Adult stem cells decline in number and function in old age and identifying factors that can delay or revert age-associated adult stem cell dysfunction are vital for maintaining healthy lifespan. Here we show that Vitamin A, a micronutrient that is derived from diet and metabolized into retinoic acid, acts as an antioxidant and transcriptional regulator in muscle stem cells. We first show that obstruction of dietary Vitamin A in young animals drives mitochondrial and cell cycle dysfunction in muscle stem cells that mimics old age. Next, we pharmacologically targeted retinoic acid signaling in myoblasts and aged muscle stem cells ex vivo and in vivo and observed reductions in oxidative damage, enhanced mitochondrial function, and improved maintenance of quiescence through fatty acid oxidation. We next detected the receptor for vitamin A derived retinol, stimulated by retinoic acid 6 or Stra6, was diminished with muscle stem cell activation and in old age. To understand the relevance of Stra6 loss, we knocked down Stra6 and observed an accumulation of mitochondrial reactive oxygen species, as well as changes in mitochondrial morphology and respiration. These results demonstrate that Vitamin A regulates mitochondria and metabolism in muscle stem cells and highlight a unique mechanism connecting stem cell function with vitamin intake.
Paula M. Fraczek, Pamela Duran, Benjamin A. Yang, Valeria Ferre, Leanne Alawieh, Jesus A. Castor-Macias, Vivian T. Wong, Steve D. Guzman, Celeste Piotto, Klimentini Itsani, Jacqueline A Larouche, Carlos A. Aguilar
Glioblastoma (GBM) is the most lethal brain cancer, with GBM stem cells (GSCs) driving therapeutic resistance and recurrence. Targeting GSCs offers a promising strategy for preventing tumor relapse and improving outcomes. We identify SUV39H1, a histone-3, lysine-9 methyltransferase, as critical for GSC maintenance and GBM progression. SUV39H1 is upregulated in GBM compared with normal brain tissues, with single-cell RNA-seq showing its expression predominantly in GSCs due to super-enhancer–mediated activation. Knockdown of SUV39H1 in GSCs impaired their proliferation and stemness. Whole-cell RNA-seq analysis revealed that SUV39H1 regulates G2/M cell cycle progression, stem cell maintenance, and cell death pathways in GSCs. By integrating the RNA-seq data with ATAC-seq data, we further demonstrated that knockdown of SUV39H1 altered chromatin accessibility in key genes associated with these pathways. Chaetocin, an SUV39H1 inhibitor, mimics the effects of SUV39H1 knockdown, reducing GSC stemness and sensitizing cells to temozolomide, a standard GBM chemotherapy. In a patient-derived xenograft model, targeting SUV39H1 inhibits GSC-driven tumor growth. Clinically, high SUV39H1 expression correlates with poor glioma prognosis, supporting its relevance as a therapeutic target. This study identifies SUV39H1 as a crucial regulator of GSC maintenance and a promising therapeutic target to improve GBM treatment and patient outcomes.
Chunying Li, Qiqi Xie, Sugata Ghosh, Bihui Cao, Yuanning Du, Giau V. Vo, Timothy Y. Huang, Charles Spruck, Richard L. Carpenter, Y. Alan Wang, Q. Richard Lu, Kenneth P. Nephew, Jia Shen
Skeletal muscle regeneration in adults is predominantly driven by satellite cells. Loss of satellite cell pool and function leads to skeletal muscle wasting in many conditions and disease states. Here, we demonstrate that the levels of fibroblast growth factor-inducible 14 (Fn14) were increased in satellite cells after muscle injury. Conditional ablation of Fn14 in Pax7-expressing satellite cells drastically reduced their expansion and skeletal muscle regeneration following injury. Fn14 was required for satellite cell self-renewal and proliferation as well as to prevent precocious differentiation. Targeted deletion of Fn14 inhibited Notch signaling but led to the spurious activation of STAT3 signaling in regenerating skeletal muscle and in cultured muscle progenitor cells. Silencing of STAT3 improved proliferation and inhibited premature differentiation of Fn14-deficient satellite cells. Furthermore, conditional ablation of Fn14 in satellite cells exacerbated myopathy in the mdx mouse model of Duchenne muscular dystrophy (DMD) whereas its overexpression improved the engraftment of exogenous muscle progenitor cells into the dystrophic muscle of mdx mice. Altogether, our study highlights the crucial role of Fn14 in the regulation of satellite cell fate and function and suggests that Fn14 can be a potential molecular target to improve muscle regeneration in muscular disorders.
Meiricris Tomaz da Silva, Aniket S. Joshi, Ashok Kumar
The oral mucosa undergoes daily insults, and stem cells in the epithelial basal cell layer regenerate gingiva tissue to maintain oral health. The Iroquois Homeobox 1 (IRX1) protein is expressed in the stem cell niches in human/mouse oral epithelium and mesenchyme under homeostasis. We found that Irx1+/– heterozygous (Het) mice have delayed wound closure, delayed morphological changes of regenerated epithelium, and defective keratinocyte proliferation and differentiation during wound healing. RNA-Seq analyses between WT and Irx1+/– mice at 3 days postinjury (dpi) found impaired epithelial migration and decreased keratinocyte-related genes upon injury. IRX1-expressing cells are found in the gingival epithelial basal cell layer, a stem cell niche for gingival maintenance. IRX1-expressing cells are also found in cell niches in the underlying stroma. IRX1 activates SOX9 in the transient amplifying layer to increase cell proliferation, and EGF signaling is activated to induce cell migration. Krt14CreERT lineage tracing experiments reveal defects in the stratification of the Irx1+/– HET mouse oral epithelium. IRX1 is primed at the base of the gingiva in the basal cell layer of the oral epithelium, facilitating rapid and scarless wound healing through activating SOX9 and the EGF signaling pathway.
Dan Su, Tadkamol Krongbaramee, Samuel Swearson, Yan Sweat, Mason Sweat, Fan Shao, Steven Eliason, Brad A. Amendt
Aniridia is a rare congenital condition of abnormal eye development arising principally from heterozygous mutation of the PAX6 gene. Among the multiple complications arising in the eye, aniridia-associated keratopathy (AAK) is a severe vision-impairing condition of the cornea associated with a progressive limbal stem cell deficiency that lacks suitable treatment options. Current mouse models of aniridia do not accurately represent the onset and progression dynamics of human AAK, hindering therapy development. Here, we performed deep phenotyping of a haploinsufficient Pax6+/– small-eye (Sey) mouse model on the129Sey/SvImJ background, that exhibits key features of mild presentation at birth and progressive AAK with aging, mimicking human disease. The model exhibits a slowly progressing AAK phenotype and provides new insights into the disease including disturbed basal epithelial cell organization, function and marker expression, persistent postnatal lymphangiogenesis, disrupted corneal innervation patterns, and persisting yet altered limbal stem cell marker expression with age. The model recapitulates many of the known features of human disease, enabling investigation of underlying disease mechanisms and importantly, to access a well-defined temporal window for evaluating future therapeutics.
Dina Javidjam, Petros Moustardas, Mojdeh Abbasi, Ava Dashti, Yedizza Rautavaara, Neil Lagali
Human periosteal skeletal stem cells (P-SSCs) are critical for cortical bone maintenance and repair. However, their in vivo identity, molecular characteristics, and specific markers remain unknown. Here, single-cell sequencing revealed human periosteum contains SSC clusters expressing known SSC markers, PDPN and PDGFRA. Notably, human P-SSCs, but not bone marrow SSCs (BM-SSCs), selectively expressed newly identified markers, LRP1 and CD13. These LRP1+CD13+ human P-SSCs were perivascular cells with high osteochondrogenic but minimal adipogenic potential. Upon transplantation into bone injuries in mice, they preserved self-renewal capability in vivo. Single-cell analysis of mouse periosteum further supported the preferential expression of LRP1 and CD13 in Prx1+ P-SSCs. When Lrp1 was conditionally deleted in Prx1-lineage cells, it led to severe bone deformity, short statue, and periosteal defects. By contrast, local treatment with a LRP1 agonist at the injury sites induced early P-SSC proliferation and bone healing. Thus, human and mouse periosteum contains unique osteochondrogenic stem cell subsets, and these P-SSCs express specific markers, LRP1 and CD13, with regulatory mechanism through LRP1 that enhances P-SSC function and bone repair.
Youngjae Jeong, Lorenzo R. Deveza, Laura Ortinau, Kevin Lei, John R. Dawson, Dongsu Park
Fibrosis in the lung is thought to be driven by epithelial cell dysfunction and aberrant cell-cell interactions. Unveiling the molecular mechanisms of cellular plasticity and cell-cell interactions is imperative to elucidate lung regenerative capacity and aberrant repair in pulmonary fibrosis. By mining publicly available RNA-seq datasets, we identified loss of CCAAT enhancer-binding protein alpha (CEBPA) as a candidate contributor to idiopathic pulmonary fibrosis (IPF). We used conditional knockout mice, scRNA-seq, lung organoids, small-molecule inhibition and novel gene manipulation methods to investigate the role of CEBPA in lung fibrosis and repair. Long term (6 month+) of Cebpa loss in AT2 cells caused spontaneous fibrosis and increased susceptibility to bleomycin-induced fibrosis. Cebpa knockout in these mice significantly decreased AT2 cell numbers in the lung and reduced expression of surfactant homeostasis genes, while increasing inflammatory cell recruitment as well as upregulating S100a8/a9 in AT2 cells. In vivo treatment with an S100A8/A9 inhibitor alleviated experimental lung fibrosis. Restoring CEBPA expression in lung organoids ex vivo and during experimental lung fibrosis in vivo rescued CEBPA deficiency-mediated phenotypes. Our study establishes a direct mechanistic link between CEBPA repression, impaired AT2 cell identity, disrupted tissue homeostasis, and lung fibrosis.
Qi Tan, Jack H. Wellmerling, Shengren Song, Sara R. Dresler, Jeffrey A. Meridew, Kyoung M. Choi, Yong Li, Y.S. Prakash, Daniel J. Tschumperlin
Despite epidermal turnover, the skin is host to a complex array of microbes including viruses, such as the human papillomavirus (HPV), which must infect and manipulate skin keratinocyte stem cells (KSC) to survive. This crosstalk between the virome and KSC populations remains largely unknown. Here, we investigated the effect of HPV8 on KSCs using various mouse models. We observed that the HPV8 early region gene E6 specifically caused Lrig1+ hair follicle junctional zone KSC proliferation and expansion, which would facilitate viral transmission. Within Lrig1+ KSCs specifically, HPV8 E6 bound intracellular p300 to phosphorylate the STAT3 transcriptional regulatory node. This induces ΔNp63 expression, resulting in KSC expansion into the overlying epidermis. HPV8 was associated with 70% of human actinic keratoses (AK). Together these results define the “hit and run” mechanism for HPV8 in human actinic keratosis as an expansion of KSCs, which lacks melanosome protection and is thus susceptible to sun-light-induced malignant transformation.
Huw J. Morgan, Carlotta Olivero, Boris Y. Shorning, Alex Gibbs, Alexandra L. Phillips, Lokapriya Ananthan, Annabelle Xiao Hui Lim, Licia Martuscelli, Cinzia Borgogna, Marco De Andrea, Martin Hufbauer, Richard G. Goodwin, Baki Akgül, Marisa Gariglio, Girish K. Patel
Mesenchymal stem cells (MSCs) have demonstrated potent immunomodulatory properties that have shown promise in the treatment of autoimmune diseases, including rheumatoid arthritis (RA). However, the inherent heterogeneity of MSCs triggered conflicting therapeutic outcomes, raising safety concerns and limiting their clinical application. This study aimed to investigate the potential of extracellular vesicles derived from human gingival mesenchymal stem cells (GMSC-EVs) as a therapeutic strategy for RA. Through in vivo experiments using an experimental RA model, our results demonstrated that GMSC-EVs selectively homed to inflamed joints and recovered Treg and Th17 cells balance, resulting in the reduction of arthritis progression. Our investigations also uncovered miR-148a-3p as a critical contributor to the Treg/Th17 balance modulation via IKKB/NF-κB signaling orchestrated by GMSC-EVs, which was subsequently validated in a model of human xenograft versus host disease (xGvHD). Furthermore, we successfully developed a humanized animal model by utilizing synovial fibroblasts obtained from patients with RA (RASFs). We found that GMSC-EVs impeded the invasiveness of RASFs and minimized cartilage destruction, indicating their potential therapeutic efficacy in the context of RA patients. Overall, the unique characteristics, including reduced immunogenicity, simplified administration, and inherent ability to target inflamed tissues, position GMSC-EVs as a viable alternative for RA and other autoimmune diseases.
Jingrong Chen, Xiaoyi Shi, Yanan Deng, Junlong Dang, Yan Liu, Jun Zhao, Liang Rongzhen, Donglan Zeng, Wenbin Wu, Yiding Xiong, Jia Yuan, Ye Chen, Julie Wang, Weidong Lin, Xiangfang Chen, Weishan Huang, Nancy Olsen, Yunfeng Pan, Qing-Ling Fu, Song Guo Zheng
Inherited retinal dystrophies (IRDs) are progressive diseases leading to vision loss. Mutation in the eyes shut homolog (EYS) gene is one of the most frequent causes of IRD. However, the mechanism of photoreceptor cell degeneration by mutant EYS has not been fully elucidated. Here, we generated retinal organoids from induced pluripotent stem cells (iPSCs) derived from patients with EYS-associated retinal dystrophy (EYS-RD). In photoreceptor cells of RD organoids, both EYS and G protein–coupled receptor kinase 7 (GRK7), one of the proteins handling phototoxicity, were not in the outer segment, where they are physiologically present. Furthermore, photoreceptor cells in RD organoids were vulnerable to light stimuli, and especially to blue light. Mislocalization of GRK7, which was also observed in eys-knockout zebrafish, was reversed by delivering control EYS into photoreceptor cells of RD organoids. These findings suggest that avoiding phototoxicity would be a potential therapeutic approach for EYS-RD.
Yuki Otsuka, Keiko Imamura, Akio Oishi, Kazuhide Asakawa, Takayuki Kondo, Risako Nakai, Mika Suga, Ikuyo Inoue, Yukako Sagara, Kayoko Tsukita, Kaori Teranaka, Yu Nishimura, Akira Watanabe, Kazuhiro Umeyama, Nanako Okushima, Kohnosuke Mitani, Hiroshi Nagashima, Koichi Kawakami, Keiko Muguruma, Akitaka Tsujikawa, Haruhisa Inoue
No posts were found with this tag.