Renal osteodystrophy is commonly seen in patients with chronic kidney disease (CKD) due to disrupted mineral homeostasis. Given the impaired renal function in these patients, common anti-resorptive agents, including bisphosphonates, must be used with caution or even contraindicated. Therefore, an alternative therapy without renal burden to combat renal osteodystrophy is urgently needed. Here, we report that clinically relevant aerobic exercise significantly prevents high-turnover renal osteodystrophy in CKD mouse and patients without compromising renal function. Mechanistically, 4-week aerobic exercise in CKD mice increased expression of skeletal muscle PPARγ coactivator-1α (PGC-1α) and circulating irisin. Both exercise and irisin administration significantly activated osteoblasts, but not osteoclasts, via integrin αvβ5, thereby conferring bone quality benefits. Removal of irisin-influenced thermogenic adipose tissues or genetic ablation of uncoupling protein 1 did not alter the irisin-conferred anti-osteodystrophy effect. Importantly, in a pilot clinical study, 12-week aerobic exercise in patients with high-grade CKD significantly increased circulating irisin and prevented osteodystrophy progression, without detectable renal burden. The combination of irisin and current anti-resorptive agents effectively rescued renal osteodystrophy in mice. Our work provides mechanistic insights into the role of exercise and irisin in renal osteodystrophy, and highlights a clinically relevant, low-cost, kidney-friendly therapy for patients with this devastating disease.
Meng Wu, Huilan Li, Xiaoting Sun, Rongrong Zhong, Linli Cai, Ruibo Chen, Madiya Madeniyet, Kana Ren, Zhen Peng, Yujie Yang, Weiqin Chen, Yanling Tu, Miaoxin Lai, Jinxiu Deng, Yuting Wu, Shumin Zhao, Qingyan Ruan, Mei Rao, Sisi Xie, Ying Ye, Jianxin Wan
The impact of diet-induced maternal obesity on offspring airway hyperresponsiveness was studied in a diversity outbred mouse model that mirrors human genetic diversity. Female mice were started on high-fat or regular diet 8 weeks before breeding and throughout pregnancy and lactation. After weaning, all offspring were fed a regular diet. By 12 weeks, body weight and fat were increased in offspring of high-fat diet–fed dams, which was accompanied by metabolic dysfunction and hyperinsulinemia. This was followed by increased epithelial sensory innervation and increased bronchoconstriction to inhaled 5-hydroxytryptamine at 16 weeks. Bronchoconstriction was nerve mediated and blocked by vagotomy or atropine. A high-fat diet before pregnancy exerted the most influence on offspring airway physiology. Maternal obesity induced metabolic dysfunction and hyperinsulinemia, resulting in hyperinnervation and subsequent increased reflex-mediated hyperresponsiveness in their offspring. This is relevant to our understanding of asthma inheritance, considering the genetic diversity of humans.
Kayla R. Williams, Hoyt A.T.K. Bright, Allison D. Fryer, David B. Jacoby, Zhenying Nie
With the aging of society, the incidence of chronic kidney disease (CKD), a common cause of death, has been increasing. Transcription factor EB (TFEB), the master transcriptional regulator of the autophagy–lysosomal pathway, is regarded as a promising candidate for preventing various age-related diseases. However, whether TFEB in the proximal tubules plays a significant role in elderly CKD patients remains unknown. First, we found that nuclear TFEB localization in proximal tubular epithelial cells (PTECs) declined with age in both mice and humans. Next, we generated PTEC-specific Tfeb-deficient mice and bred them for up to 24 months. We found that TFEB deficiency in the proximal tubules caused metabolic disorders and occasionally led to apolipoprotein A4 (APOA4) amyloidosis. Supporting this result, we identified markedly decreased nuclear TFEB localization in the proximal tubules of elderly patients with APOA4 amyloidosis. The metabolic disturbances were accompanied with mitochondrial dysfunction due to transcriptional changes involved in fatty acid oxidation and oxidative phosphorylation pathways, as well as decreased mitochondrial clearance reflected by the accumulation of mitochondria–lysosome-related organelles, which depends on lysosomal function. These results shed light on the presumptive mechanisms of APOA4 amyloidosis pathogenesis and provide a therapeutic strategy for CKD-related metabolic disorders and APOA4 amyloidosis.
Jun Nakamura, Takeshi Yamamoto, Yoshitsugu Takabatake, Tomoko Namba-Hamano, Atsushi Takahashi, Jun Matsuda, Satoshi Minami, Shinsuke Sakai, Hiroaki Yonishi, Shihomi Maeda, Sho Matsui, Hideaki Kawai, Isao Matsui, Tadashi Yamamuro, Ryuya Edahiro, Seiji Takashima, Akira Takasawa, Yukinori Okada, Tamotsu Yoshimori, Andrea Ballabio, Yoshitaka Isaka
We characterized the longitudinal serum protein signatures of women 6 and 10 years after gestational diabetes mellitus (GDM) to identify factors associated with the development of type 2 diabetes mellitus (T2D) and prediabetes in this at-risk post-GDM population, aiming to discover potential biomarkers for early diagnosis and prevention of T2D. Our study identified 75 T2D-associated serum proteins and 23 prediabetes-associated proteins, some of which were validated in an independent T2D cohort. Machine learning (ML) performed on the longitudinal proteomics highlighted protein signatures associated with progression to post-GDM diabetes. We also proposed prognostic biomarker candidates, that were differentially regulated in healthy participants at 6 years postpartum who later progressed to T2D. Our longitudinal study revealed T2D-risk factors for post-GDM populations, who are relatively young and healthy, providing insights for clinical decisions and early lifestyle interventions.
Heaseung Sophia Chung, Lawrence Middleton, Manik Garg, Ventzislava A. Hristova, Rick B. Vega, David J. Baker, Benjamin G. Challis, Dimitrios Vitsios, Sonja Hess, Kristina Wallenius, Agneta Holmäng, Ulrika Andersson-Hall
Human studies linking metabolism with organism-wide physiologic function have been challenged by confounding, adherence, and precision. Here, we united physiologic and molecular phenotypes of metabolism during controlled dietary intervention to understand integrated metabolic-physiologic responses to nutrition. In an inpatient study of individuals who underwent serial 24-hour metabolic chamber experiments (indirect calorimetry) and metabolite profiling, we mapped a human metabolome onto substrate oxidation rates and energy expenditure across up to 7 dietary conditions (energy balance, fasting, multiple 200% caloric excess overfeeding of varying fat, protein, and carbohydrate composition). Diets exhibiting greater fat oxidation (e.g., fasting, high-fat) were associated with changes in metabolites within pathways of mitochondrial β-oxidation, ketogenesis, adipose tissue fatty acid liberation, and/or multiple anapleurotic substrates for tricarboxylic acid cycle flux, with inverse associations for diets with greater carbohydrate availability. Changes in each of these metabolite classes were strongly related to 24-hour respiratory quotient (RQ) and substrate oxidation rates (e.g., acylcarnitines related to lower 24-hour RQ and higher 24-hour lipid oxidation), underscoring links between substrate availability, physiology, and metabolism in humans. Physiologic responses to diet determined by gold-standard human metabolic chambers are strongly coordinated with biologically consistent, interconnected metabolic pathways encoded in the metabolome.
Andrew S. Perry, Paolo Piaggi, Shi Huang, Matthew Nayor, Jane Freedman, Kari E. North, Jennifer E. Below, Clary B. Clish, Venkatesh L. Murthy, Jonathan Krakoff, Ravi V. Shah
Bone homeostasis primarily stems from the balance between osteoblasts and osteoclasts, wherein an augmented number or heightened activity of osteoclasts is a prevalent etiological factor in the development of bone loss. Nuclear Dbf2-related kinase (NDR2), also known as STK38L, is a member of the Hippo family with serine/threonine kinase activity. We unveiled an upregulation of NDR2 expression during osteoclast differentiation. Manipulation of NDR2 levels through knockdown or overexpression facilitated or hindered osteoclast differentiation respectively, indicating a negative feedback role for NDR2 in the osteoclastogenesis. Myeloid NDR2-dificient mice (Lysm+NDR2f/f) showed lower bone mass and further exacerbated ovariectomy-induced or aging-related bone loss. Mechanically, NDR2 enhanced autophagy and mitophagy through mediating ULK1 instability. In addition, ULK1 inhibitor (ULK1-IN2) ameliorated NDR2 cKO-induced bone loss. Finally, we clarified a significant inverse association between NDR2 expression and the occurrence of osteoporosis in patients. In a word, NDR2-ULK1-mitophagy axis was a potential innovative therapeutic target for the prevention and management of bone loss.
Xiangxi Kong, Zhi Shan, Yihao Zhao, Siyue Tao, Jingyun Chen, Zhongyin Ji, Jiayan Jin, Junhui Liu, Wenlong Lin, Xiaojian Wang, Jian Wang, Fengdong Zhao, Bao Huang, Jian Chen
BACKGROUND The toxic accumulation of phenylalanine (Phe) in the brain underlies the neurological presentation of phenylketonuria (PKU). Solute carrier family 6 member 19 (SLC6A19) is the major transporter responsible for the (re)absorption of Phe in the kidney and intestine. Here, we describe the characterization of the first small molecule SLC6A19 inhibitor to enter clinical development for the treatment of PKU.METHODS C57Bl/6J WT and Pahenu2 mice were dosed with an inhibitor of SLC6A19 to investigate the effects on urinary amino acids and plasma Phe. In a phase 1 study, healthy human volunteers were dosed with JNT-517, an investigational oral inhibitor of SLC6A19. The primary objective of the study was safety. Secondary objectives included pharmacokinetic and pharmacodynamic studies.RESULTS Inhibition of SLC6A19 increased the urinary excretion of Phe in a mouse model of PKU, thereby reducing plasma Phe levels. JNT-517, an investigational oral SLC6A19 inhibitor, was found to be safe and well tolerated and increased the urinary excretion of Phe in a phase 1 healthy volunteer study.CONCLUSIONS These data indicate that pharmacological inhibition of SLC6A19 presents a promising approach to lower toxic elevated levels of amino acids found in PKU and related amino acid metabolism disorders by facilitating their renal elimination.TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry (ANZCTR), ACTRN12622001222730.FUNDING The studies in this paper were funded by Jnana Therapeutics.
Heike J. Wobst, Andreu Viader, Giovanni Muncipinto, Ryan Hollibaugh, Daniel van Kalken, Christopher T. Burkhart, Susan M. Cantin, Rachel M. Bates, Yannik Regimbald-Dumas, Liam Gross, Mitchell T. Antalek, Joshua E. Zweig, Frank Wu, T. Justin Rettenmaier, Matthew T. Labenski, Nicholas Pullen, Heather S. Blanchette, Jaclyn L. Henderson, Haoling H. Weng, Toby A. Vaughn, Dean G. Brown, John P. Throup, Joel C. Barrish
Lipoprotein lipase (LPL) and multiple regulators of LPL activity (e.g., APOC2 and ANGPTL4) are present in all vertebrates, but GPIHBP1—the endothelial cell (EC) protein that captures LPL within the subendothelial spaces and transports it to its site of action in the capillary lumen—is present in mammals but in not chickens or other lower vertebrates. In mammals, GPIHBP1 deficiency causes severe hypertriglyceridemia, but chickens maintain low triglyceride levels despite the absence of GPIHBP1. To understand intravascular lipolysis in lower vertebrates, we examined LPL expression in mouse and chicken hearts. In both species, LPL was abundant on capillaries, but the distribution of Lpl transcripts was strikingly different. In mouse hearts, Lpl transcripts were extremely abundant in cardiomyocytes but were barely detectable in capillary ECs. In chicken hearts, Lpl transcripts were absent in cardiomyocytes but abundant in capillary ECs. In zebrafish hearts, lpl transcripts were also in capillary ECs but not cardiomyocytes. In both mouse and chicken hearts, LPL was present, as judged by immunogold electron microscopy, in the glycocalyx of capillary ECs. Thus, mammals produce LPL in cardiomyocytes and rely on GPIHBP1 to transport the LPL into capillaries, whereas lower vertebrates produce LPL directly in capillary ECs, rendering an LPL transporter unnecessary.
Le Phuong Nguyen, Wenxin Song, Ye Yang, Anh P. Tran, Thomas A. Weston, Hyesoo Jung, Yiping Tu, Paul H. Kim, Joonyoung R. Kim, Katherine Xie, Rachel G. Yu, Julia Scheithauer, Ashley M. Presnell, Michael Ploug, Gabriel Birrane, Hannah Arnold, Katarzyna Koltowska, Maarja A. Mäe, Christer Betsholtz, Liqun He, Jeffrey L. Goodwin, Anne P. Beigneux, Loren G. Fong, Stephen G. Young
Excessive fructose intake is a risk factor for the development of obesity and its complications. Targeting ketohexokinase (KHK), the first enzyme of fructose metabolism, has been investigated for the management of MASLD. We compared the effects of systemic, small molecule inhibitor of KHK enzymatic activity to hepatocyte-specific, GalNAc-siRNA mediated knockdown of KHK in mice on a HFD. We measured KHK enzymatic activity, extensively quantified glycogen accumulation, performed RNAseq analysis, and enumerated hepatic metabolites using mass spectrometry. Both KHK siRNA and KHK inhibitor led to an improvement in liver steatosis, however, via substantially different mechanisms. KHK knockdown decreased the de novo lipogenesis pathway, whereas the inhibitor increased the fatty acid oxidation pathway. Moreover, KHK knockdown completely prevented hepatic fructolysis and improved glucose tolerance. Conversely, the KHK inhibitor only partially reduced fructolysis, but it also targeted triokinase, mediating the third step of fructolysis. This leads to the accumulation of fructose-1 phosphate, resulting in glycogen accumulation, hepatomegaly, and impaired glucose tolerance. Overexpression of wild-type, but not kinase-dead KHK in cultured hepatocytes increased hepatocyte injury and glycogen accumulation when treated with fructose. The differences between KHK inhibition and knockdown are, in part, explained by the kinase-dependent and independent effects of KHK on hepatic metabolism.
Se-Hyung Park, Taghreed Fadhul, Lindsey R. Conroy, Harrison A. Clarke, Ramon C. Sun, Kristina Wallenius, Jeremie Boucher, Gavin O'Mahony, Alessandro Boianelli, Marie Persson, Sunhee Jung, Cholsoon Jang, Analia S. Loria, Genesee J. Martinez, Zachary A. Kipp, Evelyn A. Bates, Terry D. Hinds, Jr., Senad Divanovic, Samir Softic
Left ventricular hypertrophy (LVH) and dyslipidemia are strong, independent predictors for cardiovascular disease, but their relationship is less well-studied. A longitudinal lipidomic profiling of left ventricular mass (LVM) and LVH is still lacking. Using LC-MS, we repeatedly measured 1,542 lipids from 1,755 unique American Indians attending two exams (mean~5-year apart). Cross-sectional associations of individual lipid species with LVM index (LVMI) were examined by generalized estimating equation (GEE), followed by replication in an independent bi-racial cohort (65% white, 35% black). Baseline plasma lipids associated with LVH risk beyond traditional risk factors were identified by Cox frailty model in American Indians. Longitudinal associations between changes in lipids and changes in LVMI were examined by GEE, adjusting for baseline lipids, baseline LVMI, and covariates. Multiple lipid species (e.g., glycerophospholipids, sphingomyelins, acylcarnitines) were significantly associated with LVMI or the risk of LVH in American Indians. Some lipids were confirmed in black and white individuals. Moreover, some LVH-related lipids were inversely associated with risk of coronary heart disease (CHD). Longitudinal changes in several lipid species (e.g., glycerophospholipids, sphingomyelins, cholesterol esters) were significantly associated with changes in LVMI. These findings provide insights into the role of lipid metabolism in LV remodeling and the risk of LVH or CHD.
Mingjing Chen, Zhijie Huang, Guanhong Miao, Jin Ren, Jinling Liu, Mary J. Roman, Richard B. Devereux, Richard R. Fabsitz, Ying Zhang, Jason G. Umans, Shelley A. Cole, Tanika N. Kelly, Oliver Fiehn, Jinying Zhao
No posts were found with this tag.