Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

  • 140 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 13
  • 14
  • Next →
Proline and glucose metabolic reprogramming supports vascular endothelial and medial biomass in pulmonary arterial hypertension
Bradley M. Wertheim, … , Matthew L. Steinhauser, Bradley A. Maron
Bradley M. Wertheim, … , Matthew L. Steinhauser, Bradley A. Maron
Published January 10, 2023
Citation Information: JCI Insight. 2023. https://doi.org/10.1172/jci.insight.163932.
View: Text | PDF

Proline and glucose metabolic reprogramming supports vascular endothelial and medial biomass in pulmonary arterial hypertension

  • Text
  • PDF
Abstract

In pulmonary arterial hypertension (PAH), inflammation promotes a fibroproliferative pulmonary vasculopathy. Reductionist studies emphasizing single biochemical reactions suggest a shift toward glycolytic metabolism in PAH; however, key questions remain regarding the metabolic profile of specific cell types within PAH vascular lesions in vivo. We used RNA-seq to profile the transcriptome of pulmonary artery endothelial cells (PAECs) freshly isolated from an inflammatory vascular injury model of PAH ex vivo, and these data were integrated with information from human gene ontology pathways. Network medicine was then used to map all amino acid and glucose pathways to the consolidated human interactome, which includes data on 233,957 physical protein-protein interactions. Glucose and proline pathways were significantly close to the human PAH disease module, suggesting that these pathways are functionally relevant to PAH pathobiology. To test this observation in vivo, we used multi-isotope imaging mass spectrometry (MIMS) to map and quantify utilization of glucose and proline in the PAH pulmonary vasculature at subcellular resolution. Our findings suggest suggest that elevated glucose and proline avidity underlies increased biomass in PAECs and the media of fibrosed PAH pulmonary arterioles. Overall, these data show that anabolic utilization of glucose and proline are fundamental to the vascular pathology of PAH.

Authors

Bradley M. Wertheim, Rui-Sheng Wang, Christelle Guillermier, Christiane V.R. Hütter, William M. Oldham, Jörg Menche, Matthew L. Steinhauser, Bradley A. Maron

×

Single-cell transcriptome mapping identifies a local, innate B cell population driving chronic rejection after lung transplantation
Natalia F. Smirnova, … , Nirmal S. Sharma, Oliver Eickelberg
Natalia F. Smirnova, … , Nirmal S. Sharma, Oliver Eickelberg
Published September 22, 2022
Citation Information: JCI Insight. 2022;7(18):e156648. https://doi.org/10.1172/jci.insight.156648.
View: Text | PDF

Single-cell transcriptome mapping identifies a local, innate B cell population driving chronic rejection after lung transplantation

  • Text
  • PDF
Abstract

Bronchiolitis obliterans syndrome (BOS) is the main reason for poor outcomes after lung transplantation (LTx). We and others have recently identified B cells as major contributors to BOS after LTx. The extent of B cell heterogeneity and the relative contributions of B cell subpopulations to BOS, however, remain unclear. Here, we provide a comprehensive analysis of cell population changes and their gene expression patterns during chronic rejection after orthotopic LTx in mice. Of 11 major cell types, Mzb1-expressing plasma cells (PCs) were the most prominently increased population in BOS lungs. These findings were validated in 2 different cohorts of human BOS after LTx. A Bhlhe41, Cxcr3, and Itgb1 triple-positive B cell subset, also expressing classical markers of the innate-like B-1 B cell population, served as the progenitor pool for Mzb1+ PCs. This subset accounted for the increase in IgG2c production within BOS lung grafts. A genetic lack of Igs decreased BOS severity after LTx. In summary, we provide a detailed analysis of cell population changes during BOS. IgG+ PCs and their progenitors — an innate B cell subpopulation — are the major source of local Ab production and a significant contributor to BOS after LTx.

Authors

Natalia F. Smirnova, Kent Riemondy, Marta Bueno, Susan Collins, Pavan Suresh, Xingan Wang, Kapil N. Patel, Carlyne Cool, Melanie Königshoff, Nirmal S. Sharma, Oliver Eickelberg

×

Cell-free DNA topology is unique to its sub-cellular and cellular origins in cancer
Ethan Z. Malkin, … , Mark D. Minden, Scott V. Bratman
Ethan Z. Malkin, … , Mark D. Minden, Scott V. Bratman
Published September 20, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.159590.
View: Text | PDF

Cell-free DNA topology is unique to its sub-cellular and cellular origins in cancer

  • Text
  • PDF
Abstract

Cancer cells release large quantities of cell-free DNA (cfDNA) into the surrounding tissue and circulation. As cfDNA is a common source of biomarkers for liquid biopsy and has been implicated as a functional mediator for intercellular communication, fundamental characterization of cfDNA topology has widespread biological and clinical ramifications. Whether the topology of cfDNA is such that it exists predominantly in membrane-bound extracellular vesicles (EVs) or in non-vesicular DNA-protein complexes remains poorly understood. Here, we employed a DNA-targeted approach to comprehensively assess total cfDNA topology in cancer. Using preclinical models and patient samples, we demonstrate that nuclear cfDNA is predominantly associated with nucleosomal particles and not EVs, while a substantial subset of mitochondrial cfDNA is membrane-protected and disproportionately derived from non-tumour cells. In addition, discrimination between membrane-protected and accessible mitochondrial cfDNA added diagnostic and prognostic value in a cohort of head and neck cancer patients. Our results support a revised model for cfDNA topology in cancer. Due to its abundance, nuclear cfDNA within nucleosomal particles is the most compelling liquid biopsy substrate, while EV-bound and accessible mitochondrial cfDNA represent distinct reservoirs of potential cancer biomarkers whose structural conformations may also influence their extracellular stability and propensity for uptake by recipient cells.

Authors

Ethan Z. Malkin, Steven De Michino, Meghan Lambie, Rita G. Gill, Zhen Zhao, Ariana Rostami, Andrea Arruda, Mark D. Minden, Scott V. Bratman

×

Resident macrophage subpopulations occupy distinct microenvironments in the kidney
Matthew D. Cheung, … , Anupam Agarwal, James F. George
Matthew D. Cheung, … , Anupam Agarwal, James F. George
Published September 6, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.161078.
View: Text | PDF

Resident macrophage subpopulations occupy distinct microenvironments in the kidney

  • Text
  • PDF
Abstract

The kidney contains a population of resident macrophages from birth that expands as it grows and forms a contiguous network throughout the tissue. Kidney resident macrophages (KRMs) are important in homeostasis and the response to acute kidney injury (AKI). While the kidney contains many microenvironments, it is unknown whether KRMs are a heterogeneous population differentiated by function and location. We combined single-cell RNA sequencing (scRNAseq), spatial transcriptomics, flow cytometry, and immunofluorescence imaging to localize, characterize, and validate KRM populations during quiescence and following 19 minutes of bilateral ischemic kidney injury. scRNAseq and spatial transcriptomics revealed seven distinct KRM subpopulations, which are organized into zones corresponding to regions of the nephron. Each subpopulation was identifiable by a unique transcriptomic signature suggesting distinct functions. Specific protein markers were identified for two clusters allowing analysis by flow cytometry or immunofluorescence imaging. Following injury, the original localization of each subpopulation is lost, either from changing locations or transcriptomic signatures. The original spatial distribution of KRMs is not fully restored for at least 28 days post-injury. The change in KRM localization confirms a long hypothesized dysregulation of the local immune system following acute injury and may explain the increased risk for chronic kidney disease.

