Lymphangioleiomyomatosis (LAM) is a progressive lung disease with limited treatments, largely because of an incomplete understanding of its pathogenesis. Lymphatic endothelial cells (LECs) invade LAM cell clusters, which include human melanoma black-45–positive epithelioid cells and smooth muscle α-actin–expressing LAM-associated fibroblasts (LAMFs). Recent evidence shows that LAMFs resemble cancer-associated fibroblasts, with LAMF-LEC interactions contributing to disease progression. To explore these mechanisms, we used spatial transcriptomics on LAM lung tissues and identified a gene cluster enriched in kinase signaling pathways linked to myofibroblasts and coexpressed with LEC markers. Kinase arrays revealed elevated PDGFR and FGFR in LAMFs. Using a 3D coculture spheroid model of primary LAMFs and LECs, we observed increased invasion in LAMF-LEC spheroids compared with non-LAM fibroblasts. Treatment with sorafenib, a multikinase inhibitor, significantly reduced invasion, outperforming rapamycin. We also verified tuberous sclerosis complex 2–deficient renal angiomyolipoma (TSC2-null AML) cells as key VEGF-A secretors; VEGF-A was suppressed by sorafenib in both TSC2-null AML cells and LAMFs. These findings highlight VEGF-A and basic FGF as potential therapeutic targets and suggest multikinase inhibition as a promising strategy for LAM.
Sinem Koc-Gunel, Emily C. Liu, Lalit K. Gautam, Ben A. Calvert, Shubha Murthy, Noa C. Harriott, Janna C. Nawroth, Beiyun Zhou, Vera P. Krymskaya, Amy L. Ryan