In this issue, Tang et al. report that endothelial cell–specific haploinsufficiency of glucose transporter-1 (Glut1) is sufficient to trigger angiogenic arrest, gliosis, and neuron loss in mouse models of Glt1 deficiency syndrome. The cover image depicts endothelial tip cells, which are profoundly affected by Glut1 deficiency, in a thalamic brain section stained with antibodies against Iba1 (green), GFAP (red), and DAPI.
Obesity and obesity-related diseases like type 2 diabetes (T2D) are prominent global health issues; therefore, there is a need to better understand the mechanisms underlying these conditions. The onset of obesity is characterized by accumulation of proinflammatory cells, including Ly6chi monocytes (which differentiate into proinflammatory macrophages) and neutrophils, in metabolic tissues. This shift toward chronic, low-grade inflammation is an obese-state hallmark and highly linked to metabolic disorders and other obesity comorbidities. The mechanisms that induce and maintain increased inflammatory myelopoiesis are of great interest, with a recent focus on how obesity affects more primitive hematopoietic cells. The hematopoietic system is constantly replenished by proper regulation of hematopoietic stem and progenitor (HSPC) pools in the BM. While early research suggests that chronic obesity promotes expansion of myeloid-skewed HSPCs, the involvement of the hematopoietic stem cell (HSC) niche in regulating obesity-induced myelopoiesis remains undefined. In this review, we explore the role of the multicellular HSC niche in hematopoiesis and inflammation, and the potential contribution of this niche to the hematopoietic response to obesity. This review further aims to summarize the potential HSC niche involvement as a target of obesity-induced inflammation and a driver of obesity-induced myelopoiesis.
Emily Bowers, Kanakadurga Singer
Asymmetric cell division (ACD) enables the maintenance of a stem cell population while simultaneously generating differentiated progeny. Cancer stem cells (CSCs) undergo multiple modes of cell division during tumor expansion and in response to therapy, yet the functional consequences of these division modes remain to be determined. Using a fluorescent reporter for cell surface receptor distribution during mitosis, we found that ACD generated a daughter cell with enhanced therapeutic resistance and increased coenrichment of EGFR and neurotrophin receptor (p75NTR) from a glioblastoma CSC. Stimulation of both receptors antagonized differentiation induction and promoted self-renewal capacity. p75NTR knockdown enhanced the therapeutic efficacy of EGFR inhibition, indicating that coinheritance of p75NTR and EGFR promotes resistance to EGFR inhibition through a redundant mechanism. These data demonstrate that ACD produces progeny with coenriched growth factor receptors, which contributes to the generation of a more therapeutically resistant CSC population.
Masahiro Hitomi, Anastasia P. Chumakova, Daniel J. Silver, Arnon M. Knudsen, W. Dean Pontius, Stephanie Murphy, Neha Anand, Bjarne W. Kristensen, Justin D. Lathia
Current treatments for pneumonia (PNA) are focused on the pathogens. Mortality from PNA-induced acute lung injury (PNA-ALI) remains high, underscoring the need for additional therapeutic targets. Clinical and experimental evidence exists for potential sex differences in PNA survival, with males having higher mortality. In a model of severe pneumococcal PNA, when compared with male mice, age-matched female mice exhibited enhanced resolution characterized by decreased alveolar and lung inflammation and increased numbers of Tregs. Recognizing the critical role of Tregs in lung injury resolution, we evaluated whether improved outcomes in female mice were due to estradiol (E2) effects on Treg biology. E2 promoted a Treg-suppressive phenotype in vitro and resolution of PNA in vivo. Systemic rescue administration of E2 promoted resolution of PNA in male mice independent of lung bacterial clearance. E2 augmented Treg expression of Foxp3, CD25, and GATA3, an effect that required ERβ, and not ERα, signaling. Importantly, the in vivo therapeutic effects of E2 were lost in Treg-depleted mice (Foxp3DTR mice). Adoptive transfer of ex vivo E2-treated Tregs rescued Streptococcus pneumoniae–induce PNA-ALI, a salutary effect that required Treg ERβ expression. E2/ERβ was required for Tregs to control macrophage proinflammatory responses. Our findings support the therapeutic role for E2 in promoting resolution of lung inflammation after PNA via ERβ Tregs.
Ye Xiong, Qiong Zhong, Tsvi Palmer, Alison Benner, Lan Wang, Karthik Suresh, Rachel Damico, Franco R. D’Alessio
Impairment of the GABAergic system has been reported in epilepsy, autism, attention deficit hyperactivity disorder, and schizophrenia. We recently demonstrated that ataxia telangiectasia mutated (ATM) directly shapes the development of the GABAergic system. Here, we show for the first time to our knowledge how the abnormal expression of ATM affects the pathological condition of autism. We exploited 2 different animal models of autism, the methyl CpG binding protein 2–null (Mecp2y/–) mouse model of Rett syndrome and mice prenatally exposed to valproic acid, and found increased ATM levels. Accordingly, treatment with the specific ATM kinase inhibitor KU55933 (KU) normalized molecular, functional, and behavioral defects in these mouse models, such as (a) delayed GABAergic development, (b) hippocampal hyperexcitability, (c) low cognitive performances, and (d) social impairments. Mechanistically, we demonstrate that KU administration to WT hippocampal neurons leads to (a) higher early growth response 4 activity on Kcc2b promoter, (b) increased expression of Mecp2, and (c) potentiated GABA transmission. These results provide evidence and molecular substrates for the pharmacological development of ATM inhibition in autism spectrum disorders.
Lara Pizzamiglio, Elisa Focchi, Clara Cambria, Luisa Ponzoni, Silvia Ferrara, Francesco Bifari, Genni Desiato, Nicoletta Landsberger, Luca Murru, Maria Passafaro, Mariaelvina Sala, Michela Matteoli, Elisabetta Menna, Flavia Antonucci
Although many HIV cure strategies seek to expand HIV-specific CD8+ T cells to control the virus, all are likely to fail if cellular exhaustion is not prevented. A loss in stem-like memory properties (i.e., the ability to proliferate and generate secondary effector cells) is a key feature of exhaustion; little is known, however, about how these properties are regulated in human virus–specific CD8+ T cells. We found that virus-specific CD8+ T cells from humans and nonhuman primates naturally controlling HIV/SIV infection express more of the transcription factor TCF-1 than noncontrollers. HIV-specific CD8+ T cell TCF-1 expression correlated with memory marker expression and expansion capacity and declined with antigenic stimulation. CRISPR-Cas9 editing of TCF-1 in human primary T cells demonstrated a direct role in regulating expansion capacity. Collectively, these data suggest that TCF-1 contributes to the regulation of the stem-like memory property of secondary expansion capacity of HIV-specific CD8+ T cells, and they provide a rationale for exploring the enhancement of this pathway in T cell–based therapeutic strategies for HIV.
Rachel L. Rutishauser, Christian Deo T. Deguit, Joseph Hiatt, Franziska Blaeschke, Theodore L. Roth, Lynn Wang, Kyle A. Raymond, Carly E. Starke, Joseph C. Mudd, Wenxuan Chen, Carolyn Smullin, Rodrigo Matus-Nicodemos, Rebecca Hoh, Melissa Krone, Frederick M. Hecht, Christopher D. Pilcher, Jeffrey N. Martin, Richard A. Koup, Daniel C. Douek, Jason M. Brenchley, Rafick-Pierre Sékaly, Satish K. Pillai, Alexander Marson, Steven G. Deeks, Joseph M. McCune, Peter W. Hunt
Graft-versus-host disease (GVHD) is a pathological process caused by an exaggerated donor lymphocyte response to host antigens after allogeneic hematopoietic cell transplantation (allo-HCT). Donor T cells undergo extensive clonal expansion and differentiation, which culminate in damage to recipient target organs. Damage to the gastrointestinal tract is a main contributor to morbidity and mortality. The loss of diversity among intestinal bacteria caused by pretransplant conditioning regimens leads to an outgrowth of opportunistic pathogens and exacerbated GVHD after allo-HCT. Using murine models of allo-HCT, we found that an increase of Bacteroides in the intestinal microbiota of the recipients was associated with reduced GVHD in mice given fecal microbial transplantation. Administration of Bacteroides fragilis through oral gavage increased gut microbiota diversity and beneficial commensal bacteria and significantly ameliorated acute and chronic GVHD development. Preservation of gut integrity following B. fragilis exposure was likely attributed to increased short chain fatty acids, IL-22, and regulatory T cells, which in turn improved gut tight junction integrity and reduced inflammatory cytokine production of pathogenic T cells. The current study provides a proof of concept that a single strain of commensal bacteria can be a safe and effective means to protect gut integrity and ameliorate GVHD after allo-HCT.
M. Hanief Sofi, Yongxia Wu, Taylor Ticer, Steven Schutt, David Bastian, Hee-Jin Choi, Linlu Tian, Corey Mealer, Chen Liu, Caroline Westwater, Kent E. Armeson, Alexander V. Alekseyenko, Xue-Zhong Yu
Osteosarcoma (OS) is an aggressive mesenchymal tumor for which no molecularly targeted therapies are available. We have previously identified TRAF2- and NCK-interacting protein kinase (TNIK) as an essential factor for the transactivation of Wnt signal target genes and shown that its inhibition leads to eradication of colorectal cancer stem cells. The involvement of Wnt signaling in the pathogenesis of OS has been implicated. The aim of the present study was to examine the potential of TNIK as a therapeutic target in OS. RNA interference or pharmacological inhibition of TNIK suppressed the proliferation of OS cells. Transcriptome analysis suggested that a small-molecule inhibitor of TNIK upregulated the expression of genes involved in OS cell metabolism and downregulated transcription factors essential for maintaining the stem cell phenotype. Metabolome analysis revealed that this TNIK inhibitor redirected the metabolic network from carbon flux toward lipid accumulation in OS cells. Using in vitro and in vivo OS models, we confirmed that TNIK inhibition abrogated the OS stem cell phenotype, simultaneously driving conversion of OS cells to adipocyte-like cells through induction of PPARγ. In relation to potential therapeutic targeting in clinical practice, TNIK was confirmed to be in an active state in OS cell lines and clinical specimens. From these findings, we conclude that TNIK is applicable as a potential target for treatment of OS, affecting cell fate determination.
Toru Hirozane, Mari Masuda, Teppei Sugano, Tetsuya Sekita, Naoko Goto, Toru Aoyama, Takato Sakagami, Yuko Uno, Hideki Moriyama, Masaaki Sawa, Naofumi Asano, Masaya Nakamura, Morio Matsumoto, Robert Nakayama, Tadashi Kondo, Akira Kawai, Eisuke Kobayashi, Tesshi Yamada
Ginger is known to have antiinflammatory and antioxidative effects and has traditionally been used as an herbal supplement in the treatment of various chronic diseases. Here, we report antineutrophil properties of 6-gingerol, the most abundant bioactive compound of ginger root, in models of lupus and antiphospholipid syndrome (APS). Specifically, we demonstrate that 6-gingerol attenuates neutrophil extracellular trap (NET) release in response to lupus- and APS-relevant stimuli through a mechanism that is at least partially dependent on inhibition of phosphodiesterases. At the same time, administration of 6-gingerol to mice reduces NET release in various models of lupus and APS, while also improving other disease-relevant endpoints, such as autoantibody formation and large-vein thrombosis. In summary, this study is the first to our knowledge to demonstrate a protective role for ginger-derived compounds in the context of lupus. Importantly, it provides a potential mechanism for these effects via phosphodiesterase inhibition and attenuation of neutrophil hyperactivity.
Ramadan A. Ali, Alex A. Gandhi, Lipeng Dai, Julia Weiner, Shanea K. Estes, Srilakshmi Yalavarthi, Kelsey Gockman, Duxin Sun, Jason S. Knight
Interleukin-10 (IL-10) is a critical cytokine used by immune cells to suppress inflammation. Paradoxically, immune cell–derived IL-10 can drive insulin resistance in obesity by suppressing adipocyte energy expenditure and thermogenesis. However, the source of IL-10 necessary for the suppression of adipocyte thermogenesis is unknown. We show here that CD4+Foxp3+ regulatory T cells (Tregs) are a substantial source of IL-10 and that Treg-derived IL-10 can suppress adipocyte beiging. Unexpectedly, Treg-specific loss of IL-10 resulted in increased insulin sensitivity and reduced obesity in high-fat diet–fed male mice. Mechanistically, we determined that Treg-specific loss of the transcription factor Blimp-1, a driver of IL-10 expression by Tregs, phenocopied the Treg-specific IL-10–deficient mice. Loss of Blimp-1 expression in Tregs resulted in reduced ST2+KLRG1+, IL-10-secreting Tregs, particularly in the white adipose tissue. Blimp-1–deficient mice were protected from glucose intolerance, insulin resistance, and diet-induced obesity, through increased white adipose tissue browning. Taken together, our data show that Blimp-1–regulated IL-10 secretion by Tregs represses white adipose tissue beiging to maintain adipose tissue homeostasis.
