and puncture (CLP), we used next-generation sequencing of plasma mtDNA to inform the design of optimal target sequences for quantification by droplet digital PCR, and to identify single-nucleotide polymorphisms (SNPs) to infer tissue origin. We found significantly higher concentrations of plasma mtDNA after CLP versus shams and that plasma mtDNA SNPs matched kidney SNPs more than other organs. Kidney mtDNA contributed directly to IL-6 and mtDNA release from dendritic cells in vitro and kidney mitochondria solution led to higher IL-6 concentrations in vivo. IL-6 release was mitigated by a TLR9 inhibitor. Finally, plasma mtDNA was significantly higher in septic patients with AKI compared with those without AKI and correlated significantly with plasma IL-6. We conclude that AKI contributes to increased circulating IL-6 in sepsis via mtDNA release. Targeting kidney mitochondria and mtDNA release are potential translational avenues to decrease mortality from sepsis-associated AKI.

Authors

Avnee J. Kumar, Katharine Epler, Jing Wang, Alice Shen, Negin Samandari, Mark L. Rolfsen, Laura A. Barnes, Gerald S. Shadel, Alexandra G. Moyzis, Alva G. Sainz, Karlen Ulubabyan, Kefeng Li, Kristen Jepsen, Xinrui Li, Mark M. Fuster, Roger G. Spragg, Roman Sasik, Volker Vallon, Helen Goodluck, Joachim H. Ix, Prabhleen Singh, Mark L. Hepokoski

×

Total views: 1480


Deletion of Ptpn2 in B cells promotes autoimmunity via TLR and JAK/STAT signaling
Bridget N. Alexander, Soojin Kim, Kristen L. Wells, Maya J. Hunter, Kevin P. Toole, Scott M. Wemlinger, Daniel P. Regan, Andrew Getahun, Mia J. Smith
Bridget N. Alexander, Soojin Kim, Kristen L. Wells, Maya J. Hunter, Kevin P. Toole, Scott M. Wemlinger, Daniel P. Regan, Andrew Getahun, Mia J. Smith
View: Text | PDF
Research Article Immunology

Deletion of Ptpn2 in B cells promotes autoimmunity via TLR and JAK/STAT signaling

  • Text
  • PDF
Abstract

Autoimmunity arises when self-reactive B and T cells target the body’s own tissues, with B cells contributing through antigen presentation as well as production of autoantibodies and proinflammatory cytokines. Genome wide association studies (GWAS) and recent identification of loss-of-function gene variants in individuals with young-onset autoimmunity have highlighted a role for protein tyrosine phosphatase nonreceptor type 2 (PTPN2) in development of autoimmunity. While prior studies have focused on the mechanism of Ptpn2 in T cells and other cell types, its function in B cells has not been explored. To test the B cell–intrinsic roles of Ptpn2, we generated a B cell–specific deletion of Ptpn2 in mice (Mb1-Cre;Ptpn2fl/fl). We found that loss of Ptpn2 in B cells promoted organ inflammation, increased the frequency of age/autoimmune-associated B cells (ABCs) and plasmablasts in the periphery, and increased circulating autoantibodies. Moreover, we found that Ptpn2 acted as a negative regulator of the JAK/STAT and TLR7 pathways in B cells. In line with this, treatment of B cells from Mb1-Cre;Ptpn2fl/fl mice with IFN-γ and TLR7 agonist lead to enhanced differentiation into ABCs. These findings highlight the critical roles of Ptpn2 in B cell function and its potential as a key regulator in preventing B cell associated autoimmunity.

Authors

Bridget N. Alexander, Soojin Kim, Kristen L. Wells, Maya J. Hunter, Kevin P. Toole, Scott M. Wemlinger, Daniel P. Regan, Andrew Getahun, Mia J. Smith

×

Total views: 1477


H3K18 lactylation potentiates microglial polarization via the TLR4 pathway in diabetes-induced cognitive impairment
Ying Yang, Fei Chen, Lulu Song, Liping Yu, Jinping Zhang, Bo Zhang
Ying Yang, Fei Chen, Lulu Song, Liping Yu, Jinping Zhang, Bo Zhang
View: Text | PDF
Research Article Endocrinology Metabolism Neuroscience

H3K18 lactylation potentiates microglial polarization via the TLR4 pathway in diabetes-induced cognitive impairment

  • Text
  • PDF
Abstract

The present study aimed to explore the role and possible underlying mechanisms of histone lactylation (Kla) modifications in diabetes-associated cognitive impairment (DACD). In this study, behavioral tests, H&E staining, and immunohistochemistry were used to evaluate cognitive function and the extent of cerebral tissue injury. We quantified the levels of lactic acid and pan-lysine Kla (Pan-Kla) in the brains of type 2 diabetes mellitus (T2DM) mice and in high glucose–treated microglia. We also identified all Kla sites in isolated microglia. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were subsequently conducted to identify the functions and pathways that were enriched at the differentially expressed modification sites. Cleavage under targets and tagmentation (CUT&Tag) technology was used to identify candidate genes that are regulated by histone H3 lactylated at Lys-18 (H3K18la). siRNA and H3K18R mutant sequences were used to knock down crucial components in key signaling pathways to assess the effects of histone Kla on microglial polarization. We found that lactic acid levels were significantly greater in the brains of T2DM mice and high glucose–treated microglia than in those of their corresponding controls, which increased the level of Pan-Kla. We discovered that lactate can directly stimulate an increase in H3K18la. The global landscape of the lactylome reveals information about modification sites, indicating a correlation between the upregulation of H3K18la and protein Kla and Toll-like receptor (TLR) signaling. CUT&Tag demonstrated that enhanced H3K18la directly stimulates the NF-κB signaling pathway by increasing binding to the promoter of TLR4, thereby promoting M1 microglial polarization. The present study demonstrated that enhanced H3K18la directly stimulates TLR4 signaling to promote M1 microglial polarization, thereby facilitating DACD phenotypes. Targeting such loop may be a potential therapeutic approach for the treatment of DACD.

Authors

Ying Yang, Fei Chen, Lulu Song, Liping Yu, Jinping Zhang, Bo Zhang

×

Total views: 1440

Show more results

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts