The cover image is an electron micrograph of a genetically engineered snap-frozen CaCo2 cell model, displaying ectopic microvillus arrays alongside associated endomembrane organelle accumulations. The model mimics the subcellular characteristics of enterocytes observed in patients affected by the rare genetic disorder osteo-oto-hepato-enteric syndrome.
BACKGROUND. A priori knowledge of recurrence risk in patients with non-metastatic (FIGO stage I) uterine serous carcinoma (USC) would enable a risk-stratified approach to the use of adjuvant chemotherapy. This would greatly reduce treatment-related morbidity and be predicted to improve survival. METHODS. GATA2 expression was scored by immunohistochemistry (IHC) across a retrospective multi-institutional cohort of 195 primary USCs. Associations between GATA2 levels and clinicopathologic metrics were evaluated using Student’s t-test, Fisher’s exact test, Kaplan-Meier method, and Cox proportional hazards ratio. Invasion in patient-derived USC cells was assessed by Student’s t-test. RNA-seq, anti-GATA2 ChIP-seq, and confirmatory western blotting enabled identification of GATA2 targets. RESULTS. Patients with FIGO stage I GATA2high USCs had 100% recurrence-free and 100% cancer related survival, which was significantly better than patients with GATA2low USCs. In patients for whom adjuvant chemotherapy was omitted, patients with GATA2high USC had 100% recurrence free 5-year survival compared to 60% recurrence free survival in patients with GATA2low USC. Depletion of GATA2 in patient-derived USC cells increased invasion in vitro. CONCLUSIONS. Routine GATA2 IHC identifies 33% of FIGO stage I USC patients who have a greatly reduced risk of post-hysterectomy USC recurrence. Our results suggest that a GATA2 guided personalized medicine approach could be rapidly implemented in most hospital settings, would reduce treatment-related morbidity, and likely improve outcomes in USC patients. FUNDING. NIH grants R01 DK068634, P30 CA014520, S10 OD023526, K08 DK127244, T32 HL007899, the UW-Madison Department of Pathology and Laboratory Medicine, the UW-Madison Centennial Scholars Program, the Diane Lindstrom Foundation, the American Cancer Society, the V Foundation, The Hartwell Foundation, and the UMN Department of Obstetrics, Gynecology, and Women's Health.
Usha S. Polaki, Trey E. Gilpin, Apoorva T. Patil, Emily Chiu, Ruth Baker, Peng Liu, Tatiana S. Pavletich, Morteza Seifi, Paula M. Mañán-Mejías, Jordan Morrissey, Jenna Port, Rene Welch Schwartz, Irene M. Ong, Dina El-Rayes, Mahmoud A. Khalifa, Pei Hui, Vanessa L. Horner, María Virumbrales-Muñoz, Britt K. Erickson, Lisa Barroilhet, Stephanie M. McGregor, Emery H. Bresnick, Daniel R. Matson
The soluble variant of the ectopeptidase CD13 (sCD13), released from the cell surface by matrix metalloproteinase 14 (MMP14), is a potent pro-inflammatory mediator, displaying chemotactic, angiogenic, and arthritogenic properties through bradykinin receptor B1 (B1R). We reveal a link between sCD13 and amplified neutrophil-mediated inflammatory responses in SARS-CoV-2 infection. sCD13 was markedly elevated in COVID-19 patients and correlated with disease severity, variants, ethnicity, inflammation markers, and NETosis. Neutrophils treated with sCD13 showed heightened NETosis and chemotaxis which were inhibited by sCD13 receptor blockade. Meanwhile sCD13 did not induce platelet aggregation. Single-cell analysis of COVID-19 lungs revealed co-expression of CD13 and MMP14 by various cell types, and higher CD13 expression compared to controls. Neutrophils with high CD13 mRNA were enriched for genes associated with immaturity, though CD13 protein expression was lower. Histological examination of COVID-19 lungs revealed CD13-positive leukocytes trapped in vessels with fibrin thrombi. Flow cytometry confirmed the presence of B1R and a second sCD13 receptor, protease-activated receptor 4, on monocytes and neutrophils. These findings identify sCD13 as a potential instigator of COVID-19-associated NETosis, potentiating vascular stress and thromboembolic complications. The potent pro-inflammatory effects of sCD13 may contribute to severe COVID-19, suggesting that sCD13 and its receptors might be therapeutic targets.
Pei-Suen Tsou, Ramadan A. Ali, Chenyang Lu, Gautam Sule, Carmelo Carmona-Rivera, Serena Lucotti, Yuzo Ikari, Qi Wu, Phillip Campbell, Mikel Gurrea-Rubio, Kohei Maeda, Sharon E. Fox, William D. Brodie, Megan N. Mattichak, Caroline Foster, Ajay Tambralli, Srilakshmi Yalavarthi, M. Asif Amin, Katarina Kmetova, Bruna Mazetto Fonseca, Emily Chong, Yu Zuo, Michael Maile, Luisa Imberti, Arnaldo Caruso, Francesca Caccuri, Virginia Quaresima, Alessandra Sottini, Douglas B. Kuhns, Danielle L. Fink, Riccardo Castagnoli, Ottavia Delmonte, Heather Kenney, Yu Zhang, Mary Magliocco, Helen C. Su, Luigi D. Notarangelo, Rachel L. Zemans, Yang Mao-Draayer, Irina Matei, Mirella Salvatore, David C. Lyden, Yogendra Kanthi, Mariana J. Kaplan, Jason S. Knight, David A. Fox
As a major component of intracellular trafficking, the coat protein complex II (COPII) is indispensable for cellular function during embryonic development and throughout life. The four SEC24 proteins (A-D) are essential COPII components involved in cargo selection and packaging. A human disorder corresponding to alterations of SEC24 function is currently only known for SEC24D. Here, we report that biallelic loss of SEC24C leads to a syndrome characterized by primary microcephaly, brain anomalies, epilepsy, hearing loss, liver dysfunction, anemia, and cataracts in an extended consanguineous family with four affected individuals. We show that knockout of sec24C in zebrafish recapitulates important aspects of the human phenotype. SEC24C-deficient fibroblasts display alterations in the expression of several COPII components as well as impaired anterograde trafficking to the Golgi, indicating a severe impact on COPII function. Transcriptome analysis revealed that SEC24C deficiency also impacts the proteasome and autophagy pathways. Moreover, a shift in the N-glycosylation pattern and deregulation of the N-glycosylation pathway suggest a possible secondary alteration of protein glycosylation, linking the described disorder with the congenital disorders of glycosylation.
Nina Bögershausen, Büsranur Cavdarli, Taylor Nagai, Miroslav P. Milev, Alexander Wolff, Mahsa Mehranfar, Julia Schmidt, Dharmendra Choudhary, Óscar Gutiérrez-Gutiérrez, Lukas Cyganek, Djenann Saint-Dic, Arne Zibat, Karl Köhrer, Tassilo E. Wollenweber, Dagmar Wieczorek, Janine Altmüller, Tatiana Borodina, Dilek Kaçar, Göknur Haliloğlu, Yun Li, Christian Thiel, Michael Sacher, Ela W. Knapik, Gökhan Yigit, Bernd Wollnik
BACKGROUND. The graft-vs-leukemia (GVL) effect contributes to the efficacy of allogeneic stem cell transplantation (alloSCT). However, relapse, indicative of GVL failure, is the greatest single cause of treatment failure. Based on preclinical data showing that IFN-γ is important to sensitize myeloblasts to alloreactive T cells, we performed a phase I trial of IFN-γ combined with donor leukocyte infusions (DLI) in myeloblastic malignancies that relapsed post-HLA-matched alloSCT. METHODS. Patients with relapsed acute myeloid leukemia or myelodysplastic syndrome after alloSCT were eligible. Patients self-administered IFN-γ for 4 weeks (cohort 1) or 1 week (cohort 2), followed by DLI and concurrent IFN-γ for a total of 12 weeks. Bone marrow samples were analyzed by single-cell RNA sequencing (scRNAseq) to assess in vivo responses to IFN-γ by malignant myeloblasts. RESULTS. IFN-γ monotherapy was well tolerated by all subjects (n=7). Treatment-related toxicities after DLI included: grade I-II graft-versus-host disease (n=5), immune effector cell-associated neurotoxicity syndrome (n=2), and idiopathic pulmonary syndrome (n=1), all of which resolved with corticosteroids. Four of 6 DLI recipients achieved minimal residual disease-negative complete remissions and full donor hematopoietic recovery. Median overall survival was 579 days (range, 97-906) in responders. ScRNAseq confirmed in vivo activation of IFN-γ response pathway in hematopoietic stem cell-like or myeloid progenitor cells after IFN-γ in analyzed samples. CONCLUSIONS. IFN-γ was safe and well tolerated in this phase I study of IFN-γ for relapsed AML/MDS post-alloSCT, with a promising efficacy signal when combined with DLI. Larger studies are needed to formally test the efficacy of this approach. TRIAL RESGISTRATION. ClinicalTrials.gov NCT04628338. FUNDING. The research was supported by The UPMC Hillman Cancer Center Cancer Immunology and Immunotherapy Program (CIIP) Pilot Award and Cure Within Reach: Drug Repurposing Clinical Trials to Impact Blood Cancers. Recombinant IFN-gamma (Actimmune®) was donated by Horizon Therapeutics.
Sawa Ito, Emily Geramita, Kedwin Ventura, Biswas Neupane, Shruti Bhise, Erika M. Moore, Scott Furlan, Warren D. Shlomchik
Type 2 inflammatory diseases are common in cystic fibrosis (CF) including asthma, sinusitis, and allergic bronchopulmonary aspergillosis. CD4+ T helper 2 (Th2) cells promote these diseases through secretion of IL-4, IL-5, and IL-13. Whether the cystic fibrosis transmembrane conductance regulator (CFTR), the mutated protein in CF, has a direct effect on Th2 development is unknown. Using murine models of CFTR deficiency and human CD4+ T cells, we show CD4+ T cells expressed Cftr transcript and CFTR protein following activation. Loss of T cell CFTR expression increased Th2 cytokine production compared to control cells. Mice with CFTR-deficient T cells developed increased allergic airway disease to Alternaria alternata extract compared to control mice. Culture of CFTR-deficient Th2 cells demonstrated increased IL-4Rα expression and increased sensitivity to IL-4 with greater induction of GATA3 and IL-13 compared to control Th2 cell cultures. The CFTR potentiator ivacaftor reduced allergic inflammation and type 2 cytokine secretion in bronchoalveolar lavage of “humanized” CFTR mice following Alternaria alternata extract challenge and decreased Th2 development in human T cell culture. Together, these data support a direct role of CFTR in regulating T cell sensitivity to IL-4 and demonstrate a potential CFTR-specific therapeutic strategy for Th2 cell-mediated allergic disease.
Mark Rusznak, Christopher M. Thomas, Jian Zhang, Shinji Toki, Weisong Zhou, Masako Abney, Danielle M. Yanda, Allison E. Norlander, Craig A. Hodges, Dawn C. Newcomb, Mark H. Kaplan, R. Stokes Peebles Jr., Daniel P. Cook