This study aimed at defining the role of the B-cell adaptor protein BANK1 in the appearance of age-associated B cells (ABCs) in two SLE mouse models (TLR7.tg6 and Imiquimod-induced mice), crossed with Bank1-/- mice. The absence of Bank1 led to a significant reduction in ABC levels, also affecting other B cell populations. To gain deeper insights into their differentiation pathway and the impact of Bank1 on B cell populations, a single-cell transcriptome assay was performed. In the TLR7.tg6 model, we identified 10 clusters within B cells, including an ABC-specific cluster which was decreased in Bank1-deficient mice. In its absence, ABCs exhibited an anti-inflammatory gene expression profile, while being pro-inflammatory in Bank1-sufficient lupus mice. Trajectory analyses revealed that ABCs originated from marginal zone and memory-like B cells, ultimately acquiring transcriptional characteristics associated with atypical memory cells and long-lived plasma cells. Also, Bank1 deficiency normalized the presence of naïve B cells, which were nearly absent in lupus mice. Interestingly, Bank1 deficiency significantly reduced a distinct cluster containing IFN-responsive genes. These findings underscore the critical role of Bank1 in ABC development, impacting early B cell stages towards ABC differentiation, and the presence of IFN-stimulated gene-containing B cells, both populations determinant for autoimmunity.
Gonzalo Gómez Hernández, Daniel Toro-Domínguez, Georgina Galicia, María Morell, Marta E. Alarcón-Riquelme
Palatine tonsils are the only air-contacted lymphoid organs that constantly engage in crosstalk with commensal microorganisms and serve as the first handling sites against microbial antigens. While tonsil inflammations have been implicated in various autoimmune diseases, including rheumatoid arthritis (RA), the precise role of tonsillar microbiota in autoimmune pathogenesis remains inadequately characterized. In this study, we conducted a profiling of the tonsillar microbiota and identified a notable dysbiosis in RA patients, particularly within the Streptococcus genus. Specifically, RA patients exhibited an enrichment of pathogenic Streptococcus species, including S. pyogenes, S. dysgalactiae, and S. agalactiae. Colonization with these bacteria significantly exacerbated arthritis severity and increased autoimmune responses in collagen-induced arthritis (CIA). Furthermore, immunization with peptides derived from these pathogenic Streptococcus species directly induced experimental arthritis. Conversely, RA patients demonstrated a marked deficiency in commensal Streptococcus members, notably S. salivarius. Treatment of CIA mice with S. salivarius attenuated the progression of arthritis and downregulated autoimmune responses. These findings highlight a functional link between tonsillar microbiota and RA, shedding light on their contribution to autoimmunity.
Jing Li, Shenghui Li, Jiayang Jin, Ruochun Guo, Yuebo Jin, Lulu Cao, Xuanlin Cai, Peishi Rao, Yan Zhong, Xiaohong Xiang, Xiaolin Sun, Jianping Guo, Fanlei Hu, Hua Ye, Yuan Jia, Wenjing Xiao, Yuan An, Xuan Zhang, BinBin Xia, Rentao Yang, Yuanjie Zhou, Lijun Wu, Junjie Qin, Jing He, Jun Wang, Zhanguo Li
The interleukin-17 (IL-17) family of cytokines has emerged as a critical player in autoimmune disease, including systemic lupus erythematosus (SLE). However, the role of IL-17B, a poorly understood cytokine, in the pathogenesis of SLE is still not clear. In this study, we investigated the role of IL-17B in the activation and differentiation of B cells, and the pathogenesis of SLE. Intriguingly, IL-17B deficiency aggravated disease in lupus-prone mice and promoted the activation of B cells and the differentiation of germinal center (GC) B cells and plasma cells, while recombinant mouse IL-17B (rmIL-17B) significantly alleviated disease in lupus-prone mice. Mechanistically, rmIL-17B inhibited the activation of the Toll-like receptor (TLR) and interferon (IFN) pathways in B cells by downregulating the FASN-mediated lipid metabolism. Loss of FASN significantly alleviated the disease in lupus-prone mice and inhibited the activation and differentiation of B cells. In addition, B cells had greater FASN expression and lower IL-17RB levels in patients with SLE than in healthy controls. Our study described the role of IL-17B in regulating B-cell activation and differentiation, and alleviating the onset of SLE. These findings will lay a theoretical foundation for further understanding of the pathogenesis of SLE.
Yucai Xiao, Yuxin Hu, Yangzhe Gao, Lin Wang, Lili Zhang, Qun Ma, Zhaochen Ning, Lu Yu, Haochen Li, Jiakun Liu, Junyu Wang, Yonghong Yang, Huabao Xiong, Guanjun Dong
Loss of NADPH oxidase (NOX2) exacerbates systemic lupus erythematosus (SLE) in mice and humans, but the mechanisms underlying this effect remain unclear. To identify the cell lineages in which NOX2 deficiency drives SLE, we employed conditional knockout (KO) and chimera approaches to delete Cybb in several hematopoietic cell lineages of MRL.Faslpr lupus-prone mice. Deletion of Cybb in macrophages/monocytes exacerbated lupus nephritis, though not to the degree observed in the Cybb global KOs. Unexpectedly, the absence of Cybb in B cells resulted in profound glomerulonephritis and interstitial nephritis, rivaling that seen with global deletion. Further, we identified that NOX2 is a key regulator of TLR7, a driver of SLE pathology, both globally and specifically in B cells. This is mediated in part through suppression of TLR7-mediated NF-kB signaling in B cells. Thus, NOX2's immunomodulatory effect in SLE is orchestrated not only by its function in the myeloid compartment, but through a pivotal role in B cells by selectively inhibiting TLR7 signaling.
Rachael A. Gordon, Haylee A. Cosgrove, Anthony Marinov, Sebastien Gingras, Jeremy S. Tilstra, Allison M. Campbell, Sheldon I. Bastacky, Michael Kashgarian, Andras Perl, Kevin M. Nickerson, Mark J. Shlomchik
Gain-of-function mutations in the dsDNA sensing adaptor STING lead to a severe autoinflammatory syndrome known as STING-associated vasculopathy with onset in Infancy (SAVI). SAVI patients develop interstitial lung disease (ILD) and produce autoantibodies that are commonly associated with systemic autoimmune diseases. Mice expressing the most common SAVI mutation STING V154M (VM) similarly develop ILD, but exhibit severe T and B cell lymphopenia, low serum Ig titers, and lack autoantibodies. Importantly, lethally irradiated VM hosts reconstituted with wildtype (WT) stem cells (WT→VM) still develop ILD. In this study, we find that WT→VM chimeras had restored B cell function, produced autoantibodies, and thereby recapitulated the loss of tolerance seen in SAVI patients. Lymphocytes derived from both WT and BCR or TCR transgenic (Tg) donors accumulated in the extravascular lung tissue of WT+Tg→VM mixed chimeras, but lymphocyte activation and germinal center formation required WT cells with a diverse repertoire. Furthermore, when T cells isolated from the WTVM chimeras were adoptively transferred to naïve Rag1-deficient 2º hosts, they trafficked to the lung and recruited neutrophils. Overall, these findings indicated that VM expression by radioresistant cells promoted the activation of autoreactive B cells and T cells that then differentiated into potentially pathogenic effector subsets.
Kevin MingJie Gao, Kristy Chiang, Sharon Subramanian, Xihui Yin, Paul J. Utz, Kerstin Nündel, Kate A. Fitzgerald, Ann Marshak-Rothstein
HLA-B*27 was one of the first HLA alleles associated with an autoimmune disease, i.e., axial spondyloarthritis (axSpA) and acute anterior uveitis (B27AAU), which cause joint and eye inflammation, respectively. Gastrointestinal inflammation has been suggested as a trigger of axSpA. We recently identified a bacterial peptide (YeiH) that can be presented by HLA-B*27 to expanded public T cell receptors (TCRs) in the joint in axSpA and the eye in B27AAU. While YeiH is present in enteric microbiota and pathogens, additional evidence that pathogenic T cells in HLA-B*27-associated autoimmunity may have had a prior antigenic encounter within the gastrointestinal tract remains lacking. Here, we analyze ocular, synovial, and blood T cells in B27AAU and axSpA, showing that YeiH-specific CD8 T cells express a mucosal gene set and surface proteins consistent with intestinal differentiation, including CD161, integrin α4β7, and CCR6. In addition, we find an expansion of YeiH-specific CD8 T cells in the blood of axSpA and B27AAU over healthy controls, whereas influenza-specific CD8 T cells were equivalent across groups. Lastly, we demonstrate the dispensability of TRBV9 for antigen recognition. Collectively, our data suggest that, in HLA-B27-associated autoimmunity, early antigen exposure and differentiation of pathogenic CD8 T cells may occur in enteric organs.
Michael A. Paley, Xinbo Yang, Lynn M. Hassman, Frank Penkava, Lee I. Garner, Grace L. Paley, Nicole Linskey, Ryan Agnew, Paulo Henrique Arantes de Faria, Annie Feng, Sophia Y. Li, Davide Simone, Elisha D.O. Roberson, Philip A. Ruzycki, Ekaterina Esaulova, Jennifer Laurent, Lacey Feigl-Lenzen, Luke E. Springer, Chang Liu, Geraldine M. Gillespie, Paul Bowness, K. Christopher Garcia, Wayne M. Yokoyama
Rheumatoid arthritis (RA) management lean toward achieving remission or low-disease activity. In this study, we conducted single-cell RNA sequencing (scRNAseq) of peripheral blood mononuclear cells (PBMCs) from 36 individuals (18 RA patients and 18 matched controls, accounting for age, sex, race, and ethnicity), to identify disease-relevant cell subsets and cell type-specific signatures associated with disease activity. Our analysis revealed 18 distinct PBMC subsets, including an IFITM3 overexpressing Interferon-activated (IFN-activated) monocyte subset. We observed an increase in CD4+ T effector memory cells in patients with moderate to high disease activity (DAS28-CRP ≥ 3.2), and a decrease in non-classical monocytes in patients with low disease activity or remission (DAS28-CRP < 3.2). Pseudobulk analysis by cell type identified 168 differentially expressed genes between RA and matched controls, with a downregulation of pro-inflammatory genes in the gamma-delta T cells subset, alteration of genes associated with RA predisposition in the IFN-activated subset, and non-classical monocytes. Additionally, we identified a gene signature associated with moderate-high disease activity, characterized by upregulation of pro-inflammatory genes such as TNF, JUN, EGR1, IFIT2, MAFB, G0S2, and downregulation of genes including HLA-DQB1, HLA-DRB5, TNFSF13B. Notably, cell-cell communication analysis revealed an upregulation of signaling pathways, including VISTA, in both moderate-high and remission-low disease activity contexts. Our findings provide valuable insights into the systemic cellular and molecular mechanisms underlying RA disease activity.
Marie Binvignat, Brenda Y. Miao, Camilla Wibrand, Monica M. Yang, Dmitry Rychkov, Emily Flynn, Joanne Nititham, Whitney Tamaki, Umair Khan, Alexander Carvidi, Melissa Krueger, Erene C. Niemi, Yang Sun, Gabriela K. Fragiadakis, Jérémie Sellam, Encarnita Mariotti-Ferrandiz, David Klatzmann, Andrew J. Gross, Chun Jimmie Ye, Atul J. Butte, Lindsey A. Criswell, Mary C. Nakamura, Marina Sirota
A defining feature of systemic lupus erythematosus (SLE) is loss of tolerance to self-DNA, and DNASE1L3 deficiency, the main enzyme responsible for chromatin degradation in blood, is also associated with SLE. This association includes an ultra-rare pediatric population with DNASE1L3 deficiency who develop SLE, adult patients with loss of function variants of DNASE1L3 who are at a higher risk for SLE, and patients with sporadic SLE who have neutralizing autoantibodies to DNASE1L3. To mitigate the pathogenic effects of inherited and acquired DNASE1L3 deficiencies, we engineered a long-acting enzyme biologic with dual DNASE1/DNASE1L3 activity that is resistant to DNASE1 and DNASE1L3 inhibitors. Notably, we found that the biologic prevented the development of lupus in Dnase1–/–/Dnase1L3–/– double knockout mice and rescued animals from death in pristane-induced lupus. Finally, we confirmed that the human isoform of the enzyme biologic was not recognized by autoantibodies in SLE and efficiently degrades genomic and mitochondrial cell free DNA, as well as microparticle DNA, in SLE plasma. Our findings suggest that autoimmune diseases characterized by aberrant DNA accumulation, such as SLE, can be effectively treated with a replacement DNASE tailored to bypass pathogenic mechanisms, both genetic and acquired, that restrict DNASE1L3 activity.
Paul R. Stabach, Dominique Sims, Eduardo Gomez-Bañuelos, Sandra Zehentmeier, Kris Dammen-Brower, Andrew Bernhisel, Sophia E. Kujawski, Sam G. Lopez, Michelle Petri, Daniel W. Goldman, Ethan R. Lester, Quan Le, Tayyaba Ishaq, Hana Kim, Shivani Srivastava, Deepika Kumar, Joao P. Pereira, Kevin J. Yarema, Fotios Koumpouras, Felipe Andrade, Demetrios T. Braddock
Patients with autoimmune diseases are at higher risk for severe infection due to their underlying disease and immunosuppressive treatments. In this real-world observational study of 463 autoimmune subjects, we examined risk factors for poor B and T cell responses to SARS-CoV-2 vaccination. We show a high frequency of inadequate anti-spike IgG responses to vaccination and boosting in the autoimmune population but minimal suppression of T cell responses. Low IgG responses in B cell–depleted multiple sclerosis (MS) subjects were associated with higher CD8 T cell responses. By contrast, subjects taking mycophenolate mofetil exhibited concordant suppression of B and T cell responses. Treatments with highest risk for low IgG anti-spike response included B cell depletion within the last year, fingolimod, and combination treatment with mycophenolate mofetil (MMF) and belimumab. Our data show that the mRNA-1273 (Moderna) vaccine, is the most effective vaccine in the autoimmune population. There was minimal induction of either disease flares or autoantibodies by vaccination and no significant effect of pre-existing anti-type I interferon antibodies on either vaccine response or breakthrough infections. The low frequency of breakthrough infections and lack of SARS-CoV-2–related deaths suggest that T cell immunity contributes to protection in autoimmune disease.
Erik Anderson, Michael Powell, Emily Yang, Ananya Kar, Tung Ming Leung, Cristina Sison, Rebecca Steinberg, Raven Mims, Ananya Choudhury, Carlo Espinosa, Joshua Zelmanovich, Nkemakonam C. Okoye, Eun Jung Choi, Galina Marder, Sonali Narain, Peter K. Gregersen, Meggan Mackay, Betty Diamond, Todd Levy, Theodoros P. Zanos, Arezou Khosroshahi, Ignacio Sanz, Eline T. Luning Prak, Amit Bar-Or, Joan Merrill, Cristina Arriens, Gabriel Pardo, Joel Guthridge, Judith James, Aimee Payne, Paul J. Utz, Jeremy M. Boss, Cynthia Aranow, Anne Davidson
Dendritic cell inhibitory receptor (DCIR) is a C-type lectin receptor selectively expressed on myeloid cells, including monocytes, macrophage, dendritic cells, and neutrophils. Its role in immune regulation has been implicated in murine models and human genome-wide association studies (GWAS), suggesting defective DCIR function associates with increased susceptibility to autoimmune diseases such as rheumatoid arthritis, lupus and Sjogren’s syndrome. However, little is known about the mechanisms underlying DCIR activation to dampen inflammation. Here, we developed anti-DCIR agonistic antibodies that promote phosphorylation on DCIR’s immune receptor tyrosine-based inhibitory motifs (ITIM) and recruitment of SH2 containing protein tyrosine phosphatase-2 (SHP2) for reducing inflammation. We also explored the inflammation resolution by depleting DCIR+ cells with antibodies. Utilizing a human DCIR knock-in mouse model, we validated the anti-inflammatory properties of the agonistic anti-DCIR antibody in experimental peritonitis and colitis. These findings provide critical evidence for targeting DCIR to develop transformative therapies for inflammatory diseases.
Liang Chen, Suresh Patil, Jeffrey Barbon, James Waire, F. Stephen Laroux, Donna McCarthy, Mishra Pratibha, Suju Zhong, Feng Dong, Karin Orsi, Gunarso Nguyen, Yingli Yang, Nancy Crosbie, Eric Dominguez, Arun Deora, Geertruida Veldman, Susan V. Westmoreland, Liang Jin, Timothy Radstake, Kevin White, Hsi-Ju Wei
No posts were found with this tag.