Lisa Y. Beppu, Raja Gopal Reddy Mooli, Xiaoyao Qu, Giovanni J. Marrero, Christopher A. Finley, Allen N. Fooks, Zackary P. Mullen, Adolfo B. Frias Jr., Ian Sipula, Bingxian Xie, Katherine E. Helfrich, Simon C. Watkins, Amanda C. Poholek, Sadeesh K. Ramakrishnan, Michael J. Jurczak, Louise M. D’Cruz
Alpha-1 antitrypsin (AAT) is a major inhibitor of serine proteases in mammals. Therefore, its deficiency leads to protease–antiprotease imbalance and a risk for developing lung emphysema. Although therapy with human plasma-purified AAT attenuates AAT deficiency–related emphysema, its impact on lung antibacterial immunity is poorly defined. Here, we examined the effect of AAT therapy on lung protective immunity in AAT-deficient (KO) mice challenged with Streptococcus pneumoniae. AAT-KO mice were highly susceptible to S. pneumoniae, as determined by severe lobar pneumonia and early mortality. Mechanistically, we found that neutrophil-derived elastase (NE) degraded the opsonophagocytically important collectins, surfactant protein A (SP-A) and D (SP-D), which was accompanied by significantly impaired lung bacterial clearance in S. pneumoniae–infected AAT-KO mice. Treatment of S. pneumoniae–infected AAT-KO mice with human AAT protected SP-A and SP-D from NE-mediated degradation and corrected the pulmonary pathology observed in these mice. Likewise, treatment with Sivelestat, a specific inhibitor of NE, also protected collectins from degradation and significantly decreased bacterial loads in S. pneumoniae–infected AAT-KO mice. Our findings show that NE is responsible for the degradation of lung SP-A and SP-D in AAT-KO mice affecting lung protective immunity in AAT deficiency.
Lena Ostermann, Regina Maus, Jennifer Stolper, Lisanne Schütte, Konstantina Katsarou, Srinu Tumpara, Andreas Pich, Christian Mueller, Sabina Janciauskiene, Tobias Welte, Ulrich A. Maus
Loss-of-function (LOF) variants in SCN1B, encoding voltage-gated sodium channel β1 subunits, are linked to human diseases with high risk of sudden death, including developmental and epileptic encephalopathy and cardiac arrhythmia. β1 Subunits modulate the cell-surface localization, gating, and kinetics of sodium channel pore-forming α subunits. They also participate in cell-cell and cell-matrix adhesion, resulting in intracellular signal transduction, promotion of cell migration, calcium handling, and regulation of cell morphology. Here, we investigated regulated intramembrane proteolysis (RIP) of β1 by BACE1 and γ-secretase and show that β1 subunits are substrates for sequential RIP by BACE1 and γ-secretase, resulting in the generation of a soluble intracellular domain (ICD) that is translocated to the nucleus. Using RNA sequencing, we identified a subset of genes that are downregulated by β1-ICD overexpression in heterologous cells but upregulated in Scn1b-null cardiac tissue, which lacks β1-ICD signaling, suggesting that the β1-ICD may normally function as a molecular brake on gene transcription in vivo. We propose that human disease variants resulting in SCN1B LOF cause transcriptional dysregulation that contributes to altered excitability. Moreover, these results provide important insights into the mechanism of SCN1B-linked channelopathies, adding RIP-excitation coupling to the multifunctionality of sodium channel β1 subunits.
Alexandra A. Bouza, Nnamdi Edokobi, Samantha L. Hodges, Alexa M. Pinsky, James Offord, Lin Piao, Yan-Ting Zhao, Anatoli N. Lopatin, Luis F. Lopez-Santiago, Lori L. Isom
Glucagon-like peptide-1 (GLP-1) is an incretin hormone that potentiates glucose-stimulated insulin secretion. GLP-1 is classically produced by gut L cells; however, under certain circumstances α cells can express the prohormone convertase required for proglucagon processing to GLP-1, prohormone convertase 1/3 (PC1/3), and can produce GLP-1. However, the mechanisms through which this occurs are poorly defined. Understanding the mechanisms by which α cell PC1/3 expression can be activated may reveal new targets for diabetes treatment. Here, we demonstrate that the GLP-1 receptor (GLP-1R) agonist, liraglutide, increased α cell GLP-1 expression in a β cell GLP-1R–dependent manner. We demonstrate that this effect of liraglutide was translationally relevant in human islets through application of a new scRNA-seq technology, DART-Seq. We found that the effect of liraglutide to increase α cell PC1/3 mRNA expression occurred in a subcluster of α cells and was associated with increased expression of other β cell–like genes, which we confirmed by IHC. Finally, we found that the effect of liraglutide to increase bihormonal insulin+ glucagon+ cells was mediated by the β cell GLP-1R in mice. Together, our data validate a high-sensitivity method for scRNA-seq in human islets and identify a potentially novel GLP-1–mediated pathway regulating human α cell function.