Authors

Matthew D. Cheung, Elise N. Erman, Kyle H. Moore, Jeremie M.P. Lever, Zhang Li, Jennifer R. LaFontaine, Gelare Ghajar-Rahimi, Shanrun Liu, Zhengqin Yang, Rafay Karim, Bradley K. Yoder, Anupam Agarwal, James F. George

×

Multi-parametric MRI to quantify disease and treatment response in mice with myeloproliferative neoplasms
Tanner H. Robison, … , Brian D. Ross, Gary D. Luker
Tanner H. Robison, … , Brian D. Ross, Gary D. Luker
Published August 23, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.161457.
View: Text | PDF

Multi-parametric MRI to quantify disease and treatment response in mice with myeloproliferative neoplasms

  • Text
  • PDF
Abstract

Histopathology, the standard method to assess bone marrow in hematologic malignancies such as myeloproliferative neoplasms (MPNs), suffers from notable limitations in both research and clinical settings. Bone marrow biopsies in patients fail to detect disease heterogeneity; may yield a non-diagnostic sample; and cannot be repeated frequently in clinical oncology. Endpoint histopathology precludes monitoring disease progression and response to therapy in the same mouse over time, missing likely variations among mice. To overcome these shortcomings, we used magnetic resonance imaging (MRI) to measure changes in cellularity, macromolecular constituents, and fat versus hematopoietic cells in bone marrow using diffusion-weighted imaging, magnetization transfer, and chemical shift encoded fat imaging. Combining metrics from these imaging parameters revealed dynamic alterations in bone marrow following myeloablative radiation and transplantation. In a mouse MPLW515L bone marrow transplant model of MPN, MRI detected effects of a JAK2 inhibitor, ruxolitinib, within five days of initiating treatment and identified differing kinetics of treatment responses in sub-regions of the tibia. Histopathology validated MRI results for bone marrow composition and heterogeneity. Anatomic MRI scans also showed reductions in spleen volume during treatment. These findings establish an innovative, clinically translatable MRI approach to quantify spatial and temporal changes in bone marrow in MPN.

Authors

Tanner H. Robison, Manisha Solipuram, Kevin Heist, Ghoncheh Amouzandeh, Winston Y. Lee, Brock A. Humphries, Johanna M. Buschhaus, Avinash Bevoor, Anne Zhang, Kathryn E. Luker, Kristen Pettit, Moshe Talpaz, Dariya Malyarenko, Thomas L. Chenevert, Brian D. Ross, Gary D. Luker

×

Biogeographic and disease-specific alterations in epidermal lipid composition and single cell analysis of acral keratinocytes.
Alexander A. Merleev, … , Johann E. Gudjonsson, Emanual Maverakis
Alexander A. Merleev, … , Johann E. Gudjonsson, Emanual Maverakis
Published July 28, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.159762.
View: Text | PDF

Biogeographic and disease-specific alterations in epidermal lipid composition and single cell analysis of acral keratinocytes.

  • Text
  • PDF
Abstract

The epidermis is the outermost layer of skin. Here, we use targeted lipid profiling to characterize the biogeographic alterations of human epidermal lipids across 12 anatomically distinct body sites, and use single-cell RNA sequencing to compare keratinocyte gene expression at acral and non-acral surfaces. We demonstrate that acral skin has low expression of EOS acyl-ceramides and the genes involved in their synthesis, as well as low expression of genes involved in filaggrin and keratin citrullination (PADI1 and PADI3) and corneodesmosome degradation, changes consistent with increased corneocyte retention. Several overarching principles governing epidermal lipid expression were also noted. For example, there is a strong negative correlation between the expression of 18-carbon and 22-carbon sphingoid base ceramides. Disease-specific alterations in epidermal lipid gene expression and their corresponding alterations to the epidermal lipidome were characterized. Lipid biomarkers with diagnostic utility for inflammatory and precancerous conditions were identified, and a two-analyte diagnostic model of psoriasis was constructed using a step-forward algorithm. Finally, gene co-expression analysis revealed a strong connection between lipid and immune gene expression. This work highlights mechanisms by which the epidermis is uniquely adapted for the specific environmental insults encountered at different body surfaces, and how inflammation-associated alterations in gene expression affect the epidermal lipidome.

Authors

Alexander A. Merleev, Stephanie T. Le, Claire Alexanian, Atrin Toussi, Yixuan Xie, Alina I. Marusina, Steven M. Watkins, Forum Patel, Allison C. Billi, Julie Wiedemann, Yoshihiro Izumiya, Ashish Kumar, Ranjitha Uppala, J. Michelle Kahlenberg, Fu-Tong Liu, Iannis E. Adamopoulos, Elizabeth A. Wang, Chelsea Ma, Michelle Y. Cheng, Halani Xiong, Amanda Kirane, Guillaume Luxardi, Bogi Andersen, Lam C. Tsoi, Carlito B. Lebrilla, Johann E. Gudjonsson, Emanual Maverakis

×

The circulating proteomic signature of alcohol-associated liver disease
Jay Luther, … , Esperance A. Schaefer, Russell P. Goodman
Jay Luther, … , Esperance A. Schaefer, Russell P. Goodman
Published July 22, 2022
Citation Information: JCI Insight. 2022;7(14):e159775. https://doi.org/10.1172/jci.insight.159775.
View: Text | PDF

The circulating proteomic signature of alcohol-associated liver disease

  • Text
  • PDF
Abstract

Despite being a leading cause of advanced liver disease, alcohol-associated liver disease (ALD) has no effective medical therapies. The circulating proteome, which comprises proteins secreted by different cells and tissues in the context of normal physiological function or in the setting of disease and illness, represents an attractive target for uncovering novel biology related to the pathogenesis of ALD. In this work, we used the aptamer-based SomaScan proteomics platform to quantify the relative concentration of over 1300 proteins in a well-characterized cohort of patients with the spectrum of ALD. We found a distinct circulating proteomic signature that correlated with ALD severity, including over 600 proteins that differed significantly between ALD stages, many of which have not previously been associated with ALD to our knowledge. Notably, certain proteins that were markedly dysregulated in patients with alcohol-associated hepatitis were also altered, to a lesser degree, in patients with subclinical ALD and may represent early biomarkers for disease progression. Taken together, our work highlights the vast and distinct changes in the circulating proteome across the wide spectrum of ALD, identifies potentially novel biomarkers and therapeutic targets, and provides a proteomic resource atlas for ALD researchers and clinicians.

Authors

Jay Luther, Augustin G.L. Vannier, Esperance A. Schaefer, Russell P. Goodman

×

Response to supraphysiological testosterone is predicted by a distinct androgen receptor cistrome
Xintao Qiu, … , Henry W. Long, Eva Corey
Xintao Qiu, … , Henry W. Long, Eva Corey
Published May 23, 2022
Citation Information: JCI Insight. 2022;7(10):e157164. https://doi.org/10.1172/jci.insight.157164.
View: Text | PDF

Response to supraphysiological testosterone is predicted by a distinct androgen receptor cistrome

  • Text
  • PDF
Abstract

The androgen receptor (AR) is a master transcription factor that regulates prostate cancer (PC) development and progression. Inhibition of AR signaling by androgen deprivation is the first-line therapy with initial efficacy for advanced and recurrent PC. Paradoxically, supraphysiological levels of testosterone (SPT) also inhibit PC progression. However, as with any therapy, not all patients show a therapeutic benefit, and responses differ widely in magnitude and duration. In this study, we evaluated whether differences in the AR cistrome before treatment can distinguish between SPT-responding (R) and -nonresponding (NR) tumors. We provide the first preclinical evidence to our knowledge that SPT-R tumors exhibit a distinct AR cistrome when compared with SPT-NR tumors, indicating a differential biological role of the AR. We applied an integrated analysis of ChIP-Seq and RNA-Seq to the pretreatment tumors and identified an SPT-R signature that distinguishes R and NR tumors. Because transcriptomes of SPT-treated clinical specimens are not available, we interrogated available castration-resistant PC (CRPC) transcriptomes and showed that the SPT-R signature is associated with improved survival and has the potential to identify patients who would respond to SPT. These findings provide an opportunity to identify the subset of patients with CRPC who would benefit from SPT therapy.

Authors

Xintao Qiu, Lisha G. Brown, Jennifer L. Conner, Holly M. Nguyen, Nadia Boufaied, Sarah Abou Alaiwi, Ji-Heui Seo, Talal El Zarif, Connor Bell, Edward O’Connor, Brian Hanratty, Mark Pomerantz, Matthew L. Freedman, Myles Brown, Michael C. Haffner, Peter S. Nelson, Felix Y. Feng, David P. Labbé, Henry W. Long, Eva Corey

×

Decoding the PITX2 controlled genetic network in atrial fibrillation
Jeffrey D. Steimle, … , Md. Abul Hassan Samee, James F. Martin
Jeffrey D. Steimle, … , Md. Abul Hassan Samee, James F. Martin
Published April 26, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.158895.
View: Text | PDF

Decoding the PITX2 controlled genetic network in atrial fibrillation

  • Text
  • PDF
Abstract

Atrial fibrillation (AF), the most common sustained cardiac arrhythmia and a major risk factor for stroke, often arises through ectopic electrical impulses derived from the pulmonary veins (PV). Sequence variants in enhancers controlling expression of the transcription factor PITX2, which is expressed in the cardiomyocytes (CMs) of the PV and left atrium (LA), have been implicated in AF predisposition. Single nuclei multiomic profiling of RNA and analysis of chromatin accessibility combined with spectral clustering uncovered distinct PV- and LA-enriched CM cell states. Pitx2 mutant PV and LA CMs exhibited gene expression changes consistent with cardiac dysfunction through cell-type-distinct, PITX2-directed, cis-regulatory grammars controlling target gene expression. The perturbed network targets in each CM were enriched in distinct human AF-predisposition genes, suggesting combinatorial risk for AF-genesis. Our data further reveals that PV and LA Pitx2 mutant CMs signal to endothelial and endocardial cells through BMP10 signaling with pathogenic potential. This work provides a multiomic framework for interrogating the basis of AF-predisposition in the PV of humans.

Authors

Jeffrey D. Steimle, Francisco J. Grisanti Canozo, Minjun Park, Zachary A. Kadow, Md. Abul Hassan Samee, James F. Martin

×

The AIM2 inflammasome is activated in astrocytes during the late phase of EAE
William E. Barclay, … , Edward A. Miao, Mari L. Shinohara
William E. Barclay, … , Edward A. Miao, Mari L. Shinohara
Published April 22, 2022
Citation Information: JCI Insight. 2022;7(8):e155563. https://doi.org/10.1172/jci.insight.155563.
View: Text | PDF

The AIM2 inflammasome is activated in astrocytes during the late phase of EAE

  • Text
  • PDF
Abstract

Inflammasomes are a class of innate immune signaling platforms that activate in response to an array of cellular damage and pathogens. Inflammasomes promote inflammation under many circumstances to enhance immunity against pathogens and inflammatory responses through their effector cytokines, IL-1β and IL-18. Multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), are autoimmune conditions influenced by inflammasomes. Despite work investigating inflammasomes during EAE, little remains known concerning the role of inflammasomes in the central nervous system (CNS) during the disease. Here, we used multiple genetically modified mouse models to monitor activated inflammasomes in situ based on oligomerization of apoptosis-associated speck-like protein containing a CARD (ASC) in the spinal cord. Using inflammasome reporter mice, we found heightened inflammasome activation in astrocytes after the disease peak. In contrast, microglia and CNS-infiltrated myeloid cells had few activated inflammasomes in the CNS during EAE. Astrocyte inflammasome activation during EAE was dependent on absent in melanoma 2 (AIM2), but low IL-1β release and no significant signs of cell death were found. Thus, the AIM2 inflammasome activation in astrocytes may have a distinct role from traditional inflammasome-mediated inflammation.

Authors

William E. Barclay, Nupur Aggarwal, M. Elizabeth Deerhake, Makoto Inoue, Toshiaki Nonaka, Kengo Nozaki, Nathan A. Luzum, Edward A. Miao, Mari L. Shinohara

×
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 13
  • 14
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts