Cutaneous wound healing is a slow process that often terminates with permanent scarring while oral wounds, in contrast, regenerate damage faster. Unique molecular networks in epidermal and oral epithelial keratinocytes contribute to the tissue-specific response to wounding, but key factors that establish those networks and how the keratinocytes interact with their cellular environment remain to be elucidated. The transcription factor PITX1 is highly expressed in the oral epithelium but is undetectable in cutaneous keratinocytes. To delineate if PITX1 contributes to oral keratinocyte identity, cell-cell interactions, and the improved wound healing capabilities, we ectopically expressed PITX1 in the epidermis of murine skin. Using comparative analysis of murine skin and oral (buccal) mucosa with scRNA-seq and spatial transcriptomics, we found that PITX1 expression enhances epidermal keratinocyte migration, proliferation, and alters differentiation to a quasi-oral keratinocyte state. PITX1+ keratinocytes reprogram intercellular communication between skin-resident cells to mirror buccal tissue while also stimulating the influx of neutrophils that establish a pro-inflammatory environment. Furthermore, PITX1+ skin heals significantly faster than control skin via increased keratinocyte activation and migration and a tunable inflammatory environment. These results illustrate that PITX1 programs oral keratinocyte identity and cellular interactions while also revealing critical downstream networks that promote wound closure.
Andrew M. Overmiller, Akihiko Uchiyama, Emma D. Hope, Subhashree Nayak, Christopher G. O'Neill, Kowser Hasneen, Yi-Wen Chen, Faiza Naz, Stefania Dell'Orso, Stephen R. Brooks, Kan Jiang, Maria I. Morasso.
Grover disease is an acquired epidermal blistering disorder in which keratinocytes lose intercellular connections. While its pathologic features are well-defined, its etiology remains unclear and it lacks any FDA-approved therapy. Interestingly, Grover disease was a common adverse event in clinical trials for cancer using B-RAF inhibitors, but it remained unknown how B-RAF blockade compromised skin integrity. Here we identified ERK hyperactivation as a key driver of Grover disease pathology. We leveraged a fluorescent biosensor to confirm that B-RAF inhibitors, dabrafenib and vemurafenib, paradoxically activated ERK in human keratinocytes and organotypic epidermis, disrupting cell-cell junctions and weakening epithelial integrity. Consistent with clinical data showing that concomitant MEK blockade prevents Grover disease in patients receiving B-RAF inhibitors, we found that MEK inhibition suppressed ERK and rescued cohesion of B-RAF-inhibited keratinocytes. Validating these results, we demonstrated ERK hyperactivation in patient biopsies from vemurafenib-induced Grover disease, but also from spontaneous Grover disease, revealing a common etiology for both. Finally, in line with our recent identification of ERK hyperactivation in Darier disease, a genetic disorder with identical pathology to Grover disease, our studies uncovered that the pathogenic mechanisms of these two diseases converge on ERK signaling and support MEK inhibition as a therapeutic strategy.
Cory L. Simpson, Afua Tiwaa, Shivam A. Zaver, Christopher J. Johnson, Emily Y. Chu, Paul W. Harms, Johann E. Gudjonsson
Lichen planus (LP) is a chronic, debilitating, inflammatory disease of the skin and mucous membranes that affects 1% to 2% of Americans. Its molecular pathogenesis remains poorly understood, and there are no FDA-approved treatments. We performed single cell RNA sequencing on paired blood and skin samples (lesional and non-lesional tissue) from 7 LP patients. We discovered that LP keratinocytes and fibroblasts specifically secrete a combination of CXCL9, CXCL10, and CCL19 cytokines. Using an in vitro migration assay with primary human T cells, we demonstrated that CCL19 in combination with either cytokine synergistically enhanced recruitment of CD8 T cells, more than the sum of individual cytokines. Moreover, exhausted T cells in lesional LP skin secreted CXCL13, which along with CCL19 also enhanced recruitment of T cells, suggesting a feed-forward loop in LP. Finally, LP blood revealed decreased circulating naïve CD8 T cells compared to healthy volunteers, consistent with recruitment to skin. Molecular analysis of LP skin and blood samples increased our understanding of disease pathogenesis and identified CCL19 as a new therapeutic target for treatment.
