Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact

Hematology

  • 85 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 8
  • 9
  • Next →
TPP1 mutagenesis screens unravel shelterin interfaces and functions in hematopoiesis
Sherilyn Grill, … , Ivan Maillard, Jayakrishnan Nandakumar
Sherilyn Grill, … , Ivan Maillard, Jayakrishnan Nandakumar
Published April 6, 2021
Citation Information: JCI Insight. 2021. https://doi.org/10.1172/jci.insight.138059.
View: Text | PDF

TPP1 mutagenesis screens unravel shelterin interfaces and functions in hematopoiesis

  • Text
  • PDF
Abstract

Telomerase catalyzes chromosome end replication in stem cells and other long-lived cells. Mutations in telomerase or telomere-related genes result in diseases known as telomeropathies. Telomerase is recruited to chromosome ends by the ACD/TPP1 protein (TPP1 hereafter), a component of the shelterin complex that protects chromosome ends from unwanted end-joining. TPP1 facilitates end-protection by binding shelterin proteins POT1 and TIN2. TPP1 variants have been associated with telomeropathies, but remain poorly characterized in vivo. Disease variants and mutagenesis scans provide efficient avenues to interrogate the distinct physiological roles of TPP1. Here, we conduct mutagenesis in the TIN2- and POT1-binding domains of TPP1 to discover mutations that dissect TPP1’s functions. Our results extend upon current structural data to reveal that the TPP1-TIN2 interface is more extensive than previously thought, and highlight the robustness of the POT1-TPP1 interface. Introduction of separation-of-function mutants alongside known TPP1 telomeropathy mutations in mouse hematopoietic stem cells (mHSCs) lacking endogenous TPP1 demonstrated a clear phenotypic demarcation. TIN2- and POT1-binding mutants were unable to rescue mHSC failure resulting from end-deprotection. In contrast, TPP1 telomeropathy mutations sustained mHSC viability, consistent with them selectively impacting end-replication. These results highlight the power of scanning mutagenesis in revealing structural interfaces and dissecting multifunctional genes.

Authors

Sherilyn Grill, Shilpa Padmanaban, Ann Friedman, Eric Perkey, Frederick Allen, Valerie M. Tesmer, Jennifer Chase, Rami Khoriaty, Catherine E. Keegan, Ivan Maillard, Jayakrishnan Nandakumar

×

15-PGDH inhibition activates the splenic niche to promote hematopoietic regeneration
Julianne N.P. Smith, … , Sanford D. Markowitz, Amar B. Desai
Julianne N.P. Smith, … , Sanford D. Markowitz, Amar B. Desai
Published February 18, 2021
Citation Information: JCI Insight. 2021. https://doi.org/10.1172/jci.insight.143658.
View: Text | PDF

15-PGDH inhibition activates the splenic niche to promote hematopoietic regeneration

  • Text
  • PDF
Abstract

The splenic microenvironment regulates hematopoietic stem and progenitor cell (HSPC) function, particularly during demand-adapted hematopoiesis, however practical strategies to enhance splenic support of transplanted HSPCs have proven elusive. We have previously demonstrated that inhibiting 15-hydroxyprostaglandin dehydrogenase (15-PGDH), using the small molecule (+)SW033291 (PGDHi), increases bone marrow (BM) prostaglandin E2 (PGE2) levels, expands HSPC numbers, and accelerates hematologic reconstitution following BM transplantation (BMT) in mice. Here we demonstrate that the splenic microenvironment, specifically 15-PGDH high-expressing macrophages (MΦs), megakaryocytes (MKs), and mast cells (MCs), regulates steady-state hematopoiesis and potentiates recovery after BMT. Notably, PGDHi-induced neutrophil, platelet, and HSPC recovery were highly attenuated in splenectomized mice. PGDHi induced non-pathologic splenic extramedullary hematopoiesis at steady-state, and pre-transplant PGDHi enhanced the homing of transplanted cells to the spleen. 15-PGDH enzymatic activity localized specifically to MΦs, MK lineage cells, and MCs, identifying these cell types as likely coordinating the impact of PGDHi on splenic HSPCs. These findings suggest that 15-PGDH expression marks novel HSC niche cell types that regulate hematopoietic regeneration. Therefore, PGDHi provides a well-tolerated strategy to therapeutically target multiple HSC niches and to promote hematopoietic regeneration and improve clinical outcomes of BMT.

Authors

Julianne N.P. Smith, Dawn M. Dawson, Kelsey F. Christo, Alvin P. Jogasuria, Mark J. Cameron, Monika I. Antczak, Joseph M. Ready, Stanton L. Gerson, Sanford D. Markowitz, Amar B. Desai

×

CD84 is a regulator of the immunosuppressive microenvironment in Multiple Myeloma
Hadas Lewinsky, … , Steven Rosen, Idit Shachar
Hadas Lewinsky, … , Steven Rosen, Idit Shachar
Published January 19, 2021
Citation Information: JCI Insight. 2021. https://doi.org/10.1172/jci.insight.141683.
View: Text | PDF

CD84 is a regulator of the immunosuppressive microenvironment in Multiple Myeloma

  • Text
  • PDF
Abstract

Multiple myeloma (MM) is characterized by an accumulation of malignant plasma cells (PCs) within the bone marrow (BM). The BM microenvironment supports survival of the malignant cells and is comprised of cellular fractions that foster myeloma development and progression by suppression of the immune response. Despite major progress in understanding the biology and pathophysiology of MM, this disease is still incurable and requires aggressive treatment with significant side effects. CD84 is a self-binding immuno-receptor belonging to the signaling lymphocyte activating molecule (SLAM) family. Previously, we showed that CD84 bridges between chronic lymphocytic leukemia cells and their microenvironment, and regulates T cell function. In the current study, we investigated the role of CD84 in MM. Our results show that MM cells express low levels of CD84. However, these cells secrete the cytokine macrophage migration inhibitory factor (MIF), which induces CD84 expression on cells in their microenvironment. Its activation leads to an elevation of expression of genes regulating differentiation to M/G- myeloid derived suppressor cells (MDSCs) and upregulation of PD-L1 expression on MDSCs, which together suppress T cell function. Downregulation of CD84 or its blocking reduces MDSC accumulation, resulting in elevated T cell activity and reduced tumor load. Our data suggest that CD84 might serve as a novel therapeutic target in MM.

Authors

Hadas Lewinsky, Emine Gulsen Gunes, Keren David, Lihi Radomir, Matthias P. Kramer, Bianca Pellegrino, Michal Perpinial, Jing Chen, Ting-fang He, Anthony Mansour, Kun-Yu Teng, Supriyo Bhattacharya, Enrico Caserta, Estelle Troadec, Peter P. Lee, Mingye Feng, Jonathan J. Keats, Amrita Krishnan, Michael Rosenzweig, Jianhua Yu, Michael A. Caligiuri, Yosef Cohen, Olga Shvetz, Shirly Becker-Herman, Flavia Pichiorri, Steven Rosen, Idit Shachar

×

Cohesin mutations alter DNA damage repair and chromatin structure and create therapeutic vulnerabilities in MDS/AML
Zuzana Tothova, … , Job Dekker, Benjamin L. Ebert
Zuzana Tothova, … , Job Dekker, Benjamin L. Ebert
Published December 22, 2020
Citation Information: JCI Insight. 2020. https://doi.org/10.1172/jci.insight.142149.
View: Text | PDF

Cohesin mutations alter DNA damage repair and chromatin structure and create therapeutic vulnerabilities in MDS/AML

  • Text
  • PDF
Abstract

The cohesin complex plays an essential role in chromosome maintenance and transcriptional regulation. Recurrent somatic mutations in the cohesin complex are frequent genetic drivers in cancer including myelodysplatic syndromes (MDS) and acute myeloid leukemia (AML). Here, using genetic dependency screens of STAG2-mutant AML, we identified DNA damage repair and replication as genetic dependencies in cohesin-mutant cells. We demonstrated increased levels of DNA damage and sensitivity of cohesin-mutant cells to PARP inhibition. We developed a mouse model of MDS in which Stag2 mutations arise as clonal secondary lesions in the background of clonal hematopoiesis driven by Tet2 mutations, and demonstrated selective depletion of cohesin-mutant cells with PARP inhibition in vivo. Finally, we demonstrated a shift from STAG2- to STAG1-containing cohesin complexes in cohesin-mutant cells, which is associated with longer DNA loop extrusion, more intermixing of chromatin compartments, and increased interaction with PARP and RPA proteins. Our findings inform the biology and therapeutic opportunities for cohesin-mutant malignancies.

Authors

Zuzana Tothova, Anne-Laure Valton, Rebecca Gorelov, Mounica Vallurupalli, John M. Krill-Burger, Amie Holmes, Catherine C. Landers, J. Erika Haydu, Edyta Malolepsza, Christina R. Hartigan, Melanie Donahue, Katerina D. Popova, Sebastian H. J. Koochaki, Sergey V. Venev, Jeanne F. Rivera, Edwin Chen, Kasper Lage, Monica Schenone, Alan D. D'Andrea, Steven A. Carr, Elizabeth A. Morgan, Job Dekker, Benjamin L. Ebert

×

Blood donor exposome and impact of common drugs on red blood cell metabolism
Travis Nemkov, … , Michael Busch, Angelo D’Alessandro
Travis Nemkov, … , Michael Busch, Angelo D’Alessandro
Published December 22, 2020
Citation Information: JCI Insight. 2020. https://doi.org/10.1172/jci.insight.146175.
View: Text | PDF

Blood donor exposome and impact of common drugs on red blood cell metabolism

  • Text
  • PDF
Abstract

Computational models based on recent maps of the red blood cell proteome suggest that mature erythrocytes may harbor targets for common drugs. This prediction is relevant to red blood cell storage in the blood bank, in which the impact of small molecule drugs or other xenometabolites deriving from dietary, iatrogenic or environmental exposures (“exposome”) may alter erythrocyte energy and redox metabolism and, in so doing, affect red cell storage quality and post-transfusion efficacy. To test this prediction, here we provide a comprehensive characterization of the blood donor exposome, including the detection of common prescription and over-the-counter drugs in 250 units donated by healthy volunteers from the REDS-III RBC Omics study. Based on high-throughput drug screenings of 1,366 FDA-approved drugs, we report a significant impact of ~65% of the tested drugs on erythrocyte metabolism. Machine learning models built using metabolites as predictors were able to accurately predict drugs for several drug classes/targets (bisphosphonates, anticholinergics, calcium channel blockers, adrenergics, proton-pump inhibitors, antimetabolites, selective serotonin reuptake inhibitors, and mTOR) suggesting that these drugs have a direct, conserved, and significant impact on erythrocyte metabolism. As a proof of principle, here we show that the antiacid ranitidine – though rarely detected in the blood donor population – has a strong effect on RBC markers of storage quality in vitro. We thus show that ranitidine supplementation to blood units could improve erythrocyte metabolism and storage quality when supplemented to blood bags, through mechanisms involving sphingosine 1-phosphate-dependent modulation of erythrocyte glycolysis and/or direct binding to hemoglobin.

Authors

Travis Nemkov, Davide Stefanoni, Aarash Bordbar, Aaron Issaian, Bernhard O. Palsson, Larry J. Dumont, Ariel M. Hay, Anren Song, Yang Xia, Jasmina S. Redzic, Elan Z. Eisenmesser, James C. Zimring, Steve Kleinman, Kirk C. Hansen, Michael Busch, Angelo D’Alessandro

×

TP-0903 is active in models of drug-resistant acute myeloid leukemia
Jae Yoon Jeon, … , Bhavana Bhatnagar, Sharyn D. Baker
Jae Yoon Jeon, … , Bhavana Bhatnagar, Sharyn D. Baker
Published December 3, 2020
Citation Information: JCI Insight. 2020;5(23):e140169. https://doi.org/10.1172/jci.insight.140169.
View: Text | PDF

TP-0903 is active in models of drug-resistant acute myeloid leukemia

  • Text
  • PDF
Abstract

Effective treatment for AML is challenging due to the presence of clonal heterogeneity and the evolution of polyclonal drug resistance. Here, we report that TP-0903 has potent activity against protein kinases related to STAT, AKT, and ERK signaling, as well as cell cycle regulators in biochemical and cellular assays. In vitro and in vivo, TP-0903 was active in multiple models of drug-resistant FLT3 mutant AML, including those involving the F691L gatekeeper mutation and bone marrow microenvironment–mediated factors. Furthermore, TP-0903 demonstrated preclinical activity in AML models with FLT3-ITD and common co-occurring mutations in IDH2 and NRAS genes. We also showed that TP-0903 had ex vivo activity in primary AML cells with recurrent mutations including MLL-PTD, ASXL1, SRSF2, and WT1, which are associated with poor prognosis or promote clinical resistance to AML-directed therapies. Our preclinical studies demonstrate that TP-0903 is a multikinase inhibitor with potent activity against multiple drug-resistant models of AML that will have an immediate clinical impact in a heterogeneous disease like AML.

Authors

Jae Yoon Jeon, Daelynn R. Buelow, Dominique A. Garrison, Mingshan Niu, Eric D. Eisenmann, Kevin M. Huang, Megan E. Zavorka Thomas, Robert H. Weber, Clifford J. Whatcott, Steve L. Warner, Shelley J. Orwick, Bridget Carmichael, Emily Stahl, Lindsey T. Brinton, Rosa Lapalombella, James S. Blachly, Erin Hertlein, John C. Byrd, Bhavana Bhatnagar, Sharyn D. Baker

×

Bone marrow Tregs mediate stromal cell function and support hematopoiesis via IL-10
Virginia Camacho, … , Heth R. Turnquist, Robert S. Welner
Virginia Camacho, … , Heth R. Turnquist, Robert S. Welner
Published November 19, 2020
Citation Information: JCI Insight. 2020;5(22):e135681. https://doi.org/10.1172/jci.insight.135681.
View: Text | PDF

Bone marrow Tregs mediate stromal cell function and support hematopoiesis via IL-10

  • Text
  • PDF
Abstract

The nonimmune roles of Tregs have been described in various tissues, including the BM. In this study, we comprehensively phenotyped marrow Tregs, elucidating their key features and tissue-specific functions. We show that marrow Tregs are migratory and home back to the marrow. For trafficking, marrow Tregs use S1P gradients, and disruption of this axis allows for specific targeting of the marrow Treg pool. Following Treg depletion, the function and phenotype of both mesenchymal stromal cells (MSCs) and hematopoietic stem cells (HSCs) was impaired. Transplantation also revealed that a Treg-depleted niche has a reduced capacity to support hematopoiesis. Finally, we found that marrow Tregs are high producers of IL-10 and that Treg-secreted IL-10 has direct effects on MSC function. This is the first report to our knowledge revealing that Treg-secreted IL-10 is necessary for stromal cell maintenance, and our work outlines an alternative mechanism by which this cytokine regulates hematopoiesis.

Authors

Virginia Camacho, Victoria R. Matkins, Sweta B. Patel, Jeremie M. Lever, Zhengqin Yang, Li Ying, Ashley E. Landuyt, Emma C. Dean, James F. George, Henry Yang, Paul Brent Ferrell, Craig L. Maynard, Casey T. Weaver, Heth R. Turnquist, Robert S. Welner

×

ETV6 germline mutations cause HDAC3/NCOR2 mislocalization and upregulation of interferon response genes
Marlie H. Fisher, … , Eric M. Pietras, Jorge Di Paola
Marlie H. Fisher, … , Eric M. Pietras, Jorge Di Paola
Published August 25, 2020
Citation Information: JCI Insight. 2020. https://doi.org/10.1172/jci.insight.140332.
View: Text | PDF

ETV6 germline mutations cause HDAC3/NCOR2 mislocalization and upregulation of interferon response genes

  • Text
  • PDF
Abstract

ETV6 is an ETS family transcription factor which plays a key role in hematopoiesis and megakaryocyte development. Our group and others have identified germline mutations in ETV6 resulting in autosomal dominant thrombocytopenia and predisposition to malignancy; however, molecular mechanisms defining the role of ETV6 in megakaryocyte development have not been well established. Using a combination of molecular, biochemical, and sequencing approaches in patient-derived PBMCs, we demonstrate abnormal cytoplasmic localization of ETV6 and the HDAC3/NCOR2 repressor complex that leads to overexpression of HDAC3-regulated interferon response genes. This transcriptional dysregulation is also reflected in patient-derived platelet transcripts, and drives aberrant proplatelet formation in megakaryocytes. Our results suggest that aberrant transcription may predispose patients with ETV6 mutations to bone marrow inflammation, dysplasia, and megakaryocyte dysfunction.

Authors

Marlie H. Fisher, Gregory D. Kirkpatrick, Brett M. Stevens, Courtney L. Jones, Michael U. Callaghan, Madhvi Rajpurkar, Joy Fulbright, Megan A. Cooper, Jesse Rowley, Christopher C. Porter, Arthur Gutierrez-Hartmann, Kenneth Jones, Craig T. Jordan, Eric M. Pietras, Jorge Di Paola

×

Curative in vivo hematopoietic stem cell gene therapy of murine thalassemia using large regulatory elements
Hongjie Wang, … , Thalia Papayannopoulou, André Lieber
Hongjie Wang, … , Thalia Papayannopoulou, André Lieber
Published August 20, 2020
Citation Information: JCI Insight. 2020;5(16):e139538. https://doi.org/10.1172/jci.insight.139538.
View: Text | PDF

Curative in vivo hematopoietic stem cell gene therapy of murine thalassemia using large regulatory elements

  • Text
  • PDF
Abstract

Recently, we demonstrated that hematopoietic stem/progenitor cell (HSPC) mobilization followed by intravenous injection of integrating, helper-dependent adenovirus HDAd5/35++ vectors resulted in efficient transduction of long-term repopulating cells and disease amelioration in mouse models after in vivo selection of transduced HSPCs. Acute innate toxicity associated with HDAd5/35++ injection was controlled by appropriate prophylaxis, making this approach feasible for clinical translation. Our ultimate goal is to use this technically simple in vivo HSPC transduction approach for gene therapy of thalassemia major or sickle cell disease. A cure of these diseases requires high expression levels of the therapeutic protein (γ- or β-globin), which is difficult to achieve with lentivirus vectors because of their genome size limitation not allowing larger regulatory elements to be accommodated. Here, we capitalized on the 35 kb insert capacity of HDAd5/35++ vectors to demonstrate that transcriptional regulatory regions of the β-globin locus with a total length of 29 kb can efficiently be transferred into HSPCs. The in vivo HSPC transduction resulted in stable γ-globin levels in erythroid cells that conferred a complete cure of murine thalassemia intermedia. Notably, this was achieved with a minimal in vivo HSPC selection regimen.

Authors

Hongjie Wang, Aphrodite Georgakopoulou, Chang Li, Zhinan Liu, Sucheol Gil, Ashvin Bashyam, Evangelia Yannaki, Achilles Anagnostopoulos, Amit Pande, Zsuzsanna Izsvák, Thalia Papayannopoulou, André Lieber

×

Loss of Sbds in zebrafish leads to neutropenia and pancreas and liver atrophy
Usua Oyarbide, … , Jacek Topczewski, Seth Corey
Usua Oyarbide, … , Jacek Topczewski, Seth Corey
Published August 6, 2020
Citation Information: JCI Insight. 2020. https://doi.org/10.1172/jci.insight.134309.
View: Text | PDF

Loss of Sbds in zebrafish leads to neutropenia and pancreas and liver atrophy

  • Text
  • PDF
Abstract

Shwachman-Diamond syndrome (SDS) is characterized by exocrine pancreatic insufficiency, neutropenia, and skeletal abnormalities. Biallelic mutations in SBDS, which encodes a ribosome maturation factor, are found in 90% of SDS cases. Sbds-/- mice are embryonic lethal. Using CRISPR/Cas9 editing, we created sbds-deficient zebrafish strains. Sbds protein levels progressively decreased and became undetectable at 10 days post fertilization (dpf). Polysome analysis revealed decreased 80S ribosomes. Homozygous mutant fish developed normally until 15 dpf. Mutant fish subsequently have stunted growth and shows signs of atrophy in pancreas, liver, and intestine. In addition, neutropenia occurred by 5 dpf. Upregulation of tp53 mRNA did not occur until 10 dpf and inhibition of proliferation correlating with death by 21 dpf. Transcriptome analysis showed tp53 activation through upregulation of genes involved in cell cycle arrest, cdkn1a and ccng1, and apoptosis, puma and mdm2. However, elimination of Tp53 function did not prevent lethality. Because of growth retardation and atrophy of intestinal epithelia, we studied the effects of starvation on wildtype fish. Starved wildtype fish showed intestinal atrophy, zymogen granule loss, and tp53 upregulation – similar to the mutant phenotype. In addition, there was reduction in neutral lipid storage and ribosomal protein amount, similar to the mutant phenotype. Thus, loss of Sbds in zebrafish phenocopies much of the human disease and is associated with growth arrest and tissue atrophy, particularly of the gastrointestinal system, at the larval stage. A variety of stress responses, some associated with Tp53, contribute to pathophysiology of SDS.

Authors

Usua Oyarbide, Arish N. Shah, Wilmer Amaya-Mejia, Matthew Snyderman, Margaret Kell, Daniela Allende, Eliezer Calo, Jacek Topczewski, Seth Corey

×
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 8
  • 9
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2021 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts