Issue published March 24, 2025

  • On the cover: Altered chaperone–nonmuscle myosin II interactions drive pathogenicity of the UNC45A c.710T>C variant in osteo-oto-hepato-enteric syndrome
  • The cover image is an electron micrograph of a genetically engineered snap-frozen CaCo2 cell model, displaying ectopic microvillus arrays alongside associated endomembrane organelle accumulations. The model mimics the subcellular characteristics of enterocytes observed in patients affected by the rare genetic disorder osteo-oto-hepato-enteric syndrome.

Research Articles
Abstract

Hypoxia/hypoxia-inducible factor 1α–driven immunosuppressive transcription and cAMP-elevating signaling through A2A adenosine receptors (A2ARs) represent a major tumor-protecting pathway that enables immune evasion. Recent promising clinical outcomes due to the blockade of the adenosine-generating enzyme CD73 and A2AR in patients refractory to all other therapies have confirmed the importance of targeting hypoxia-adenosinergic signaling. We report a feasible approach to target the upstream stage of hypoxia-adenosinergic immunosuppression using an oxygen-carrying nanoemulsion (perfluorocarbon blood substitute). We show that oxygenation agent therapy (a) eliminates tumor hypoxia, (b) improves efficacy of endogenously developed and adoptively transferred T cells, and thereby (c) promotes regression of tumors in different anatomical locations. We show that both T cells and NK cells avoid hypoxic tumor areas and that reversal of hypoxia by oxygenation agent therapy increases intratumoral infiltration of activated T cells and NK cells due to reprogramming of the tumor microenvironment (TME). Thus, repurposing oxygenation agents in combination with supplemental oxygen may improve current cancer immunotherapies by preventing hypoxia-adenosinergic suppression, promoting immune cell infiltration and enhancing effector responses. These data also suggest that pretreating patients with oxygenation agent therapy may reprogram the TME from immunosuppressive to immune-permissive prior to adoptive cell therapy, or other forms of immunotherapy.

Authors

Katarina Halpin-Veszeleiova, Michael P. Mallouh, Lucy M. Williamson, Ashley C. Apro, Nuria R. Botticello-Romero, Camille Bahr, Maureen Shin, Kelly M. Ward, Laura Rosenberg, Vladimir B. Ritov, Michail V. Sitkovsky, Edwin K. Jackson, Bruce D. Spiess, Stephen M. Hatfield

×

Abstract

The standard-of-care treatment of locally advanced cervical cancer includes pelvic radiation therapy with concurrent cisplatin-based chemotherapy and is associated with a 30%–50% failure rate. New prognostic and therapeutic targets are needed to improve clinical outcomes. The vaginal microbiome has been linked to the pathogenesis of cervical cancer, but little is known about the vaginal microbiome in locally advanced cervical cancer as it relates to chemoradiation. In this pilot study, we utilized 16S rRNA gene community profiling to characterize the vaginal microbiomes of 26 postmenopausal women with locally advanced cervical cancer receiving chemoradiation. Our analysis revealed diverse anaerobe-dominated communities whose taxonomic composition, diversity, or bacterial abundance did not change with treatment. We hypothesized that characteristics of the microbiome might correlate with treatment response. Pretreatment microbial diversity and bacterial abundance were not associated with disease recurrence. We observed a greater relative abundance of Fusobacterium in patients who later had cancer recurrence, suggesting that Fusobacterium could play a role in modifying treatment response. Taken together, this hypothesis-generating pilot study provides insight into the composition and dynamics of the vaginal microbiome, offering proof of concept for the future study of the microbiome and its relationship with treatment outcomes in locally advanced cervical cancer.

Authors

Brett A. Tortelli, Jessika Contreras, Stephanie Markovina, Li Ding, Kristine M. Wylie, Julie K. Schwarz

×

Abstract

BACKGROUND Among patients with multiple endocrine neoplasia type 1 (MEN1), 80% develop duodenopancreatic neuroendocrine tumors (dpNETs), of whom 15%–25% die of metastasis. There is a need to identify biomarkers to predict aggressive disease. MEN1 genotype affords an attractive possibility as a biomarker, as it remains constant during life. Currently, patients are clinically diagnosed with MEN1 by the presence of ≥2 primary endocrine tumors (pituitary, parathyroid, and pancreas) or ≥1 primary endocrine tumor with a positive family history. From 10% to 30% of patients diagnosed clinically with MEN1 have no pathogenic germline MEN1 variants.METHODS This was a retrospective study of 162 index patients or probands with genotype-positive and 47 with genotype-negative MEN1 enrolled from 1977 to 2022.RESULTS Compared with patients with genotype-negative disease, patients with genotype-positive disease were younger at diagnosis and had an increased frequency of recurrent parathyroid tumors, dpNETs, and angiofibromas or collagenomas. We propose a weighted scoring system to diagnose genotype-positive MEN1 based on clinical characteristics. No evidence of MEN1 mosaicism was seen in 30 tumors from 17 patients with genotype-negative MEN1. Patients with germline MEN1 variants in exons 2 and 3 had a reduced risk of distant metastases.CONCLUSION The clinical course of genotype-negative MEN1 is distinct from genotype-positive disease, raising uncertainty about the benefits of lifetime surveillance in patients with genotype-negative disease. MEN1 mosaicism is rare.TRIAL REGISTRATION ClinicalTrials.gov NCT04969926FUNDING Intramural Research Program of National Institute of Diabetes and Digestive and Kidney Diseases, NIH (ZIA DK043006-46)

Authors

Charlita C. Worthy, Rana Tora, Chandra N. Uttarkar, James M. Welch, Lynn Bliss, Craig Cochran, Anisha Ninan, Sheila Kumar, Stephen Wank, Sungyoung Auh, Lee S. Weinstein, William F. Simonds, Sunita K. Agarwal, Jenny E. Blau, Smita Jha

×

Abstract

Idiopathic pulmonary fibrosis (IPF) is characterized by progressive scarring and loss of lung function. With limited treatment options, patients die from the disease within 2–5 years. The molecular pathogenesis underlying the immunologic changes that occur in IPF is poorly understood. We characterize noncanonical aryl-hydrocarbon receptor (ncAHR) signaling in DCs as playing a role in the production of IL-6 and increased IL-17+ cells, promoting fibrosis. TLR9 signaling in myofibroblasts is shown to regulate production of TDO2, which converts tryptophan into the endogenous AHR ligand kynurenine. Mice with augmented ncAHR signaling were created by crossing mice harboring a floxed AHR exon 2 deletion (AHRΔex2) with mice harboring a CD11c-Cre. Bleomycin (blm) was used to study fibrotic pathogenesis. Isolated CD11c+ cells and primary fibroblasts were treated ex vivo with relevant TLR agonists and AHR-modulating compounds to study how AHR signaling influenced inflammatory cytokine production. Human datasets were also interrogated. Inhibition of all AHR signaling rescued fibrosis; however, AHRΔex2 mice treated with blm developed more fibrosis, and DCs from these mice were hyperinflammatory and profibrotic upon adoptive transfer. Treatment of fibrotic fibroblasts with TLR9 agonist increased expression of TDO2, and fibrotic fibroblasts activated IL-6 production in CD103+ DCs. Study of human samples corroborated the relevance of these findings in patients with IPF. We also show, for the first time to our knowledge, that AHR exon 2 floxed mice retain the capacity for ncAHR signaling.

Authors

Hannah Carter, Rita Medina Costa, Taylor S. Adams, Talon M. Gilchrist, Claire E. Emch, Monica Bame, Justin M. Oldham, Steven K. Huang, Angela L. Linderholm, Imre Noth, Naftali Kaminski, Bethany B. Moore, Stephen J. Gurczynski

×

Abstract

Colorectal precancers in Lynch syndrome (LS) exhibit a distinct immune profile, presenting unique opportunities for developing immune-interception strategies to prevent carcinogenesis. Epigenetic modulation by EZH2 of immune-related genes is implicated in the carcinogenesis of different cancer types, including colorectal cancer. This study utilizes a mouse model of LS and ex vivo colonic organoids to assess the effects of the EZH2 inhibitor GSK503 on immune regulatory pathways, tumorigenesis, and epigenetic reprogramming. Our findings revealed that GSK503 significantly increased CD4+ and CD8+ T cells in both splenocytes and colonic mucosa of treated mice compared with controls. Additionally, a preventive dose of GSK503 over 9 weeks notably reduced adenoma multiplicity, demonstrating its efficacy as a preventive modality. Single-cell RNA-Seq and molecular analyses showed activation of immune and apoptotic markers, along with a reduction in H3K27 methylation levels in colonic crypts. ChIP sequencing further revealed decreased levels of H3K27me3 and H3K4me1, while levels of the active enhancer marks H3K4me3 and H3K27Ac increased in treated mice. Collectively, these findings indicate that EZH2 inhibition enhances immune responses through epigenetic reprogramming in the genome of LS mice, establishing a promising framework for the clinical development of EZH2 inhibitors as a cancer prevention strategy for LS carriers.

Authors

Charles M. Bowen, Fahriye Duzagac, Abel Martel-Martel, Laura Reyes-Uribe, Mahira Zaheer, Jacklyn Thompson, Nan Deng, Ria Sinha, Soham Mazumdar, Melissa W. Taggart, Abhinav K. Jain, Elena Tosti, Winfried Edelmann, Krishna M. Sinha, Eduardo Vilar

×

Abstract

Kidney dysfunction often leads to neurological impairment, yet the complex kidney-brain relationship remains elusive. We employed spatial and bulk metabolomics to investigate a mouse model of rapid kidney failure induced by mouse double minute 2 (Mdm2) conditional deletion in the kidney tubules to interrogate kidney and brain metabolism. Pathway enrichment analysis of a focused plasma metabolomics panel pinpointed tryptophan metabolism as the most altered pathway with kidney failure. Spatial metabolomics showed toxic tryptophan metabolites in the kidneys and brains, revealing a connection between advanced kidney disease and accelerated kynurenine degradation. In particular, the excitotoxic metabolite quinolinic acid was localized in ependymal cells in the setting of kidney failure. These findings were associated with brain inflammation and cell death. Separate mouse models of ischemia-induced acute kidney injury and adenine-induced chronic kidney disease also exhibited systemic inflammation and accumulating toxic tryptophan metabolites. Patients with advanced chronic kidney disease (stage 3b-4 and stage 5) similarly demonstrated elevated plasma kynurenine metabolites, and quinolinic acid was uniquely correlated with fatigue and reduced quality of life. Overall, our study identifies the kynurenine pathway as a bridge between kidney decline, systemic inflammation, and brain toxicity, offering potential avenues for diagnosis and treatment of neurological issues in kidney disease.

Authors

Afaf Saliba, Subrata Debnath, Ian Tamayo, Hak Joo Lee, Nagarjunachary Ragi, Falguni Das, Richard Montellano, Jana Tumova, Meyer Maddox, Esmeralda Trevino, Pragya Singh, Caitlyn Fastenau, Soumya Maity, Guanshi Zhang, Leila Hejazi, Manjeri A. Venkatachalam, Jason C. O’Connor, Bernard Fongang, Sarah C. Hopp, Kevin F. Bieniek, James D. Lechleiter, Kumar Sharma

×

Abstract

The proof of principle of the therapeutic potential of heat shock protein 47 (HSP47) for diseases characterized by defects in collagen I synthesis is here demonstrated in osteogenesis imperfecta (OI), a prototype of collagen disorders. Most of the OI mutations delay collagen I chain folding, increasing their exposure to posttranslational modifications that affect collagen secretion and impact extracellular matrix fibril assembly. As a model, we used primary fibroblasts from OI individuals with a defect in the collagen prolyl 3-hydroxylation complex, since they are characterized by the synthesis of homogeneously overmodified collagen molecules. We demonstrated that exogenous recombinant HSP47 (rHSP47) is taken up by the cells and localizes at the ER exit sites and ER-Golgi intermediate compartment. rHSP47 treatment increased collagen secretion, reduced collagen posttranslational modifications and intracellular collagen retention, and ameliorated general ER proteostasis, leading to improved cellular homeostasis and vitality. These positive changes were also mirrored by an increased collagen content in the OI matrix. A mutation-dependent effect was found in fibroblasts from 3 probands with collagen I mutations, for which rHSP47 was effective only in cells with the most N-terminal defect. A beneficial effect on bone mineralization was demonstrated in vivo in the zebrafish p3h1–/– OI model.

Authors

Roberta Besio, Nadia Garibaldi, Alessandra Sala, Francesca Tonelli, Carla Aresi, Elisa Maffioli, Claudio Casali, Camilla Torriani, Marco Biggiogera, Simona Villani, Antonio Rossi, Gabriella Tedeschi, Antonella Forlino

×

Abstract

Cancer immunotherapy has emerged as a promising therapeutic modality but heterogeneity in patient responsiveness remains. Thus, greater understanding of the immunologic factors that dictate response to immunotherapy is critical to improve patient outcomes. Here, we show that fibrinogen-like protein 2 (Fgl2) is elevated in the setting of melanoma in humans and mice and plays a functional role in inhibiting the CD8+ T cell response. Surprisingly, the tumor itself is not the major cellular source of Fgl2. Instead, we found that macrophage-secreted Fgl2 dampens the CD8+ T cell response through binding and apoptosis of FcγRIIB+CD8+ T cells. This regulation was CD8+ T cell autonomous and not via an antigen-presenting cell intermediary, as absence of Fcgr2b from the CD8+ T cells rendered T cells insensitive to Fgl2 regulation. Fgl2 is robustly expressed by macrophages in 10 cancer types in humans and in 6 syngeneic tumor models in mice, underscoring the clinical relevance of Fgl2 as a therapeutic target to promote T cell activity and improve patient immunotherapeutic response.

Authors

Kelsey B. Bennion, Julia Miranda R.Bazzano, Danya Liu, Maylene Wagener, Chrystal M. Paulos, Mandy L. Ford

×

Abstract

Hypertension and transient increases in blood pressure from extreme exertion are risk factors for aortic dissection in patients with age-related vascular degeneration or inherited connective tissue disorders. Yet, a common experimental model of angiotensin II–induced aortopathy in mice appears independent of high blood pressure, as lesions do not occur in response to an alternative vasoconstrictor, norepinephrine, and are not prevented by cotreatment with a vasodilator, hydralazine. We investigated vasoconstrictor administration to adult mice following 1 week of disrupted TGF-β signaling in smooth muscle cells (SMCs). Norepinephrine increased blood pressure and induced aortic dissection by 7 days and even within 30 minutes (as did angiotensin II) that was prevented by hydralazine. Initial medial injury manifested as blood extravasation among SMCs and fibrillar matrix, progressive delamination from accumulation of blood, and stretched or ruptured SMCs with persistent attachments to elastic fibers. Altered regulatory contractile molecule expression was not of pathological importance. Rather, reduced synthesis of extracellular matrix yielded a vulnerable aortic phenotype by decreasing medial collagen, most dynamically basement membrane–associated multiplexin collagen, and impairing cell-matrix adhesion. We conclude that transient and sustained increases in blood pressure can cause dissection in aortas rendered vulnerable by inhibition of TGF-β–driven extracellular matrix production by SMCs.

Authors

Bo Jiang, Pengwei Ren, Changshun He, Mo Wang, Sae-Il Murtada, María Jesús Ruiz-Rodríguez, Yu Chen, Abhay B. Ramachandra, Guangxin Li, Lingfeng Qin, Roland Assi, Martin A. Schwartz, Jay D. Humphrey, George Tellides

×

Abstract

Tacrolimus-induced chronic nephrotoxicity (TICN) hinders long-term use of tacrolimus, but its mechanism remains unclear. Tacrolimus exerts its pharmacological effect by inhibiting calcineurin and its substrate nuclear factor of activated T cells. Whether the inhibition of other calcineurin substrates is related to TICN remains to be explored. Transcription factor EB (TFEB), a substrate of calcineurin, plays a crucial role in homeostasis. Herein, we found that tacrolimus inhibited TFEB nuclear translocation and activity in mouse kidneys and HK-2 cells. Then, TFEB gain and loss of function rescued and exacerbated, respectively, the effect of tacrolimus in HK-2 cells. Furthermore, TFEB activation by both phosphorylation site mutation and agonist rescued TICN in mice. To elucidate the mechanism of TFEB, we analyzed ChIP-Seq data. We identified growth arrest and DNA damage-inducible 45α (GADD45α) as a transcriptional target of TFEB via ChIP and dual-luciferase reporter assays. Then we revealed that GADD45α overexpression rescued DNA damage and kidney injury caused by tacrolimus or TFEB knockdown in vitro and vice versa. The protective effect of GADD45α against TICN and DNA damage was further demonstrated by overexpressing it in mice. In conclusion, the persistent inhibition of the TFEB/GADD45α pathway by tacrolimus contributes to TICN. This study identifies a specific target for intervention in TICN.

Authors

Ping Gao, Xinwei Cheng, Maochang Liu, Hui Peng, Guodong Li, Tianze Shang, Jianqiao Wang, Qianyan Gao, Chenglong Zhu, Zhenpeng Qiu, Chengliang Zhang

×

Abstract

The complement system is central to the innate immune response, playing a critical role in proinflammatory and autoimmune diseases such as pulmonary hypertension (PH). Recent discoveries highlight the emerging role of intracellular complement, or the “complosome,” in regulating cellular processes such as glycolysis, mitochondrial dynamics, and inflammatory gene expression. This study investigated the hypothesis that intracellular complement proteins C3, CFB, and CFD are upregulated in PH fibroblasts (PH-Fibs) and drive their metabolic and inflammatory states, contributing to PH progression. Our results revealed a pronounced upregulation of CFD, CFB, and C3 in PH-Fibs from human samples and bovine models, both in vivo and in vitro. The finding of elevated levels of C3 activation fragments, including C3b, C3d, and C3a, emphasized enhanced C3 activity. PH-Fibs exhibited notable metabolic reprogramming and increased levels of proinflammatory mediators such as MCP1, SDF1, IL-6, IL-13, and IL-33. Silencing CFD via shRNA reduced CFB activation and C3a production, while normalizing glycolysis, tricarboxylic acid (TCA) cycle activity, and fatty acid metabolism. Metabolomic and gene expression analyses of CFD-knockdown PH-Fibs revealed restored metabolic and inflammatory profiles, underscoring CFD’s crucial role in these changes. This study emphasizes the crucial role of intracellular complement in PH pathogenesis, highlighting the potential for complement-targeted therapies in PH.

Authors

Ram Raj Prasad, Sushil Kumar, Hui Zhang, Min Li, Cheng-Jun Hu, Suzette Riddle, Brittany A. McKeon, M.G. Frid, Konrad Hoetzenecker, Slaven Crnkovic, Grazyna Kwapiszewska, Rubin M. Tuder, Kurt R. Stenmark

×

Abstract

Despite combination antiretroviral therapy (ART), HIV causes persistent gut barrier dysfunction, immune depletion, and dysbiosis. Furthermore, ART interruption results in reservoir reactivation and rebound viremia. Both IL-21 and anti-α4β7 improve gut barrier functions, and we hypothesized that combining them would synergize as a dual therapy to improve immunological outcomes in SIV-infected rhesus macaques (RMs). We found no significant differences in CD4+ T cell reservoir size by intact proviral DNA assay. SIV rebounded in both dual-treated and control RMs following analytical therapy interruption (ATI), with time to rebound and initial rebound viremia comparable between groups; however, dual-treated RMs showed slightly better control of viral replication at the latest time points after ATI. Additionally, following ATI, dual-treated RMs showed immunological benefits, including T cell preservation and lower PD-1+ central memory T cell (TCM) frequency. Notably, PD-1+ TCMs were associated with reservoir size, which predicted viral loads (VLs) after ATI. Finally, 16S rRNA-Seq revealed better recovery from dysbiosis in treated animals, and the butyrate-producing Firmicute Roseburia predicted PD-1–expressing TCMs and VLs after ATI. PD-1+ TCMs and gut dysbiosis represent mechanisms of HIV persistence and pathogenesis, respectively. Therefore, combining IL-21 and anti-α4β7 may be an effective therapeutic strategy to improve immunological outcomes for people with HIV.

Authors

Samuel D. Johnson, Maria Pino, Arpan Acharya, Julien A. Clain, Deepanwita Bose, Kevin Nguyen, Justin Harper, Francois Villinger, Mirko Paiardini, Siddappa N. Byrareddy

×

Abstract

The omentum is the primary site of metastasis for ovarian cancer (OC). Interactions between cancer cells and adipocytes drive an invasive and prometastatic phenotype. Here we studied cancer cell–adipocyte crosstalk by using a direct coculture model with immortalized human visceral nondiabetic pre-adipocytes (VNPADs) and OC cells. We demonstrated increased proliferation, invasiveness, and resistance to cisplatin of cocultured compared with monocultured OC cells. RNA sequencing of OC cells from coculture versus monoculture revealed significant transcriptomic changes, identifying over 200 differentially expressed genes common to OVCAR5 and OVCAR8 cell lines. Enriched pathways included PI3K/AKT and complement activation. Lipid transfer into OC cells from adipocytes induced upregulation of complement C3 and C5 proteins. Inhibiting C3 or C5 reversed the invasive phenotype and C3 knockdown reduced tumor progression in vivo. Increased C3 expression was observed in omental implants compared with primary ovarian tumors and C3 secretion was higher in OC ascites from high-BMI versus low-BMI patients. C3 upregulation in OC cells involved activation of the ATF4-mediated integrated stress response (ISR). Overall, adipocyte–cancer cell interactions promoted invasiveness and tumorigenesis via lipid transfer, activating the ISR, and upregulating complement proteins C3 and C5.

Authors

Andres Valdivia, Ana Maria Isac, Horacio Cardenas, Guangyuan Zhao, Yaqi Zhang, Hao Huang, Jian-Jun Wei, Mauricio Cuello-Fredes, Sumie Kato, Fernán Gómez-Valenzuela, Francoise Gourronc, Aloysius Klingelhutz, Daniela Matei

×

Abstract

Septic arthritis, the most severe joint disease, is frequently caused by Staphylococcus aureus (S. aureus). A substantial proportion of patients with septic arthritis experience poor joint outcomes, often necessitating joint replacement surgery. Here, we show that monocyte depletion confers full protection against bone erosion in a septic arthritis mouse model. In the infected synovium, Ly6Chi monocytes exhibited increased expression of osteoclastogenesis-related molecules, including CCR2, c-Fms, and RANK. S. aureus lipoproteins induced elevated levels of RANKL, MCSF, and CCL2 in joints, with synovial fibroblasts identified as the major RANKL producer. Anti-RANKL treatment prevented bone destruction in both local and hematogenous septic arthritis murine models. Importantly, combining anti-RANKL treatment with antibiotics provided robust protection against joint damage. Our results indicate that the infiltration and transformation of monocytes into bone-destructive, osteoclast-like cells are key mechanisms in septic arthritis. Combining anti-RANKL and antibiotic therapy represents a promising therapy against this devastating disease.

Authors

Zhicheng Hu, Meghshree Deshmukh, Anders Jarneborn, Miriam Bollmann, Carmen Corciulo, Pradeep Kumar Kopparapu, Abukar Ali, Mattias N. D. Svensson, Cecilia Engdahl, Rille Pullerits, Majd Mohammad, Tao Jin

×

Abstract

The osteo-oto-hepato-enteric (O2HE) syndrome is a severe autosomal recessive disease ascribed to loss-of-function mutations in the Unc-45 myosin chaperone A (UNC45A) gene. The clinical spectrum includes bone fragility, hearing loss, cholestasis, and life-threatening diarrhea associated with microvillus inclusion disease–like enteropathy. Here, we present molecular and functional analysis of the UNC45A c.710T>C (p.Leu237Pro) missense variant, which revealed a unique pathogenicity compared with other genetic variants causing UNC45A deficiency. The UNC45A p.Leu237Pro mutant retained chaperone activity, prevented myosin aggregation, and supported proper nonmuscle myosin II (NMII) filament formation in patient fibroblasts and human osteosarcoma (U2OS) cells. However, the mutant formed atypically stable oligomers and prevented chaperone-myosin complex dissociation, thereby inhibiting NMII functions. Similar to biallelic UNC45A deficiency, this resulted in impaired intracellular trafficking, defective recycling, and abnormal retention of transferrin at various endocytic sites. In particular, coexpression of wild-type protein attenuated the pathogenic effects of the variant by inhibiting excessive oligomer formation. Our results elucidate the pathogenic mechanisms and recessive characteristics of this variant and may aid in the development of targeted therapies.

Authors

Stephanie Waich, Karin Kreidl, Julia Vodopiutz, Arzu Meltem Demir, Adam R. Pollio, Vojtěch Dostál, Kristian Pfaller, Marianna Parlato, Nadine Cerf-Bensussan, Rüdiger Adam, Georg F. Vogel, Holm H. Uhlig, Frank M. Ruemmele, Thomas Müller, Michael W. Hess, Andreas R. Janecke, Lukas A. Huber, Taras Valovka

×

Abstract

Acute respiratory distress syndrome (ARDS) results in substantial morbidity and mortality, especially in elderly people. Mechanical ventilation, a common supportive treatment for ARDS, is necessary for maintaining gas exchange but can also propagate injury. We hypothesized that aging leads to alterations in surfactant function, inflammatory signaling, and microvascular permeability within the lung during mechanical ventilation. Young and aged male mice were mechanically ventilated, and surfactant function, inflammation, and vascular permeability were assessed. Additionally, single-cell RNA-Seq was used to delineate cell-specific transcriptional changes. The results showed that, in aged mice, surfactant dysfunction and vascular permeability were significantly augmented, while inflammation was less pronounced. Differential gene expression and pathway analyses revealed that alveolar macrophages in aged mice showed a blunted inflammatory response, while aged endothelial cells exhibited altered cell-cell junction formation. In vitro functional analysis revealed that aged endothelial cells had an impaired ability to form a barrier. These results highlight the complex interplay between aging and mechanical ventilation, including an age-related predisposition to endothelial barrier dysfunction, due to altered cell-cell junction formation, and decreased inflammation, potentially due to immune exhaustion. It is concluded that age-related vascular changes may underlie the increased susceptibility to injury during mechanical ventilation in elderly patients.

Authors

Aminmohamed Manji, Lefeng Wang, Cynthia M. Pape, Lynda A. McCaig, Alexandra Troitskaya, Onon Batnyam, Leah J.J. McDonald, C. Thomas Appleton, Ruud A.W. Veldhuizen, Sean E. Gill

×

Abstract

Lynch syndrome (LS), caused by inherited mutations in DNA mismatch repair genes, including MSH2, carries a 60% lifetime risk of developing endometrial cancer (EC). Beyond hypermutability, mechanisms driving LS-associated EC (LS-EC) remain unclear. We investigated MSH2 loss in EC pathogenesis using a mouse model (PR-Cre Msh2LoxP/LoxP, abbreviated Msh2KO), primary cell lines, human tissues, and human EC cells with isogenic MSH2 knockdown. By 8 months, 58% of Msh2KO mice developed endometrial atypical hyperplasia (AH), a precancerous lesion. At 12–16 months, 50% of Msh2KO mice exhibited either AH or ECs with histologic similarities to human LS-ECs. Transcriptomic profiling of EC from Msh2KO mice revealed mitochondrial dysfunction–related pathway changes. Subsequent studies in vitro and in vivo revealed mitochondrial dysfunction based on 2 mechanisms: mitochondrial content reduction and structural disruptions in retained mitochondria. Human LS-ECs also exhibited mitochondrial content reduction compared with non-LS-ECs. Functional studies demonstrated metabolic reprogramming of MSH2-deficient EC, including reduced oxidative phosphorylation and increased susceptibility to glycolysis suppression. These findings identified mitochondrial dysfunction and metabolic disruption as consequences of MSH2 deficiency in EC. Mitochondrial and metabolic aberrations should be evaluated as biomarkers for endometrial carcinogenesis or risk stratification and represent potential targets for cancer interception in women with LS.

Authors

Mikayla Borthwick Bowen, Brenda Melendez, Qian Zhang, Diana Moreno, Leah Peralta, Wai Kin Chan, Collene Jeter, Lin Tan, M. Anna Zal, Philip L. Lorenzi, Kenneth Dunner Jr., Richard K. Yang, Russell R. Broaddus, Joseph Celestino, Nisha Gokul, Elizabeth Whitley, Deena M. Scoville, Tae Hoon Kim, Jae-Wook Jeong, Rosemarie Schmandt, Karen Lu, Hyun-Eui Kim, Melinda S. Yates

×

Abstract

The renal tubular epithelial cells (RTECs) are particularly vulnerable to acute kidney injury (AKI). While fatty acids are the preferred energy source for RTECs via fatty acid oxidation (FAO), FAO-mediated H2O2 production in mitochondria has been shown to be a major source of oxidative stress. We have previously shown that a mitochondrial flavoprotein, long-chain acyl-CoA dehydrogenase (LCAD), which catalyzes a key step in mitochondrial FAO, directly produces H2O2 in vitro. Furthermore, we showed that renal LCAD becomes hyposuccinylated during AKI. Here, we demonstrated that succinylation of recombinant LCAD protein suppresses the production of H2O2. Following 2 distinct models of AKI, cisplatin treatment or renal ischemia/reperfusion injury (IRI), LCAD–/– mice demonstrated renoprotection. Specifically, LCAD–/– kidneys displayed mitigated renal tubular injury, decreased oxidative stress, preserved mitochondrial function, enhanced peroxisomal FAO, and decreased ferroptotic cell death. LCAD deficiency confers protection against 2 distinct models of AKI. This suggests a therapeutically attractive mechanism whereby preserved mitochondrial respiration as well as enhanced peroxisomal FAO by loss of LCAD mediates renoprotection against AKI.

Authors

Takuto Chiba, Akira Oda, Yuxun Zhang, Katherine Pfister, Joanna Bons, Sivakama S. Bharathi, Ayako Kinoshita, Bob B. Zhang, Adam Richert, Birgit Schilling, Eric Goetzman, Sunder Sims-Lucas

×

Abstract

Non–small cell lung cancer (NSCLC) is a common cause of cancer-related deaths worldwide, and its incidence has been increasing in recent years. While targeted therapies like osimertinib, an epidermal growth factor receptor tyrosine kinase inhibitor, have brought about notable improvements in patient outcomes for advanced NSCLC, the challenge of acquired drug resistance persists. Here, we found that cellular mesenchymal-epithelial transition factor (c-Met) was highly expressed in osimertinib-resistant cells, and depletion of c-Met markedly inhibited the growth of osimertinib-resistant cells ex vivo and in vivo, suggesting that c-Met is a potential target to address osimertinib resistance. Through a screening process using a natural product compound library, we identified piperlongumine as a potent inhibitor to overcome osimertinib resistance. Furthermore, the combined treatment of piperlongumine and osimertinib exhibited robust antitumor effects in resistant cells, partially restoring their sensitivity to osimertinib. Additionally, we discovered that piperlongumine could enhance the interaction between E3 ligase RNF4 and Sp1, inhibit the phosphorylation of Sp1 at Thr739, facilitate the ubiquitination and degradation of Sp1, lead to c-Met destabilization, and trigger intrinsic apoptosis in resistant cells. In summary, our study sheds light on the potential of piperlongumine in overcoming osimertinib resistance, offering new strategies and perspectives for the clinical management of drug-resistant NSCLC.

Authors

Ruirui Wang, Qiang Wang, Jinzhuang Liao, Xinfang Yu, Wei Li

×

Abstract

Induction of podoplanin (PDPN) expression is a critical response of macrophages to LPS stimulation or bacterial infection in sepsis, but how this key process of TLR4-stimulated PDPN upregulation is regulated and the effect of PDPN expression on macrophage function remain elusive. Here, we determined how this process is regulated in vitro and in vivo. PDPN failed to be upregulated in TLR4-stimulated macrophages deficient in adhesion and degranulation-promoting adapter protein (ADAP), which could be rescued by the reconstitution of ADAP. A distinct PDPNhi peritoneal macrophage (PM) subset, which exhibited an M2-like phenotype and enhanced phagocytic activity, was generated in WT but not in ADAP-deficient septic mice. The blockade of PDPNhi PMs mimicked the effect of ADAP deficiency, which exacerbated sepsis. Mechanistically, Bruton’s tyrosine kinase–mediated (BTK-mediated) tyrosine phosphorylation of ADAP at Y571 worked together with mTOR to converge on STAT3 activation for the transactivation of the PDPN promoter. Moreover, agonist activation of STAT3 profoundly potentiated the PDPNhi PM subset generation and alleviated sepsis severity in mice. Together, our findings reveal a mechanism whereby ADAP resets macrophage function by controlling the TLR4-induced upregulation of PDPN as a host innate immune defense during sepsis.

Authors

Pengchao Zhang, Xinning Wang, Xiaodong Yang, Hebin Liu

×

Abstract

Kenny-Caffey syndrome (KCS) is a rare genetic disorder characterized by extreme short stature, cortical thickening and medullary stenosis of tubular bones, facial dysmorphism, abnormal T cell function, and hypoparathyroidism. Biallelic loss-of-function variants in TBCE cause autosomal recessive type 1 KCS (KCS1). By contrast, heterozygous missense variants in a restricted region of the FAM111A gene have been identified in autosomal dominant type 2 KCS (KCS2) and a more severe lethal phenotype, osteocraniostenosis (OCS); these variants have recently been shown to confer a gain of function. In this study, we describe 2 unrelated children with KCS and OCS who were homozygous for different FAM111A variant alleles that result in replacement of the same residue, Tyr414 (c.1241A>G, p.Y414C and c.1240T>A, p.Y414N), in the mature FAM111A protein. Their heterozygous relatives are asymptomatic. Functional studies of recombinant FAM111AY414C demonstrated normal dimerization and a mild gain-of-function effect. This study provides evidence that both biallelic and monoallelic variants of FAM111A with varying degrees of activation can lead to dominant or recessive KCS2 and OCS.

Authors

Dong Li, Niels Mailand, Emma Ewing, Saskia Hoffmann, Richard C. Caswell, Lewis Pang, Jacqueline Eason, Ying Dou, Kathleen E. Sullivan, Hakon Hakonarson, Michael A. Levine

×

Abstract

BACKGROUND. Non–small cell lung cancer (NSCLC) remains the leading cause of cancer-related mortality, necessitating the exploration of alternate therapeutic approaches. Tumor-reactive or activated-by-cytokine killers (TRACK) are PD-L1+, highly cytolytic NK cells derived from umbilical cord blood NK cells and engineered to express soluble IL-15 (sIL15), and these cells show promise in preclinical studies against NSCLC. METHODS. We assessed safety, persistence, homing, and cytotoxic activity in 6 patients with advanced, refractory, and progressing NSCLC who received a low dose of unmatched, allogeneic, off-the-shelf sIL15_TRACK NK cells. We evaluated NK cell presence and persistence with droplet digital PCR (ddPCR), flow cytometry, and immunofluorescence staining. RESULTS. sIL15_TRACK NK cells had peak measurements at 1 hour and became undetectable 4 hours after each infusion. Cognate ligands to activating NK cell receptors were found in NSCLC. sIL15_TRACK NK cells were observed in a lung tumor biopsy 7 days after the final infusion, confirming their sustainment and tumor-homing ability. They retained cytolytic function following isolation from the lung tumor. Three of 6 patients achieved disease stabilization on repeat imaging, while the others progressed. CONCLUSION. Unmatched, allogeneic, cryopreserved, off-the-shelf sIL15_TRACK NK cells express activating receptors, home to tumor sites that express their cognate ligands, and retain cytolytic activity after infusion, underscoring their potential as a therapeutic approach in solid tumors. At low doses, the therapy was safely administered and showed preliminary evidence of activity in 3 of 6 patients with advanced and progressive NSCLC. Additional dose escalation cohorts and coadministration with atezolizumab are planned. TRIAL REGISTRATION. ClinicalTrials.gov NCT05334329. FUNDING. Funding was provided by CytoImmune Therapeutics and grants from the National Cancer Institute (CA266457, CA033572, and CA210087).

Authors

Miguel A. Villalona-Calero, Lei Tian, Xiaochen Li, Joycelynne M. Palmer, Claudia Aceves, Hans Meisen, Catherine Cortez, Timothy W. Synold, Colt Egelston, Jeffrey VanDeusen, Ivone Bruno, Lei Zhang, Eliezer Romeu-Bonilla, Omer Butt, Stephen J. Forman, Michael A. Caligiuri, Jianhua Yu

×

Abstract

RESULTS. Participants with CAD (n = 723) had 12% higher mean relative levels of nHDLox compared with those with invasively excluded CAD (n = 502, P < 0.001). Patients presenting with symptoms of an ACS had the highest nHDLox values when compared with the elective cohort (median 1.35, IQR 0.97 to 1.85, P < 0.001). In multivariate analysis adjusted for age, sex, body mass index, and hypertension, nHDLox was a strong independent predictor of ACS (P < 0.001) but not of CAD (P > 0.05).CONCLUSION. HDL antioxidant function is reduced in patients with CAD. nHDLox is strongly associated with ACS. TRIAL REGISTRATION. German Clinical Trials Register DRKS00014037. FUNDING. Brandenburg Medical School Theodor Fontane, the BIOX Stiftung, and NIH grants R01AG059501 and R03AG059462. BACKGROUND. High-density lipoprotein (HDL) function rather than its concentration plays an important role in the pathogenesis of coronary artery disease (CAD). The aim of the present study was to determine whether reduced antioxidant function of HDL is associated with the presence of a stable CAD or acute coronary syndrome (ACS).METHODS. HDL function was measured in 2 cohorts: 1225 patients admitted electively for coronary angiography and 196 patients with ACS. A validated cell-free biochemical assay was used to determine reduced HDL antioxidant function, as assessed by increased HDL-lipid peroxide content (HDLox), which was normalized by HDL-C levels and the mean value of a pooled serum control from healthy participants (nHDLox; unitless). Results are expressed as median with interquartile range (IQR).

Authors

Benjamin Sasko, Linda Scharow, Rhea Mueller, Monique Jaensch, Werner Dammermann, Felix S. Seibert, Philipp Hillmeister, Ivo Buschmann, Martin Christ, Oliver Ritter, Nazha Hamdani, Christian Ukena, Timm H. Westhoff, Theodoros Kelesidis, Nikolaos Pagonas

×

Abstract

Lymphangioleiomyomatosis (LAM) is a progressive lung disease with limited treatments, largely because of an incomplete understanding of its pathogenesis. Lymphatic endothelial cells (LECs) invade LAM cell clusters, which include human melanoma black-45–positive epithelioid cells and smooth muscle α-actin–expressing LAM-associated fibroblasts (LAMFs). Recent evidence shows that LAMFs resemble cancer-associated fibroblasts, with LAMF-LEC interactions contributing to disease progression. To explore these mechanisms, we used spatial transcriptomics on LAM lung tissues and identified a gene cluster enriched in kinase signaling pathways linked to myofibroblasts and coexpressed with LEC markers. Kinase arrays revealed elevated PDGFR and FGFR in LAMFs. Using a 3D coculture spheroid model of primary LAMFs and LECs, we observed increased invasion in LAMF-LEC spheroids compared with non-LAM fibroblasts. Treatment with sorafenib, a multikinase inhibitor, significantly reduced invasion, outperforming rapamycin. We also verified tuberous sclerosis complex 2–deficient renal angiomyolipoma (TSC2-null AML) cells as key VEGF-A secretors; VEGF-A was suppressed by sorafenib in both TSC2-null AML cells and LAMFs. These findings highlight VEGF-A and basic FGF as potential therapeutic targets and suggest multikinase inhibition as a promising strategy for LAM.

Authors

Sinem Koc-Gunel, Emily C. Liu, Lalit K. Gautam, Ben A. Calvert, Shubha Murthy, Noa C. Harriott, Janna C. Nawroth, Beiyun Zhou, Vera P. Krymskaya, Amy L. Ryan

×

Abstract

BACKGROUND. Lymphopenia and failure of lymphocytes to mount an early IFN-γ response correlate with increased mortality in COVID-19. Given the essential role of CD4 helper and CD8 cytotoxic cells in eliminating viral pathogens, this profound loss in lymphocytes may impair patients’ ability to eliminate the virus. IL-7 is a pleiotropic cytokine that is obligatory for lymphocyte survival and optimal function. METHODS. We conducted a prospective, double-blind, randomized, placebo-controlled trial of CYT107, recombinant human IL-7, in 109 critically ill, patients with lymphopenia who have COVID-19. The primary endpoint was to assess CYT107’s effect on lymphocyte recovery with secondary clinical endpoints including safety, ICU and hospital length-of-stay, incidence of secondary infections, and mortality. RESULTS. CYT107 was well tolerated without precipitating a cytokine storm or worsening pulmonary function. Absolute lymphocyte counts increased in both groups without a significant difference between CYT107 and placebo. Patients with COVID-19 receiving CYT107 but not concomitant antiviral medications, known inducers of lymphopenia, had a final lymphocyte count that was 43% greater than placebo (P = 0.067). There were significantly fewer treatment-emergent adverse events in CYT107 versus placebo-treated patients (P < 0.001), consistent with a beneficial drug effect. Importantly, CYT107-treated patients had 44% fewer hospital-acquired infections versus placebo-treated patients (P = 0.014). CONCLUSION. Given that hospital-acquired infections are responsible for a large percentage of COVID-19 deaths, this effect of CYT107 to decrease nosocomial infections could substantially reduce late morbidity and mortality in this highly lethal disease. The strong safety profile of CYT107 and its excellent tolerability provide support for trials of CYT107 in other potential pandemic respiratory viral infections. TRIAL REGISTRATION. NCT04379076, NCT04426201, NCT04442178, NCT04407689, NCT04927169. FUNDING. Funding for the trial was provided by RevImmune and the Cancer Research Institute.

Authors

Manu Shankar-Hari, Bruno Francois, Kenneth E. Remy, Cristina Gutierrez, Stephen Pastores, Thomas Daix, Robin Jeannet, Jane Blood, Andrew H. Walton, Reinaldo Salomao, Georg Auzinger, David Striker, Robert S. Martin, Nitin J. Anand, James Bosanquet, Teresa Blood, Scott Brakenridge, Lyle L. Moldawer, Vidula Vachharajani, Cassian Yee, Felipe Dal-Pizzol, Michel Morre, Frederique Berbille, Marcel van den Brink, Richard Hotchkiss

×

In-Press Preview - More

Abstract

As a major component of intracellular trafficking, the coat protein complex II (COPII) is indispensable for cellular function during embryonic development and throughout life. The four SEC24 proteins (A-D) are essential COPII components involved in cargo selection and packaging. A human disorder corresponding to alterations of SEC24 function is currently only known for SEC24D. Here, we report that biallelic loss of SEC24C leads to a syndrome characterized by primary microcephaly, brain anomalies, epilepsy, hearing loss, liver dysfunction, anemia, and cataracts in an extended consanguineous family with four affected individuals. We show that knockout of sec24C in zebrafish recapitulates important aspects of the human phenotype. SEC24C-deficient fibroblasts display alterations in the expression of several COPII components as well as impaired anterograde trafficking to the Golgi, indicating a severe impact on COPII function. Transcriptome analysis revealed that SEC24C deficiency also impacts the proteasome and autophagy pathways. Moreover, a shift in the N-glycosylation pattern and deregulation of the N-glycosylation pathway suggest a possible secondary alteration of protein glycosylation, linking the described disorder with the congenital disorders of glycosylation.

Authors

Nina Bögershausen, Büsranur Cavdarli, Taylor Nagai, Miroslav P. Milev, Alexander Wolff, Mahsa Mehranfar, Julia Schmidt, Dharmendra Choudhary, Óscar Gutiérrez-Gutiérrez, Lukas Cyganek, Djenann Saint-Dic, Arne Zibat, Karl Köhrer, Tassilo E. Wollenweber, Dagmar Wieczorek, Janine Altmüller, Tatiana Borodina, Dilek Kaçar, Göknur Haliloğlu, Yun Li, Christian Thiel, Michael Sacher, Ela W. Knapik, Gökhan Yigit, Bernd Wollnik

×

Abstract

BACKGROUND. The graft-vs-leukemia (GVL) effect contributes to the efficacy of allogeneic stem cell transplantation (alloSCT). However, relapse, indicative of GVL failure, is the greatest single cause of treatment failure. Based on preclinical data showing that IFN-γ is important to sensitize myeloblasts to alloreactive T cells, we performed a phase I trial of IFN-γ combined with donor leukocyte infusions (DLI) in myeloblastic malignancies that relapsed post-HLA-matched alloSCT. METHODS. Patients with relapsed acute myeloid leukemia or myelodysplastic syndrome after alloSCT were eligible. Patients self-administered IFN-γ for 4 weeks (cohort 1) or 1 week (cohort 2), followed by DLI and concurrent IFN-γ for a total of 12 weeks. Bone marrow samples were analyzed by single-cell RNA sequencing (scRNAseq) to assess in vivo responses to IFN-γ by malignant myeloblasts. RESULTS. IFN-γ monotherapy was well tolerated by all subjects (n=7). Treatment-related toxicities after DLI included: grade I-II graft-versus-host disease (n=5), immune effector cell-associated neurotoxicity syndrome (n=2), and idiopathic pulmonary syndrome (n=1), all of which resolved with corticosteroids. Four of 6 DLI recipients achieved minimal residual disease-negative complete remissions and full donor hematopoietic recovery. Median overall survival was 579 days (range, 97-906) in responders. ScRNAseq confirmed in vivo activation of IFN-γ response pathway in hematopoietic stem cell-like or myeloid progenitor cells after IFN-γ in analyzed samples. CONCLUSIONS. IFN-γ was safe and well tolerated in this phase I study of IFN-γ for relapsed AML/MDS post-alloSCT, with a promising efficacy signal when combined with DLI. Larger studies are needed to formally test the efficacy of this approach. TRIAL RESGISTRATION. ClinicalTrials.gov NCT04628338. FUNDING. The research was supported by The UPMC Hillman Cancer Center Cancer Immunology and Immunotherapy Program (CIIP) Pilot Award and Cure Within Reach: Drug Repurposing Clinical Trials to Impact Blood Cancers. Recombinant IFN-gamma (Actimmune®) was donated by Horizon Therapeutics.

Authors

Sawa Ito, Emily Geramita, Kedwin Ventura, Biswas Neupane, Shruti Bhise, Erika M. Moore, Scott Furlan, Warren D. Shlomchik

×

Abstract

Type 2 inflammatory diseases are common in cystic fibrosis (CF) including asthma, sinusitis, and allergic bronchopulmonary aspergillosis. CD4+ T helper 2 (Th2) cells promote these diseases through secretion of IL-4, IL-5, and IL-13. Whether the cystic fibrosis transmembrane conductance regulator (CFTR), the mutated protein in CF, has a direct effect on Th2 development is unknown. Using murine models of CFTR deficiency and human CD4+ T cells, we show CD4+ T cells expressed Cftr transcript and CFTR protein following activation. Loss of T cell CFTR expression increased Th2 cytokine production compared to control cells. Mice with CFTR-deficient T cells developed increased allergic airway disease to Alternaria alternata extract compared to control mice. Culture of CFTR-deficient Th2 cells demonstrated increased IL-4Rα expression and increased sensitivity to IL-4 with greater induction of GATA3 and IL-13 compared to control Th2 cell cultures. The CFTR potentiator ivacaftor reduced allergic inflammation and type 2 cytokine secretion in bronchoalveolar lavage of “humanized” CFTR mice following Alternaria alternata extract challenge and decreased Th2 development in human T cell culture. Together, these data support a direct role of CFTR in regulating T cell sensitivity to IL-4 and demonstrate a potential CFTR-specific therapeutic strategy for Th2 cell-mediated allergic disease.

Authors

Mark Rusznak, Christopher M. Thomas, Jian Zhang, Shinji Toki, Weisong Zhou, Masako Abney, Danielle M. Yanda, Allison E. Norlander, Craig A. Hodges, Dawn C. Newcomb, Mark H. Kaplan, R. Stokes Peebles Jr., Daniel P. Cook

×

Abstract

Adult stem cells decline in number and function in old age and identifying factors that can delay or revert age-associated adult stem cell dysfunction are vital for maintaining healthy lifespan. Here we show that Vitamin A, a micronutrient that is derived from diet and metabolized into retinoic acid, acts as an antioxidant and transcriptional regulator in muscle stem cells. We first show that obstruction of dietary Vitamin A in young animals drives mitochondrial and cell cycle dysfunction in muscle stem cells that mimics old age. Next, we pharmacologically targeted retinoic acid signaling in myoblasts and aged muscle stem cells ex vivo and in vivo and observed reductions in oxidative damage, enhanced mitochondrial function, and improved maintenance of quiescence through fatty acid oxidation. We next detected the receptor for vitamin A derived retinol, stimulated by retinoic acid 6 or Stra6, was diminished with muscle stem cell activation and in old age. To understand the relevance of Stra6 loss, we knocked down Stra6 and observed an accumulation of mitochondrial reactive oxygen species, as well as changes in mitochondrial morphology and respiration. These results demonstrate that Vitamin A regulates mitochondria and metabolism in muscle stem cells and highlight a unique mechanism connecting stem cell function with vitamin intake.

Authors

Paula M. Fraczek, Pamela Duran, Benjamin A. Yang, Valeria Ferre, Leanne Alawieh, Jesus A. Castor-Macias, Vivian T. Wong, Steve D. Guzman, Celeste Piotto, Klimentini Itsani, Jacqueline A Larouche, Carlos A. Aguilar

×

Abstract

Mitogen-activated protein kinase 8 interacting protein 3 (MAPK8IP3/JIP3) is a member of the kinesin family known to play a role in axonal transport of cargo. Mutations in the gene have been linked to severe neurodevelopmental disorders, resulting in developmental delay, intellectual disability, ataxia, tremor, autism, seizures, and visual impairment. A patient who has a missense mutation in the MAPK8IP3 gene (c. 1714 C>T, Arg578Cys) (R578C) manifests dystonia, gross motor delay and developmental delay. Here we show that the mutation is a toxic gain of function mutation which alters the interactome of JIP3, disrupts axonal transport of late endosomes, increases signaling via c-Jun N-terminal kinase (JNK), resulting in apoptosis, and disrupts the dopamine receptor 1 (D1) signaling while not affecting the dopamine receptor 2 (D2) signaling. Further, in the presence of the mutant protein, we show that 80% reduction of mutant JIP3>80% and 60% reduction of wild-type JIP3 by non-allele selective phosphorothioate (PS)-modified antisense oligonucleotides (ASOs) is well tolerated by several types of cells in vitro. Our study identifies several important new roles for JIP3 and provides important insights for therapeutic approaches, including antisense oligonucleotide reduction of JIP3.

Authors

Wei Zhang, Swapnil Mittal, Ria Thomas, Anahid Foroughishafiei, Ricardo Nunes Bastos, Wendy K. Chung, Konstantina Skourti-Stathaki, Stanley T. Crooke

×

Advertisement