The transcription factor Signal transducer and activator of transcription 1 (STAT1) plays a critical role in modulating the differentiation of CD4+ T cells producing IL-17 and GM-CSF, which promote the development of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). The protective role of STAT1 in MS and EAE has been largely attributed to its ability to limit pathogenic T helper (Th) cells and promote regulatory T (Treg) cells. Using mice with selective deletion of STAT1 in T cells (STAT1CD4-Cre), we identify a novel mechanism by which STAT1 regulates neuroinflammation independently of Foxp3+ Treg cells. STAT1-deficient effector T cells become the target of NK cell-mediated killing, limiting their capacity to induce EAE. STAT1-deficient T cells promoted their own killing by producing more IL-2 that in return activated NK cells. Elimination of NK cells restored EAE susceptibility in STAT1CD4-Cre mice. Therefore, our study suggests that the STAT1 pathway can be manipulated to limit autoreactive T cells during autoimmunity directed against the central nervous system.
Carlos A. Arbelaez, Pushpalatha Palle, Jonathan Charaix, Estelle Bettelli
The Aedes aegypti mosquito transmits both dengue (DENV) and Zika (ZIKV) viruses. Individuals in endemic areas are at risk for infection with both viruses as well as repeated DENV infection. In the presence of anti-DENV antibodies, outcomes of secondary DENV infection range from mild to life-threatening. Further, the role of cross-reactive antibodies on the course of ZIKV infection remains unclear. We assessed the ability of cross-reactive DENV monoclonal antibodies or polyclonal immunoglobulin isolated after DENV vaccination to upregulate type I interferon (IFN) production by plasmacytoid dendritic cells (pDCs) in response to both heterotypic DENV- and ZIKV- infected cells. We found a range in the ability of antibodies to increase pDC IFN production and a positive correlation between IFN production and the ability of an antibody to bind to the infected cell surface. Engagement of Fc receptors on the pDC and Fab binding of an epitope on infected cells was required to mediate increased IFN production by providing specificity to and promoting pDC sensing of DENV or ZIKV. This represents a mechanism independent of neutralization by which pre-existing cross-reactive DENV antibodies could protect a subset of individuals from severe outcomes during secondary heterotypic DENV or ZIKV infection.
Laura K. Aisenberg, Kimberly E. Rousseau, Katherine Cascino, Guido Massaccesi, William H. Aisenberg, Wensheng Luo, Kar Muthumani, David B. Weiner, Stephen S. Whitehead, Michael A. Chattergoon, Anna P. Durbin, Andrea L. Cox
Macrophages play a crucial role in the inflammatory response to the human stomach pathogen Helicobacter pylori, which infects half of the world’s population and causes gastric cancer. Recent studies have highlighted the importance of macrophage immunometabolism in their activation state and function. We have demonstrated that the cysteine-producing enzyme, cystathionine g-lyase (CTH), is upregulated in humans and mice with H. pylori infection. Here we show that induction of CTH in macrophages by H. pylori promotes persistent inflammation. Cth–/– mice have reduced macrophage and T-cell activation in H. pylori-infected tissues, an altered metabolome, and decreased enrichment of immune-associated gene networks, culminating in decreased H. pylori-induced-gastritis. CTH is downstream of the proposed anti-inflammatory molecule, S-adenosylmethionine (SAM). While Cth–/– mice exhibit gastric SAM accumulation, WT mice treated with SAM did not display protection against H. pylori-induced inflammation. Instead, we demonstrate that Cth-deficient macrophages exhibit alterations in the proteome, decreased NF-kB activation, diminished expression of macrophage activation markers, and impaired oxidative phosphorylation and glycolysis. Thus, through altering cellular respiration, CTH is a key enhancer of macrophage activation contributing to a pathogenic inflammatory response that is the universal precursor for the development of H. pylori-induced gastric disease.
Yvonne L. Latour, Johanna C. Sierra, Jordan L. Finley, Mohammad Asim, Daniel P. Barry, Margaret M. Allaman, Thaddeus M. Smith, Kara M. McNamara, Paula B. Luis, Claus Schneider, Justin Jacobse, Jeremy A. Goettel, M. Wade Calcutt, Kristie L. Rose, Kevin L Schey, Ginger L. Milne, Alberto G. Delgado, M. Blanca Piazuelo, Bindu D. Paul, Solomon Snyder, Alain P. Gobert, Keith T. Wilson
Cyclophosphamide (CPA) and doxorubicin (DOX) are key components of chemotherapy for triple-negative breast cancer (TNBC) although suboptimal outcomes are commonly associated with drug resistance and/or intolerable side-effects. Through an approach combining high-throughput screening and chemical modification, we developed CN06 as a dual activator of the constitutive androstane receptor (CAR) and nuclear factor erythroid 2-related factor 2 (Nrf2). CN06 enhances CAR-induced bioactivation of CPA (a prodrug) by provoking hepatic expression of CYP2B6, while repressing DOX-induced cytotoxicity in cardiomyocytes in vitro via stimulating Nrf2-antioxidant signaling. Utilizing a multicellular co-culture model incorporating human primary hepatocytes, TNBC cells, and cardiomyocytes, we show that CN06 increased CPA/DOX-mediated TNBC cell death via CAR-dependent CYP2B6 induction and subsequent conversion of CPA to its active metabolite 4-hydroxy-CPA, while protecting against DOX-induced cardiotoxicity by selectively activating Nrf2-antioxidant signaling in cardiomyocytes but not in TNBC cells. Further, CN06 preserves the viability and function of human iPSC-derived cardiomyocytes by modulating antioxidant defenses, decreasing apoptosis, and enhancing the kinetics of contraction and relaxation. Collectively, our findings identify CAR and Nrf2 as novel combined therapeutic targets whereby CN06 holds the potential to improve the efficacy:toxicity ratio of CPA/DOX-containing chemotherapy.
Sydney Stern, Dongdong Liang, Linhao Li, Ritika Kurian, Caitlin Lynch, Srilatha Sakamuru, Scott Heyward, Junran Zhang, Kafayat Ajoke Kareem, Young Wook Chun, Ruili Huang, Menghang Xia, Charles C. Hong, Fengtian Xue, Hongbing Wang
BACKGROUND. Sudden cardiac death (SCD) remains a worldwide public health problem in need of better noninvasive predictive tools. Current guidelines for primary preventive SCD therapies such as implantable cardioverter defibrillators (ICDs) are based on left ventricular ejection fraction (LVEF), but these are imprecise with fewer than 5% of ICDs delivering life-saving therapy per year. Impaired cardiac metabolism and ATP depletion cause arrhythmias in experimental models, but a link between arrhythmias and cardiac energetic abnormalities in people has not been explored, nor the potential for metabolically predicting clinical SCD risk. METHODS. We prospectively measured myocardial energy metabolism noninvasively with phosphorus magnetic resonance spectroscopy in patients with no history of significant arrhythmias prior to scheduled ICD implantation for primary prevention in the setting of reduced LVEF (≤35%). RESULTS. By two different analyses, low myocardial ATP significantly predicted the composite of subsequent appropriate ICD firings for life-threatening arrhythmias and cardiac death over ~10 years. Life-threatening arrhythmia risk was ~3-fold higher in low ATP patients and independent of established risk factors including LVEF. In patients with normal ATP, rates of appropriate ICD firings were several-fold lower than reported rates of ICD complications and inappropriate firings. CONCLUSION. These first data linking in vivo myocardial ATP depletion and subsequent significant arrhythmic events in people suggest an energetic component to clinical life-threatening ventricular arrhythmogenesis. The findings support investigation of metabolic strategies that limit ATP loss to treat or prevent life-threatening cardiac arrhythmias and herald non-invasive metabolic imaging as a complementary SCD risk stratification tool. TRIAL REGISTRATION. NCT00181233. FUNDING. This work was supported by DW Reynolds Foundation, the National Institutes of Health (grants HL61912, HL056882, HL103812, HL132181, HL140034), and the Russell H. Morgan (P.A.B.) and Clarence Doodeman (R.G.W.) Endowments at Johns Hopkins.
T. Jake Samuel, Shenghan Lai, Michael Schär, Katherine C. Wu, Angela M. Steinberg, An-Chi Wei, Mark Anderson, Gordon F. Tomaselli, Gary Gerstenblith, Paul A. Bottomley, Robert G. Weiss
Nemaline Myopathy (NM) is the most common congenital myopathy, characterized by extreme weakness of the respiratory, limb, and facial muscles. Pathogenic variants in Tropomyosin 2 (TPM2), which encodes a skeletal muscle specific actin binding protein essential for sarcomere function, cause a spectrum of musculoskeletal disorders that include NM as well as Cap Myopathy, congenital fiber type disproportion, and distal arthrogryposis (DA). The in vivo pathomechanisms underlying TPM2-related disorders are unknown, so we expressed a series of dominant, pathogenic TPM2 variants in Drosophila embryos and found four variants significantly affected muscle development and muscle function. Transient overexpression of the four variants also disrupted the morphogenesis of mouse myotubes in vitro, and negatively affected zebrafish muscle development in vivo. We used transient overexpression assays in zebrafish to characterize two novel TPM2 variants and one recurring variant that we identified in DA patients (V129A, E139K, A155T), and found these variants caused musculoskeletal defects similar to those of known pathogenic variants. The consistency of musculoskeletal phenotypes in our assays correlated with the severity of clinical phenotypes observed in our DA patients, suggesting disrupted myogenesis is a novel pathomechanism of TPM2 disorders, and that our myogenic assays can predict the clinical severity of TPM2 variants.
Jennifer McAdow, Shuo Yang, Tiffany Ou, Gary Huang, Matthew B. Dobbs, Christina A. Gurnett, Michael J. Greenberg, Aaron N. Johnson
In situ vaccination has demonstrated the feasibility of priming local immunity for systemic antitumor responses. Although direct intratumoral delivery of adjuvant is the mainstay, tumor-draining lymph nodes (TDLNs) also play essential roles in antitumor immunity. We report that directing an adjuvant to both tumors and TDLNs during in situ vaccination can induce robust antitumor responses. Conventional intratumoral dosing leads to tumor-limited delivery of agents; however, delivery to both tumors and TDLNs can be ensured through a micellar formation. The peritumoral delivery of micellar MEDI9197 (mcMEDI), a toll-like receptor 7/8 agonist, induced significantly stronger innate and adaptive immune responses than those on conventional dosing. Optimal dosing was crucial because excessive or insufficient accumulation of the adjuvant in the TDLNs compromised therapeutic efficacy. The combination of local mcMEDI therapy significantly improved the efficacy of systemic anti-programmed death receptor-1 therapy. These data suggest that rerouting adjuvants to tumors and TDLNs can augment the therapeutic efficacy of in situ vaccination.
Moonkyoung Jeong, Heegon Kim, Junyong Yoon, Dong-Hyun Kim, Ji-Ho Park
Pregnancy confers unique immune responses to infection and vaccination across gestation. To date, there is limited data comparing vaccine versus infection-induced nAb to COVID-19 variants in mothers during pregnancy. We analyzed paired maternal and cord plasma samples from 60 pregnant individuals. Thirty women vaccinated with mRNA vaccines (from December 2020 through August 2021) were matched with 30 naturally infected women (from March 2020 through January 2021) by gestational age of exposure. Neutralization activity against the five SARS-CoV-2 Spike sequences was measured by a SARS-CoV-2 pseudotyped Spike virion assay. Effective nAbs against SARS-CoV-2 were present in maternal and cord plasma after both infection and vaccination. Compared to wild type Spike, these nAbs were less effective against the Delta and Mu Spike variants. Vaccination during the third trimester induced higher cord nAb levels at delivery than infection during the third trimester. In contrast, vaccine-induced nAb levels were lower at the time of delivery compared to infection during the first trimester. The transfer ratio (cord nAb level/maternal nAb level) was greatest in mothers vaccinated in the second trimester. SARS-CoV-2 vaccination or infection in pregnancy elicit effective nAbs with differing neutralization kinetics that is impacted by gestational time of exposure.
Yusuke Matsui, Lin Li, Mary Prahl, Arianna G. Cassidy, Nida Ozarslan, Yarden Golan, Veronica J. Gonzalez, Christine Y. Lin, Unurzul Jigmeddagva, Megan A. Chidboy, Mauricio Montano, Taha Y. Taha, Mir M. Khalid, Bharath Sreekumar, Jennifer M. Hayashi, Pei-Yi Chen, G. Renuka Kumar, Lakshmi Warrier, Alan H.B. Wu, Dongli Song, Priya Jegatheesan, Daljeet S. Rai, Balaji Govindaswami, Jordan M. Needens, Monica Rincon, Leslie Myatt, Ifeyinwa V. Asiodu, Valerie J. Flaherman, Yalda Afshar, Vanessa L. Jacoby, Amy P. Murtha, Joshua F. Robinson, Melanie Ott, Warner C. Greene, Stephanie L Gaw
The recent emergence of the SARS-CoV-2 Omicron variant of concern (VOC) containing a heavily mutated spike protein capable of escaping preexisting immunity identifies a continued need for interventional measures. Molnupiravir (MK-4482), an orally administered nucleoside analog, has demonstrated efficacy against earlier SARS-CoV-2 lineages and was recently approved for SARS-CoV-2 infections in high-risk adults. Here we assessed the efficacy of MK-4482 against the earlier Alpha, Beta and Delta VOCs and Omicron in the hamster COVID-19 model. Omicron replication and associated lung disease in vehicle treated hamsters was reduced compared to the earlier VOCs. MK-4482 treatment inhibited virus replication in the lungs of Alpha, Beta and Delta VOC infected hamsters. Importantly, MK-4482 profoundly inhibited virus replication in the upper and lower respiratory tract of hamsters infected with the Omicron VOC. Consistent with its mutagenic mechanism, MK-4482 treatment had a more pronounced inhibitory effect on infectious titers compared to viral RNA genome load. Histopathologic analysis showed that MK-4482 treatment caused a concomitant reduction in the level of lung disease and viral antigen load in infected hamsters across all VOCs examined. Together, our data indicate the potential of MK-4482 as an effective antiviral against known SARS-CoV-2 VOCs, especially Omicron, and likely future SARS-CoV-2 variants.
Kyle Rosenke, Atsushi Okumura, Matthew C. Lewis, Friederike Feldmann, Kimberly Meade-White, William F. Bohler, Amanda J. Griffin, Rebecca Rosenke, Carl Shaia, Michael A. Jarvis, Heinz Feldmann
Understanding the reorganization of neural circuits spared after spinal cord injury in the motor cortex and spinal cord would provide insight for developing therapeutics. Using optogenetic mapping we demonstrate a transhemispheric recruitment of neural circuits in the contralateral cortical M1/M2 area to improve the impaired forelimb function after a cervical 5 right-sided hemisection in mice, a model mimicking the human Brown-Séquard syndrome. This cortical reorganization can be elicited by a selective cortical optogenetic neuromodulation paradigm. Areas of whisker, jaw, and neck, together with the rostral forelimb area, on the motor cortex ipsilateral to the lesion are engaged to control the ipsilesional forelimb in both stimulation and non-stimulation groups at 8 weeks post-injury. However, significant functional benefits are only seen in the stimulation group. Using anterograde tracer, we further reveal a robust sprouting of the intact corticospinal tract in the spinal cord of those animals receiving optogenetic stimulation. The intraspinal cortical spinal axonal sprouting corelates with the forelimb functional recovery. Thus, specific neuromodulation of the cortical neural circuits induces massive neural reorganization both in the motor cortex and spinal cord, constructing an alternative motor pathway in restoring impaired forelimb function.
Wei Wu, Tyler Nguyen, Josue D. Ordaz, Yi Ping Zhang, Nai-Kui Liu, Xinhua Hu, Yuxiang Liu, Xingjie Ping, Qi Han, Xiangbing Wu, Wenrui Qu, Sujuan Gao, Christopher B. Shields, Xiaoming Jin, Xiao-Ming Xu
Tertiary lymphoid structures (TLSs) are transient ectopic lymphoid aggregates whose formation might be caused by chronic inflammation states, such as cancer. However, how TLSs are induced in the tumor microenvironment (TME) and how they affect patient survival are not well understood. We investigated TLS distribution in relation to tumor infiltrating lymphocytes (TILs) and related gene expression in high grade serous ovarian cancer (HGSC) specimens. CXCL13 gene expression correlated with TLS presence and the infiltration of T cells and B cells, and was a favorable prognostic factor for HGSC patients. Coexistence of CD8+ T cells and B-cell lineages in the TME significantly improved the prognosis of HGSC and was correlated with the presence of TLSs. CXCL13 expression was predominantly coincident with CD4+ T cells in TLSs and CD8+ T cells in TILs, and shifted from CD4+ T cells to CD21+ follicular dendritic cells as TLS matured. In a mouse ovarian cancer model, recombinant CXCL13 induced TLSs and enhanced survival by the infiltration of CD8+ T cells. These results suggest that TLS formation was associated with CXCL13-producing CD4+ T cells and that TLSs facilitated the coordinated antitumor response of cellular and humoral immunity in ovarian cancer.
Masayo Ukita, Junzo Hamanishi, Hiroyuki Yoshitomi, Koji Yamanoi, Shiro Takamatsu, Akihiko Ueda, Haruka Suzuki, Yuko Hosoe, Yoko Furutake, Mana Taki, Kaoru Abiko, Ken Yamaguchi, Hidekatsu Nakai, Tsukasa Baba, Noriomi Matsumura, Akihiko Yoshizawa, Hideki Ueno, Masaki Mandai
Nontuberculous mycobacteria (NTM) are an increasingly common cause of respiratory infection in people with cystic fibrosis (PwCF). Relative to those with no history of NTM infection (CF-NTMNEG), PwCF and a history of NTM infection (CF-NTMPOS) are more likely to develop severe lung disease and experience complications over the course of treatment. In other mycobacterial infections (e.g. tuberculosis), an overexuberant immune response causes pathology and compromises organ function; however, since the immune profiles of CF-NTMPOS and CF-NTMNEG airways are largely unexplored, it is unknown which if any immune responses distinguish these cohorts or concentrate in damaged tissues. Here we evaluated lung lobe-specific immune profiles of three cohorts (CF-NTMPOS, CF-NTMNEG, and non-CF adults) and found that CF-NTMPOS airways are distinguished by a hyper-inflammatory cytokine profile. Importantly, the CF-NTMPOS airway immune profile was dominated by B cells, classical macrophages and the cytokines which support their accumulation. These and other immunological differences between cohorts, including the near absence of NK cells and complement pathway members, were enriched in the most damaged lung lobes. The implications of these findings for our understanding of lung disease in PwCF are discussed, as are how they may inform the development of host-directed therapies to improve NTM disease treatment.
Don Hayes, Jr., Rajni Kant Shukla, Yizi Cheng, Emrah Gecili, Marlena R. Merling, Rhonda D. Szczesniak, Assem G Ziady, Jason C. Woods, Luanne Hall-Stoodley, Namal P.M. Liyanage, Richard T. Robinson
We have previously demonstrated that active immunization with the apolipoprotein B-100 (ApoB-100) peptide P210 reduces experimental atherosclerosis. To advance this immunization strategy to future clinical testing, we explored the possibility of delivering P210 as an antigen using nanoparticles, given this approach has now been used clinically. To that end, we first charactered the responses of T cells to P210 using PBMCs from human subjects with atherosclerotic cardiovascular disease (ASCVD). We then investigated the use of P210 in self-assembling peptide amphiphile micelles (P210-PAM) as a vaccine formulation to reduce atherosclerosis in ApoE-/- mice and its potential mechanisms of action. We also generated and characterized a humanized mouse model with chimeric HLA-A*02:01/Kb in ApoE-/- background to test the efficacy of P210-PAM immunization as a bridge for future clinical testing. P210 provoked T cell activation and memory response in PBMCs of human subjects with ASCVD. Dendritic cell uptake of P210-PAM and its co-staining with MHC-I molecules supported its use as a vaccine formulation. In ApoE-/- mice, immunization with P210-PAM dampened P210-specific CD4+ T cell proliferative response and CD8+ T cell cytolytic response, modulated macrophage phenotype, and significantly reduced aortic atherosclerosis. Potential clinical relevance of P210-PAM immunization was demonstrated by reduced atherosclerosis in the humanized ApoE-/- mouse model expressing chimeric HLA-A*02:01/Kb. Taken together, our data supports the experimental and translational use of P210-PAM as a potential vaccine candidate against human ASCVD.
Kuang-Yuh Chyu, Xiaoning Zhao, Jianchang Zhou, Paul C. Dimayuga, Nicole W.M. Lio, Bojan Cercek, Noah T. Trac, Eun Ji Chung, Prediman K. Shah
Rearrangements that drive ectopic MEF2C expression have recurrently been found in human early thymocyte progenitor acute lymphoblastic leukemia (ETP-ALL) patients. Here we show high levels of MEF2C expression in ETP-ALL patients. Using both in vivo and in vitro models of ETP-ALL, we demonstrate that elevated MEF2C expression blocks NOTCH-induced T cell differentiation while promoting a B-lineage program. MEF2C activates a B cell transcriptional program in addition to RUNX1, GATA3 and LMO2, upregulates the IL7R and boosts cell survival by upregulation of BCL2. MEF2C and the Notch pathway therefore demarcate opposite regulators of B- or T-lineage choices, respectively. Enforced MEF2C expression in mouse or human progenitor cells effectively blocks early T cell differentiation and promotes the development of bi-phenotypic lymphoid tumors that co-express CD3 and CD19, resembling human mixed phenotype acute leukemia (MPAL). SIK inhibitors impair MEF2C activity and alleviate the T cell development block. Importantly, this sensitizes cells to prednisolone treatment. Therefore, SIK inhibiting compounds such as dasatinib are potentially a valuable addition to standard chemotherapy for human ETP-ALL.
Kirsten Canté-Barrett, Mariska T. Meijer, Valentina Cordo', Rico Hagelaar, Wentao Yang, Jiyang Yu, Willem K. Smits, Marloes E. Nulle, Joris P. Jansen, Rob Pieters, Jun J. Yang, Jody J. Haigh, Steven Goossens, Jules P.P. Meijerink
People living with multiple sclerosis (MS) experience episodic central nervous system (CNS) white matter lesions instigated by autoreactive T cells. With age, MS patients show evidence of grey matter demyelination and experience devastating non-remitting symptomology. What drives progression is unclear and has been hampered by the lack of suitable animal models. Here we show that passive experimental autoimmune encephalomyelitis (EAE) induced by an adoptive transfer of young Th17 cells induces a non-remitting clinical phenotype that is associated with persistent leptomeningeal inflammation and cortical pathology in old, but not young SJL/J mice. While the quantity and quality of T cells did not differ in the brains of old vs young EAE mice, an increase in neutrophils and a decrease in B cells was observed in the brains of old mice. Neutrophils were also found in the leptomeninges of a subset of progressive MS patient brains that showed evidence of leptomeningeal inflammation and subpial cortical demyelination. Taken together, our data show that while Th17 cells initiate CNS inflammation, subsequent clinical symptoms and grey matter pathology are dictated by age and associated with other immune cells such as neutrophils.
Michelle Zuo, Naomi M Fettig, Louis-Philippe Bernier, Elisabeth Pössnecker, Shoshana Spring, Annie Pu, Xianjie I. Ma, Dennis S.W. Lee, Lesley A. Ward, Anshu Sharma, Jens Kuhle, John G. Sled, Anne-Katrin Pröbstel, Brian A. MacVicar, Lisa C. Osborne, Jennifer L. Gommerman, Valeria Ramaglia
BACKGROUND. Coronavirus Disease 2019 (COVID-19) remains a global health emergency with limited treatment options, lagging vaccine rates, and inadequate healthcare resources in the face of an ongoing calamity. The disease is characterized by immune dysregulation and cytokine storm. Cyclosporine A (CSA) is a calcineurin inhibitor that modulates cytokine production and may have direct antiviral properties against coronaviruses. METHODS. To test whether a short course of CSA was safe in COVID-19 patients, we treated 10 hospitalized, oxygen requiring, non-critically ill patients with CSA (starting dose of 9mg/kg/day). We evaluated patients for clinical response and adverse events and measured serum cytokines and chemokines associated with COVID-19 hyper-inflammation and conducted gene-expression analyses. RESULTS. Five subjects experienced adverse events, none were serious; transaminitis was most common. No subject required intensive care unit (ICU)-level care and all patients were discharged alive. CSA treatment was associated with significant reductions in serum cytokines and chemokines important in COVID-19 hyper-inflammation, including CXCL10. Following CSA administration, we also observed a significant reduction in type I interferon gene expression signatures and other transcriptional profiles associated with exacerbated hyper-inflammation in the peripheral blood cells of these patients. CONCLUSIONS. Short courses of CSA appear safe and feasible in COVID-19 patients requiring oxygen and may be a useful adjunct in resource-limited health care settings. TRIAL REGISTRATION. This trial was registered on ClinicalTrials.gov (IND#149997, ClinicalTrials.gov identifier: NCT04412785). FUNDING. This study was internally funded by the Center for Cellular Immunotherapies
Emily A. Blumberg, Julia Han Noll, Pablo Tebas, Joseph A. Fraietta, Ian Frank, Amy E. Marshall, Anne Chew, Elizabeth A. Veloso, Alison Carulli, Walter Rogal, Avery L. Gaymon, Aliza H. Schmidt, Tiffany Barnette, Renee Jurek, Rene Martins, Briana M. Hudson, Kalyan Chavda, Christina M. Bailey, Sarah E. Church, Hooman Noorchashm, Wei-Ting Hwang, Carl H. June, Elizabeth O. Hexner
Faecalibacterium prausnitzii (F. prausnitzii), a dominant bacterium of the human microbiota, is decreased in patients with inflammatory bowel diseases (IBD) and exhibits anti-inflammatory effects. In human, colonic lamina propria contains IL-10-secreting, Foxp3-negative regulatory T cells (Treg) characterized by a double expression of CD4 and CD8α (DP8α) and a specificity for F. prausnitzii. This Treg subset is decreased in IBD. The in vivo effect of DP8α cells has not been evaluated yet. Here, using a humanized model of NOD.Prkcscid IL2rγ-/- (NSG) immunodeficient mouse strain that expresses the human leucocyte antigen D-related allele HLA-DR*0401 but not murine class II (NSG-Ab° DR4) molecules, we demonstrated a protective effect of a HLA-DR*0401-restricted DP8α Treg clone combined with F. prausnitzii administration in a colitis model. In a cohort of patients with IBD, we showed an independent association between the frequency of circulating DP8α cells and disease activity. Finally, we pointed out a positive correlation between F. prausnitzii-specific DP8α Tregs and the amount of F. prausnitzii in fecal microbiota in healthy individuals and patients with ileal Crohn’s disease.
Sothea Touch, Emmanuelle Godefroy, Nathalie Rolhion, Camille Danne, Cyriane Oeuvray, Marjolène Straube, Chloé Galbert, Loïc Brot, Iria Alonso Salgueiro, Sead Chadi, Tatiana Ledent, Jean-Marc Chatel, Philippe Langella, Francine Jotereau, Frédéric Altare, Harry Sokol
Recent studies highlighted the clinicopathologic importance of tumor microenvironment (TME) in delineating molecular attributes and therapeutic potentials. However, the overall TME cell-infiltration landscape in non-squamous NSCLC have not been comprehensively recognized. In this study, we employed consensus non-negative matrix factorization (NMF) molecular subtyping to determine the TME cell infiltration patterns and identified three TME clusters (TME-C1, -C2, -C3) characterized by distinct clinicopathologic features, infiltrating cells, and biological processes. Proteomics analyses revealed that cGAS-STING immune signaling mediated protein and phosphorylation level were significantly upregulated in inflamed-related TME-C2 clusters. The TMEsig-score extracted from the TME-related signature divided NSCLC patients into high- and low-score subgroups, where a high score was associated with favorable prognosis and immune infiltration. Genomic landscape revealed that patients with low TMEsig-score harbored greater somatic copy number alternations and higher mutation frequency of driver genes involving STK11, KEAP1 and SMARCA4 et al. Drug sensitivity analyses suggested that tumors with high TMEsig-score were responsible for favorable clinical response to immune check-point inhibitors (ICI) treatment. In summary, this study highlights that comprehensive recognizing of the TME cell infiltration landscape will contribute to enhance our understanding of TME immune regulation and promote effectiveness of precision biotherapy strategies.
Hao Chen, Tongchao Zhang, Yuan Zhang, Hao Wu, Zhen Fang, Yang Liu, Yang Chen, Zhe Wang, Shengtao Jia, Xingzhao Ji, Liang Shang, Fengying Du, Jin Liu, Ming Lu, Wei Chong
Studies have demonstrated the phenotypic heterogeneity of vascular endothelial cells (ECs) within a vascular bed; however, little is known about how distinct endothelial subpopulations in a particular organ respond to an inflammatory stimulus. We performed single cell RNA-sequencing of 35,973 lung ECs obtained during the baseline state as well as post-injury time points following inflammatory lung injury induced by lipopolysaccharide. Seurat clustering and gene expression pathway analysis identified two major subpopulations in the lung microvascular endothelium, a subpopulation enriched for expression of immune response genes such as major histocompatibility complex genes (immuneEC) and another defined by increased expression of vascular development genes such as Sox17 (devEC). The presence of immuneEC and devEC subpopulations was also observed in non-human primate lungs infected with SARS-CoV-2 and murine lungs infected with H1N1 influenza virus. Following the peak of inflammatory injury, we observed the emergence of a proliferative lung EC subpopulation. Overexpression of Sox17 prevented inflammatory activation in ECs. Thus, there appears to be a” division of labor” within the lung microvascular endothelium with some ECs showing propensity for inflammatory signaling and others for endothelial regeneration. These results provide underpinnings for the development of targeted therapies to limit inflammatory lung injury and promote regeneration.
Lianghui Zhang, Shang Gao, Zachary White, Yang Dai, Asrar B. Malik, Jalees Rehman
DNA damage and genomic instability contribute to non-small cell lung cancer (NSCLC) etiology and progression. However, their therapeutic exploitation is disappointing. CTC-derived eXplants (CDX) offer systems for mechanistic investigation of CTC metastatic potency and may provide rationale for biology-driven therapeutics. Four CDX models and three CDX-derived cell lines were established from NSCLC CTCs and recapitulated patient tumor histology and response to platinum-based chemotherapy. CDX (GR-CDXL1, GR-CDXL2, GR-CDXL3, GR-CDXL4) demonstrated considerable mutational landscape similarity with patient tumor biopsy and/or single CTCs. Truncal alterations in key DNA damage response (DDR) and genome integrity-related genes were prevalent across models and assessed as therapeutic targets in vitro, in ovo and in vivo. GR-CDXL1 presented homologous recombination deficiency linked to bi-allelic BRCA2 mutation and FANCA deletion, unrepaired DNA lesions post-mitosis and olaparib sensitivity, despite resistance to chemotherapy. SLFN11 overexpression in GR-CDXL4 led to olaparib sensitivity and was in coherence with neuroendocrine marker expression in patient tumor biopsy, suggesting a predictive value of SLFN11 in NSCLC histological transformation into SCLC. Centrosome clustering promoted targetable chromosomal instability in GR-CDXL3 cells. These CDX unravel DDR and genome integrity-related defects as a central mechanism underpinning metastatic potency of CTCs and provide rationale for their therapeutic targeting in metastatic NSCLC.
Tala Tayoun, Vincent Faugeroux, Marianne Oulhen, Olivier Déas, Judith Michels, Laura Brulle-Soumare, Stefano Cairo, Jean-Yves Scoazec, Virginie Marty, Agathe Aberlenc, David Planchard, Jordi Remon, Santiago Ponce, Benjamin Besse, Patricia L. Kannouche, Jean-Gabriel Judde, Patrycja Pawlikowska, Françoise Farace