Anna E. Kersh, Satish Sati, Jianhe Huang, Christina Murphy, Olivia C. Ahart, Thomas H. Leung
Psoriatic arthritis (PsA) is a complex inflammatory disease that challenges diagnosis and complicates the rational selection of effective therapies. Although T cells are considered active effectors in psoriasis and PsA, the role of CD8+ T cells in pathogenesis is not well understood. We selected the humanized mouse model NSG-SGM3 transgenic strain to examine psoriasis and PsA endotypes. Injection of PBMCs and sera from patients with psoriasis and PsA generated parallel skin and joint phenotypes in the recipient mouse. The transfer of human circulating memory T cells was followed by migration and accumulation in the skin and synovia of these immunodeficient mice. Unexpectedly, immunoglobulins were required for recapitulation of the clinical phenotype of psoriasiform lesions and PsA domains (dactylitis, enthesitis, bone erosion). Human CD8+ T cells expressing T-bet, IL-32 and CXCL14 were detected by spatial transcriptomics in murine synovia and by immunofluorescence in the human PsA synovia. Importantly, depletion of human CD8+ T cells prevented skin and synovial inflammation in mice humanized with PsA peripheral blood cells. The humanized model of psoriasis and PsA represents a valid platform for accelerating the understanding of disease pathogenesis, improving the design of personalized therapies, and revealing psoriatic disease targets.
Christopher T. Ritchlin, Javier Rangel-Moreno, Delaney Martino, Brian Isett, Ananta Paine, Soumyaroop Bhattacharya, Jeffrey Fox, Ernest M. Meyer, Riyue Bao, Tullia Bruno, Francisco Tausk, Maria de la Luz Garcia-Hernandez
Hypotrichosis is a genetic disorder which characterized by a diffuse and progressive loss of scalp and/or body hair. Nonetheless, the causative genes for several affected individuals remain elusive, and the underlying mechanisms have yet to be fully elucidated. Here, we discovered a dominant variant in ADAM17 gene caused hypotrichosis with woolly hair. Adam17 (p.D647N) knock-in mice model mimicked the hair abnormality in patients. ADAM17 (p.D647N) mutation led to hair follicle stem cells (HFSCs) exhaustion and caused abnormal hair follicles, ultimately resulting in alopecia. Mechanistic studies revealed that ADAM17 binds directly to E3 ubiquitin ligase TRIM47. ADAM17 (p.D647N) variant enhanced the association between ADAM17 and TRIM47, leading to an increase in ubiquitination and subsequent degradation of ADAM17 protein. Furthermore, reduced ADAM17 protein expression affected Notch signaling pathway, impairing the activation, proliferation, and differentiation of HFSCs during hair follicle regeneration. Overexpression of NICD rescued the reduced proliferation ability caused by Adam17 variant in primary fibroblast cells.
Xiaoxiao Wang, Chaolan Pan, Luyao Zheng, Jianbo Wang, Quan Zou, Peiyi Sun, Kaili Zhou, Anqi Zhao, Qiaoyu Cao, Wei He, Yumeng Wang, Ruhong Cheng, Zhirong Yao, Si Zhang, Hui Zhang, Ming Li
Atopic dermatitis (AD) is an inflammatory skin condition with a childhood prevalence of up to 25%. Microbial dysbiosis is characteristic of AD, with Staphylococcus aureus the most frequent pathogen associated with disease flares and increasingly implicated in disease pathogenesis. Therapeutics to mitigate the effects of S. aureus have had limited efficacy and S. aureus–associated temporal disease flares are synonymous with AD. An alternative approach is an anti–S. aureus vaccine, tailored to AD. Experimental vaccines have highlighted the importance of T cells in conferring protective anti–S. aureus responses; however, correlates of T cell immunity against S. aureus in AD have not been identified. We identify a systemic and cutaneous immunological signature associated with S. aureus skin infection (ADS.aureus) in a pediatric AD cohort, using a combined Bayesian multinomial analysis. ADS.aureus was most highly associated with elevated cutaneous chemokines IP10 and TARC, which preferentially direct Th1 and Th2 cells to skin. Systemic CD4+ and CD8+ T cells, except for Th2 cells, were suppressed in ADS.aureus, particularly circulating Th1, memory IL-10+ T cells, and skin-homing memory Th17 cells. Systemic γδ T cell expansion in ADS.aureus was also observed. This study suggests that augmentation of protective T cell subsets is a potential therapeutic strategy in the management of S. aureus in AD.
Julianne Clowry, Daniel J. Dempsey, Tracey J. Claxton, Aisling M. Towell, Mary B. Turley, Martin Sutton, Joan A. Geoghegan, Sanja Kezic, Ivone Jakasa, Arthur White, Alan D. Irvine, Rachel M. McLoughlin
Loss-of-Function (LoF) variants in the filaggrin (FLG) gene are the strongest known genetic risk factor for atopic dermatitis (AD), but the impact of these variants on AD outcomes is poorly understood. We comprehensively identified genetic variants through targeted region sequencing of FLG in children (n = 438) participating in the Mechanisms of Progression of Atopic Dermatitis to Asthma in Children (MPAACH) cohort. Twenty FLG LoF variants were identified, including one novel variant and nine variants not previously associated with AD. FLG LoF variants were found in 13.6% of the cohort. Among these children, the presence of one or more FLG LoF variants was associated with moderate/severe AD (odds ratio (OR) = 2.00 (95% CI, 1.23–3.68) compared to those with mild AD. Children with FLG LoF variants had a higher SCORAD (SCORing for Atopic Dermatitis (SCORAD); P = 0.012) and higher likelihood of food allergy within the first 2.5 years of life (OR = 2.81, 1.50–5.26). LoF variants were associated with higher transepidermal Water Loss (TEWL) in both lesional (P = 0.018) and non-lesional skin (P = 0.015). Collectively, our study identifies established and novel AD-associated FLG LoF variants and associates FLG LoF with higher TEWL in lesional and non-lesional skin.
Samuel J. Virolainen, Latha Satish, Jocelyn M. Biagini, Hassan Chaib, Wan Chi Chang, Phillip J. Dexheimer, Michael R. Dixon, Katelyn A. Dunn, David Fletcher, Carmy Forney, Marissa Granitto, Matthew S. Hestand, Makenna Hurd, Kenneth Kaufman, Lucinda P. Lawson, Lisa J. Martin, Loren D.M. Peña, Kieran J. Phelan, Molly S. Shook, Matthew T. Weirauch, Gurjit K. Khurana Hershey, Leah C. Kottyan
Central for wound healing is the formation of granulation tissue, which largely consists of collagen and whose importance stretches past wound healing, including being implicated in both fibrosis and skin aging. Cyclophilin D (CyD) is a mitochondrial protein that regulates the permeability transition pore, known for its role in apoptosis and ischemia-reperfusion. To date, the role of CyD in human wound healing and collagen generation ihas been largely unexplored. Here, we show that CyD was upregulated in normal wounds and venous ulcers, likely adaptive as CyD inhibition impaired re-epithelialization, granulation tissue formation, and wound closure in both human and pig models. Overexpression of CyD increased keratinocyte migration and fibroblast proliferation, whilst its inhibition reduced migration. Independent of wound healing, CyD inhibition in fibroblasts reduced collagen secretion and caused endoplasmic reticulum collagen accumulation, while its overexpression increased collagen secretion. This was confirmed in a Ppif knockout mouse model, which showed a reduction in skin collagen. Overall, this study revealed previously unreported roles of CyD in skin, with implications for wound healing and beyond.
Ritu Bansal, Monica Torres, Matthew Hunt, Nuoqi Wang, Margarita Chatzopoulou, Mansi Manchanda, Evan P. Taddeo, Cynthia Shu, Orian S. Shirihai, Etty Bachar-Wikstrom, Jakob D. Wikstrom
IL-17C is an epithelial cell-derived proinflammatory cytokine whose transcriptional regulation remains unclear. Analysis of the IL17C promoter region identified TCF4 as putative regulator and siRNA knockdown of TCF4 in human keratinocytes (KCs) increased IL17C. IL-17C stimulation of KCs (along with IL-17A and TNF-α) decreased TCF4 and increased NFKBIZ and ZC3H12A expression in an IL-17RA/RE-dependent manner thus creating a feedback loop. ZC3H12A (MCPIP1/Regnase-1), a transcriptional immune-response regulator also increased following TCF4 siRNA knockdown and siRNA knockdown of ZC3H12A decreased NFKBIZ, IL1B, IL36G, CCL20, and CXCL1, revealing a proinflammatory role for ZC3H12A. Examination of lesional skin from the KC-Tie2 inflammatory dermatitis mouse model identified decreases in TCF4 protein concomitant with increases in IL-17C and Zc3h12a, that reversed following the genetic elimination of Il17c, Il17ra, and Il17re and improvement in the skin phenotype. Conversely, interference with Tcf4 in KC-Tie2 mouse skin increased Il17c and exacerbated the inflammatory skin phenotype. Together these findings identify a role for TCF4 in the negative regulation of IL-17C, which alone and with TNF-α and IL-17A, feedback to decrease TCF4 in an IL-17RA/RE-dependent manner. This loop is further amplified by IL-17C-TCF4 autocrine regulation of ZC3H12A and IL-17C regulation of NFKBIZ to promote self-sustaining skin inflammation.
Yanyun Jiang, Dennis Gruszka, Chang Zeng, William R. Swindell, Christa Gaskill, Christian Sorensen, Whitney Brown, Roopesh Singh Gangwar, Lam C. Tsoi, Joshua Webster, Sigrun Laufey Sigurdardottir, Mrinal K. Sarkar, Ranjitha Uppala, Austin Kidder, Xianying Xing, Olesya Plazyo, Enze Xing, Allison C. Billi, Emanual Maverakis, J. Michelle Kahlenberg, Johann Gudjonsson, Nicole L. Ward
Fibroblasts are stromal cells known to regulate local immune responses important for wound healing and scar formation; however, the cellular mechanisms driving damage and scarring in cutaneous lupus erythematosus (CLE) patients remain poorly understood. Dermal fibroblasts in systemic lupus erythematosus (SLE) patients are abnormally exposed to cytokines, but the impact of inflammatory mediators on fibroblast responses in non-scarring versus scarring CLE subtypes is unclear. Here, we examined responses to cytokines in dermal fibroblasts from non-lesional skin of 22 SLE patients with CLE and 34 healthy controls. Notably, inflammatory cytokine responses were exaggerated in SLE fibroblasts compared to healthy controls. In lesional CLE biopsies, these same inflammatory profiles were reflected in single cell RNA sequencing of SFRP2+ and inflammatory fibroblast subsets, and TGF-β was identified as a critical upstream regulator for inflammatory fibroblasts in scarring discoid lupus lesions. In vitro cytokine stimulation of non-lesional fibroblasts from patients who scar from CLE identified an upregulation of collagens, particularly in response to TGF-β, whereas inflammatory pathways were more prominent in non-scarring patients. Our study revealed that SLE fibroblasts are poised to hyper-respond to inflammation, with differential responses among scarring versus non-scarring disease, providing a potential skin-specific target for mitigating damage.
Suzanne K. Shoffner-Beck, Lisa Abernathy-Close, Stephanie Lazar, Feiyang Ma, Mehrnaz Gharaee-Kermani, Amy Hurst, Craig Dobry, Deepika Pandian, Rachael Wasikowski, Amanda Victory, Kelly Arnold, Johann E. Gudjonsson, Lam C. Tsoi, J. Michelle Kahlenberg
No posts were found with this tag.