Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
CAR Treg synergy with anti-CD154 promotes infectious tolerance and dictates allogeneic heart transplant acceptance
Samarth S. Durgam, … , Megan K. Levings, Anita S. Chong
Samarth S. Durgam, … , Megan K. Levings, Anita S. Chong
Published April 8, 2025
Citation Information: JCI Insight. 2025;10(7):e188624. https://doi.org/10.1172/jci.insight.188624.
View: Text | PDF
Research Article Immunology Therapeutics Transplantation

CAR Treg synergy with anti-CD154 promotes infectious tolerance and dictates allogeneic heart transplant acceptance

  • Text
  • PDF
Abstract

Successful allograft-specific tolerance induction would eliminate the need for daily immunosuppression and improve posttransplant quality of life. Adoptive cell therapy with regulatory T cells expressing donor-specific chimeric antigen receptors (CAR Tregs) is a promising strategy but, as monotherapy, cannot prolong survival with allografts with multiple MHC mismatches. Using an HLA-A2–transgenic haplo-mismatched heart transplantation model in immunocompetent C57BL/6 recipients, we showed that HLA-A2–specific CAR (A2.CAR) Tregs were able to synergize with a low dose of anti-CD154 to enhance graft survival. Using haplo-mismatched grafts expressing the 2W-OVA transgene and tetramer-based tracking of 2W- and OVA-specific T cells, we showed that in mice with accepted grafts, A2.CAR Tregs inhibited donor-specific T cell, B cell, and antibody responses and promoted a substantial increase in endogenous FOXP3+ Tregs with indirect donor specificity. By contrast, in mice where A2.CAR Tregs failed to prolong graft survival, FOXP3– A2.CAR T cells preferentially accumulated in rejecting allografts, and endogenous donor-specific responses were not controlled. This study therefore provides evidence for synergy between A2.CAR Tregs and CD154 blockade to promote infectious tolerance in immunocompetent recipients of haplo-mismatched heart grafts and defines features of A2.CAR Tregs when they fail to reshape host immunity toward allograft tolerance.

Authors

Samarth S. Durgam, Isaac Rosado-Sánchez, Dengping Yin, Madeleine Speck, Majid Mojibian, Ismail Sayin, Grace E. Hynes, Maria-Luisa Alegre, Megan K. Levings, Anita S. Chong

×

Graphical abstract

Options: View larger image (or click on image)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts