Intratumoral heterogeneity is a defining hallmark of glioblastoma, driving drug resistant and ultimately recurrence. Many somatic drivers of microenvironmental change have been shown to affect this heterogeneity and ultimately treatment response. However, little is known about how germline mutations effect the tumoral microenvironment. Here, we find that the single-nucleotide polymorphism (SNP) rs755622 in promoter of the cytokine macrophage migration inhibitory factor (MIF), is associated with increased leukocyte infiltration in glioblastoma. Furthermore, we identified an association between rs755622 and lactotransferrin expression, which could also be used as a biomarker for immune-infiltrated tumors. These findings demonstrate that a germline SNP in the promoter region of MIF may impact the immune microenvironment and further reveals a link between lactotransferrin and immune activation.
Tyler J. Alban, Matthew M. Grabowski, Balint Otvos, Defne Bayik, Wesley Wang, Ajay H. Zalavadia, Vladimir Makarav, Katie M. Troike, Mary McGraw, Anja Rabljenovic, Adam Lauko, Chase K.A. Neumann, Gustavo Roversi, Kristin A. Waite, Gino Cioffi, Nirav Patil, Thuy T. Tran, Kathleen McCortney, Alicia Steffens, C. Marcela Diaz-Montero, J. Mark Brown, Kathleen M. Egan, Craig Horbinski, Jill S. Barnholtz-Sloan, Prajwal Rajappa, Michael A. Vogelbaum, Richard Bucala, Timothy A. Chan, Manmeet S. Ahluwalia, Justin D. Lathia
SARS-CoV-2 mRNA vaccination generates protective B cell responses targeting the SARS-CoV-2 spike glycoprotein. Whereas anti-spike memory B cell responses are long-lasting, the anti-spike humoral antibody response progressively wanes, making booster vaccinations necessary for maintaining protective immunity. Here we investigated qualitatively the plasmablast responses by measuring from single cells within hours of sampling the affinity of their secreted antibody for the SARS-CoV-2 spike receptor binding domain in cohorts of BNT162b2-vaccinated naive and COVID-19-recovered individuals. Using a unique droplet microfluidic and imaging approach, we analyzed >4,000 single IgG-secreting cells revealing high inter-individual variability in affinity for RBD with variations over 4 logs. High-affinity plasmablasts were induced by BNT162b2 vaccination against Hu-1 and Omicron RBD but disappeared quickly thereafter, whereas low-affinity plasmablasts represented >65% of the plasmablast response at all timepoints. Our droplet-based method thus proves efficient at fast and qualitative immune monitoring and should be helpful for optimization of vaccination protocols.
Matteo Broketa, Aurélien Sokal, Michael Mor, Pablo Canales-Herrerias, Angga Perima, Annalisa Meola, Ignacio Fernández, Bruno Iannascoli, Guilhem Chenon, Alexis Vandenberghe, Laetitia Languille, Marc Michel, Bertrand Godeau, Sebastien Gallien, Giovanna Melica, Marija Backovic, Felix A. Rey, Jean Baudry, Natalia T. Freund, Matthieu Mahevas, Pierre Bruhns
HIV-1 infection is characterized by a strong inflammatory environment, tissue disruption, and a progressive decline in CD4+ T cell count. Despite treatment with antiretroviral therapy (ART), the majority of persons living with HIV (PLWH) maintain residual levels of inflammation, low degree of immune activation, and higher sensitivity to cell death in their memory CD4+ T-cell compartment. To date, the mechanisms responsible for this high sensitivity remain elusive. We have identified the transcription factor IRF-5 to be involved in impairing the maintenance of murine CD4+ T cells in a chronic inflammatory environment. Here, we investigate whether IRF-5 also contributes to memory CD4+ T cell loss during HIV-1 infection. We show that TLR7 and IRF-5 were upregulated in memory CD4+ T cells from PLWH, when compared with naturally protected elite controllers and HIVfree participants. TLR7 was upstream of IRF-5, promoting Caspase 8 expression in CD4+ T cells from ART HIV-1+ but not from HIVfree participants. Moreover, IRF-5 and TLR7 expression inversely correlated with CD4+ T cell counts in primary HIV infection. Interestingly, the TLR7-IRF-5 axis acted synergistically with the Fas/FasL pathway, suggesting that TLR7 and IRF-5 expression in ART HIV-1+ memory CD4+ T cells represents an imprint that predisposes cells to Fas-mediated apoptosis. This predisposition could be blocked using IRF-5 inhibitory peptides. Thus, we propose IRF-5 blockade as a possible therapy to prevent memory CD4+ T cell loss in PLWH.
Liseth Carmona-Perez, Xavier Dagenais-Lussier, Linh Thuy Mai, Tanja Stögerer, Sharada Swaminathan, Stephane Isnard, Matthew R. Rice, Betsy J. Barnes, Jean Pierre Routy, Julien van Grevenynghe, Simona Stager
Methotrexate (MTX) is a standard, first-line therapy for rheumatoid arthritis (RA); however, its precise mechanisms of action other than antifolate activity are largely unknown. We performed DNA microarray analyses of CD4+ T cells in patients with RA before and after MTX treatment and found that TP63 was the most significantly downregulated gene after MTX treatment. TAp63, an isoform of TP63, was highly expressed in human IL-17–producing Th (Th17) cells and was suppressed by MTX in vitro. Murine TAp63 was expressed at high levels in Th cells and at lower levels in thymus-derived Treg cells. Importantly, TAp63 knockdown in murine Th17 cells ameliorated the adoptive transfer arthritis model. RNA-Seq analyses of human Th17 cells overexpressing TAp63 and those with TAp63 knockdown identified FOXP3 as a possible TAp63 target gene. TAp63 knockdown in CD4+ T cells cultured under Th17 conditions with low-dose IL-6 increased Foxp3 expression, suggesting that TAp63 balances Th17 cells and Treg cells. Mechanistically, TAp63 knockdown in murine induced Treg (iTreg) cells promoted hypomethylation of conserved noncoding sequence 2 (CNS2) of the Foxp3 gene and enhanced the suppressive function of iTreg cells. Reporter analyses revealed that TAp63 suppressed the activation of the Foxp3 CNS2 enhancer. Collectively, TAp63 suppresses Foxp3 expression and exacerbates autoimmune arthritis.
Kensuke Suga, Akira Suto, Shigeru Tanaka, Yutaka Sugawara, Takahiro Kageyama, Junichi Ishikawa, Yoshie Sanayama, Kei Ikeda, Shunsuke Furuta, Shin-Ichiro Kagami, Arifumi Iwata, Koichi Hirose, Kotaro Suzuki, Osamu Ohara, Hiroshi Nakajima
Radiographic contact of glioblastoma (GBM) tumors with the lateral ventricle and adjacent stem cell niche correlates with poor patient prognosis, but the cellular basis of this difference is unclear. Here, we reveal and functionally characterize distinct immune microenvironments that predominate in subtypes of GBM distinguished by proximity to the lateral ventricle. Mass cytometry analysis of IDH-wildtype human tumors identified elevated T cell checkpoint receptor expression and greater abundance of a specific CD32+CD44+HLA-DRhigh macrophage population in ventricle-contacting GBM. Multiple computational analysis approaches, phospho-specific cytometry, and focal resection of GBMs confirmed and extended these findings. Phospho-flow quantified cytokine-induced immune cell signaling in ventricle-contacting GBM revealing differential signaling between GBM subtypes. Subregion analysis within a given tumor supported initial findings and revealed intratumoral compartmentalization of T cell memory and exhaustion phenotypes within GBM subtypes. Collectively, these results characterize immunotherapeutically targetable features of macrophages and suppressed lymphocytes in glioblastomas defined by MRI-detectable lateral ventricle contact.
Todd Bartkowiak, Sierra M. Lima, Madeline J. Hayes, Akshitkumar M. Mistry, Asa A. Brockman, Justine Sinnaeve, Nalin Leelatian, Caroline E. Roe, Bret C. Mobley, Silky Chotai, Kyle D. Weaver, Reid C. Thompson, Lola B. Chambless, Rebecca A. Ihrie, Jonathan M. Irish
T cells play an important role in acute kidney injury (AKI). Metabolic programming of T cells regulates their function, is a rapidly emerging field, and is unknown in AKI. We induced ischemic AKI in C57B6 mice and collected kidneys and spleens at multiple time points. T cells were isolated and analyzed by an immune-metabolic assay. Unbiased machine learning analyses identified a distinct T cell subset with reduced VDAC1 and mTOR expression in post-AKI kidneys. Ischemic kidneys showed higher expression of trimethylation of histone H3 lysine 27 (H3K27Me3) and glutaminase. Splenic T cells from post-AKI mice had higher expression of GLUT1, hexokinase II, and CPT1a. Human nonischemic and ischemic kidney tissue displayed similar findings to mouse kidneys. Given a convergent role for glutamine in T cell metabolic pathways and the availability of a relatively safe glutamine antagonist JHU083, effects on AKI were evaluated. JHU083 attenuated renal injury and reduced T cell activation and proliferation in ischemic and nephrotoxic AKI, whereas T cell-deficient mice were not protected by glutamine blockade. In vitro hypoxia demonstrated upregulation of glycolysis-related enzymes. T cells undergo metabolic reprogramming during AKI, and reconstitution of metabolism by targeting T cell glutamine pathway could be a promising novel therapeutic approach.
Kyungho Lee, Elizabeth A. Thompson, Sepideh Gharaie, Chirag H. Patel, Johanna T. Kurzhagen, Phillip M. Pierorazio, Lois J. Arend, Ajit G. Thomas, Sanjeev Noel, Barbara S. Slusher, Hamid Rabb
cyclic GMP-AMP synthase (cGAS) is a DNA sensor and responsible for inducing an anti-tumor immune response. Recent studies reveal cGAS is frequently inhibited in cancer, and therapeutic targets to promote anti-tumor cGAS function remain elusive. SRC is a proto-oncogene tyrosine kinase and is expressed at elevated levels in numerous cancers. Here, we demonstrate that SRC expression in primary and metastatic bladder cancer negatively correlates with innate immune gene expression and immune cell infiltration. We determine that SRC restricts cGAS signaling in human cell lines through SRC small molecule inhibitors, depletion, and overexpression. cGAS and SRC interact in cells and in vitro, while SRC directly inhibits cGAS enzymatic activity and DNA binding in a kinase-dependent manner. SRC phosphorylates cGAS, and inhibition of cGAS Y248 phosphorylation partially reduces SRC inhibition. Collectively, our study demonstrates that cGAS anti-tumor signaling is hindered by the proto-oncogene SRC and describes how cancer-associated proteins can regulate the innate immune system.
William Dunker, Shivam A. Zaver, Jose Mario Bello Pineda, Cameron J. Howard, Robert K. Bradley, Joshua J. Woodward
Respiratory syncytial virus (RSV) infection causes significant morbidity and mortality in infants, immunocompromised, and older individuals. There is an urgent need for effective antivirals and vaccines for high risk individuals. We used two complementary in vivo models to analyze RSV-associated human lung pathology and human immune correlates of protection. RSV infection resulted in widespread human lung epithelial damage, a pro-inflammatory innate immune response, and elicited a natural adaptive human immune response that conferred protective immunity. We demonstrated a key role for human T cells in controlling RSV infection. Specifically, primed human CD8+ T cells or CD4+ T cells effectively and independently control RSV replication in human lung tissue in the absence of an RSV-specific antibody response. These preclinical data support the development of RSV vaccines which also elicit effective T cell responses to improve RSV vaccine efficacy.
Chandrav De, Raymond J. Pickles, Wenbo Yao, Baolin Liao, Allison E. Boone, Mingyu Choi, Diana M. Battaglia, Frederic B. Askin, Jason K. Whitmire, Guido Silvestri, J. Victor Garcia, Angela Wahl
Laryngotracheal stenosis (LTS) is pathologic fibrotic narrowing of the larynx and trachea characterized by hypermetabolic fibroblasts and CD4-mediated inflammation. However, the role of CD4 T-cells in promoting LTS fibrosis is unknown. The mechanistic target of rapamycin (mTOR) signaling pathways have been shown to regulate T-cell phenotype. Here we sought to investigate the influence of mTOR signaling in CD4 T-cells on LTS pathogenesis. In this study, human LTS specimens revealed an increased population of CD4-cells expressing the activated isoform of mTOR. In a murine LTS model, targeting mTOR with systemic sirolimus and a sirolimus-eluting airway stent reduced fibrosis and TH17-cells. Selective deletion of mTOR in CD4+-cells reduced TH17-cells and attenuated fibrosis, demonstrating CD4-cells’ pathologic role in LTS. Multispectral immunofluorescence of human LTS revealed increased TH17-cells. In-vitro, TH17-cells increased collagen-1 production by LTS fibroblasts, which was prevented with sirolimus pretreatment of TH17-cells. Collectively, mTOR signaling drives pathologic CD4 T-cell phenotypes in LTS, and targeting mTOR with sirolimus is effective at treating LTS through inhibition of pro-fibrotic TH17-cells. Finally, sirolimus may be delivered locally with a drug-eluting stent, transforming clinical therapy for LTS.
Kevin M. Motz, Ioan A. Lina, Idris Samad, Michael K. Murphy, Madhavi Duvvuri, Ruth J. Davis, Alexander Gelbard, Liam Chung, Yee Chan-Li, Samuel Collins, Jonathan D. Powell, Jennifer H. Elisseeff, Maureen R. Horton, Alexander T. Hillel
Immune responses in people with multiple sclerosis (pwMS) on disease-modifying therapies (DMTs) have been of significant interest throughout the COVID-19 pandemic. Lymphocyte-targeting immunotherapies including anti-CD20 treatments and sphingosine-1-phosphate receptor (S1PR) modulators attenuate antibody responses after vaccination. Evaluation of cellular responses after vaccination is therefore of particular importance in these populations. In this study, we analysed CD4 and CD8 T cell functional responses to SARS-CoV-2 spike peptides in healthy controls and pwMS on five different DMTs by flow cytometry. Although pwMS on rituximab and fingolimod therapies had low antibody responses after both two and three vaccine doses, T cell responses in pwMS on rituximab were preserved after a third vaccination, even when an additional dose of rituximab was administered between vaccine doses two and three. PwMS taking fingolimod had low detectable T cell responses in peripheral blood. CD4 and CD8 T cell responses to SARS-CoV-2 variants of concern Delta and Omicron were lower than to the ancestral Wuhan-Hu-1 variant. Our results indicate the importance of assessing both cellular and humoral responses after vaccination and suggest that even in the absence of robust antibody responses vaccination can generate immune responses in pwMS.
Asia-Sophia Wolf, Anthony Ravussin, Marton König, Mathias H. Øverås, Guri Solum, Ingrid Fadum Kjønstad, Adity Chopra, Trygve Holmøy, Hanne F. Harbo, Silje Watterdal Syversen, Kristin Kaasen Jørgensen, Einar A. Høgestøl, John T. Vaage, Elisabeth G. Celius, Fridtjof Lund-Johansen, Ludvig A. Munthe, Gro Owren Nygaard, Siri Mjaaland
No posts were found with this tag.