Mridusmita Saikia, Marlena M. Holter, Leanne R. Donahue, Isaac S. Lee, Qiaonan C. Zheng, Journey L. Wise, Jenna E. Todero, Daryl J. Phuong, Darline Garibay, Reilly Coch, Kyle W. Sloop, Adolfo Garcia-Ocana, Charles G. Danko, Bethany P. Cummings
The cohesin complex plays an essential role in chromosome maintenance and transcriptional regulation. Recurrent somatic mutations in the cohesin complex are frequent genetic drivers in cancer, including myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Here, using genetic dependency screens of stromal antigen 2–mutant (STAG2-mutant) AML, we identified DNA damage repair and replication as genetic dependencies in cohesin-mutant cells. We demonstrated increased levels of DNA damage and sensitivity of cohesin-mutant cells to poly(ADP-ribose) polymerase (PARP) inhibition. We developed a mouse model of MDS in which Stag2 mutations arose as clonal secondary lesions in the background of clonal hematopoiesis driven by tet methylcytosine dioxygenase 2 (Tet2) mutations and demonstrated selective depletion of cohesin-mutant cells with PARP inhibition in vivo. Finally, we demonstrated a shift from STAG2- to STAG1-containing cohesin complexes in cohesin-mutant cells, which was associated with longer DNA loop extrusion, more intermixing of chromatin compartments, and increased interaction with PARP and replication protein A complex. Our findings inform the biology and therapeutic opportunities for cohesin-mutant malignancies.
Zuzana Tothova, Anne-Laure Valton, Rebecca A. Gorelov, Mounica Vallurupalli, John M. Krill-Burger, Amie Holmes, Catherine C. Landers, J. Erika Haydu, Edyta Malolepsza, Christina Hartigan, Melanie Donahue, Katerina D. Popova, Sebastian Koochaki, Sergey V. Venev, Jeanne Rivera, Edwin Chen, Kasper Lage, Monica Schenone, Alan D. D’Andrea, Steven A. Carr, Elizabeth A. Morgan, Job Dekker, Benjamin L. Ebert
Infantile hemangioma is a vascular tumor characterized by the rapid growth of disorganized blood vessels followed by slow spontaneous involution. The underlying molecular mechanisms that regulate hemangioma proliferation and involution still are not well elucidated. Our previous studies reported that NOGOB receptor (NGBR), a transmembrane protein, is required for the translocation of prenylated RAS from the cytosol to the plasma membrane and promotes RAS activation. Here, we show that NGBR was highly expressed in the proliferating phase of infantile hemangioma, but its expression decreased in the involuting phase, suggesting that NGBR may have been involved in regulating the growth of proliferating hemangioma. Moreover, we demonstrate that NGBR knockdown in hemangioma stem cells (HemSCs) attenuated growth factor–stimulated RAS activation and diminished the migration and proliferation of HemSCs, which is consistent with the effects of RAS knockdown in HemSCs. In vivo differentiation assay further shows that NGBR knockdown inhibited blood vessel formation and adipocyte differentiation of HemSCs in immunodeficient mice. Our data suggest that NGBR served as a RAS modulator in controlling the growth and differentiation of HemSCs.
Wenquan Hu, Zhong Liu, Valerie Salato, Paula E. North, Joyce Bischoff, Suresh N. Kumar, Zhi Fang, Sujith Rajan, M. Mahmood Hussain, Qing R. Miao
TrkB agonist drugs are shown here to have a significant effect on the regeneration of afferent cochlear synapses after noise-induced synaptopathy. The effects were consistent with regeneration of cochlear synapses that we observed in vitro after synaptic loss due to kainic acid–induced glutamate toxicity and were elicited by administration of TrkB agonists, amitriptyline, and 7,8-dihydroxyflavone, directly into the cochlea via the posterior semicircular canal 48 hours after exposure to noise. Synaptic counts at the inner hair cell and wave 1 amplitudes in the auditory brainstem response (ABR) were partially restored 2 weeks after drug treatment. Effects of amitriptyline on wave 1 amplitude and afferent auditory synapse numbers in noise-exposed ears after systemic (as opposed to local) delivery were profound and long-lasting; synapses in the treated animals remained intact 1 year after the treatment. However, the effect of systemically delivered amitriptyline on synaptic rescue was dependent on dose and the time window of administration: it was only effective when given before noise exposure at the highest injected dose. The long-lasting effect and the efficacy of postexposure treatment indicate a potential broad application for the treatment of synaptopathy, which often goes undetected until well after the original damaging exposures.
Katharine A. Fernandez, Takahisa Watabe, Mingjie Tong, Xiankai Meng, Kohsuke Tani, Sharon G. Kujawa, Albert S.B. Edge
Antiretroviral therapies (ARTs) abrogate HIV replication; however, infection persists as long-lived reservoirs of infected cells with integrated proviruses, which reseed replication if ART is interrupted. A central tenet of our current understanding of this persistence is that infected cells are shielded from immune recognition and elimination through a lack of antigen expression from proviruses. Efforts to cure HIV infection have therefore focused on reactivating latent proviruses to enable immune-mediated clearance, but these have yet to succeed in reducing viral reservoirs. Here, we revisited the question of whether HIV reservoirs are predominately immunologically silent from a new angle: by querying the dynamics of HIV-specific T cell responses over long-term ART for evidence of ongoing recognition of HIV-infected cells. In longitudinal assessments, we show that the rates of change in persisting HIV Nef-specific responses, but not responses to other HIV gene products, were associated with residual frequencies of infected cells. These Nef-specific responses were highly stable over time and disproportionately exhibited a cytotoxic, effector functional profile, indicative of recent in vivo recognition of HIV antigens. These results indicate substantial visibility of the HIV-infected cells to T cells on stable ART, presenting both opportunities and challenges for the development of therapeutic approaches to curing infection.
Eva M. Stevenson, Adam R. Ward, Ronald Truong, Allison S. Thomas, Szu-Han Huang, Thomas R. Dilling, Sandra Terry, John K. Bui, Talia M. Mota, Ali Danesh, Guinevere Q. Lee, Andrea Gramatica, Pragya Khadka, Winiffer D. Conce Alberto, Rajesh T. Gandhi, Deborah K. McMahon, Christina M. Lalama, Ronald J. Bosch, Bernard Macatangay, Joshua C. Cyktor, Joseph J. Eron, John W. Mellors, R. Brad Jones, for the AIDS Clinical Trials Group A5321 Team
Clinical trials of biologic therapies in type 1 diabetes (T1D) aim to mitigate autoimmune destruction of pancreatic β cells through immune perturbation and serve as resources to elucidate immunological mechanisms in health and disease. In the T1DAL trial of alefacept (LFA3-Ig) in recent-onset T1D, endogenous insulin production was preserved in 30% of subjects for 2 years after therapy. Given our previous findings linking exhausted-like CD8+ T cells to beneficial response in T1D trials, we applied unbiased analyses to sorted CD8+ T cells to evaluate their potential role in T1DAL. Using RNA sequencing, we found that greater insulin C-peptide preservation was associated with a module of activation- and exhaustion-associated genes. This signature was dissected into 2 CD8 memory phenotypes through correlation with cytometry data. These cells were hypoproliferative, shared expanded rearranged TCR junctions, and expressed exhaustion-associated markers including TIGIT and KLRG1. The 2 phenotypes could be distinguished by reciprocal expression of CD8+ T and NK cell markers (GZMB, CD57, and inhibitory killer cell immunoglobulin-like receptor [iKIR] genes), versus T cell activation and differentiation markers (PD-1 and CD28). These findings support previous evidence linking exhausted-like CD8+ T cells to successful immune interventions for T1D, while suggesting that multiple inhibitory mechanisms can promote this beneficial cell state.
Kirsten E. Diggins, Elisavet Serti, Virginia Muir, Mario Rosasco, TingTing Lu, Elisa Balmas, Gerald Nepom, S. Alice Long, Peter S. Linsley
2′3′-cGAMP is known as a nonclassical second messenger and small immune modulator that possesses potent antitumor and antiviral activities via inducing the stimulator of IFN genes–mediated (STING-mediated) signaling pathway. However, its function in regulating type 2 immune responses remains unknown. Therefore, we sought to determine a role of STING activation by 2′3′-cGAMP in type 2 inflammatory reactions in multiple mouse models of eosinophilic asthma. We discovered that 2′3′-cGAMP administration strongly attenuated type 2 lung immunopathology and airway hyperreactivity induced by IL-33 and a fungal allergen, Aspergillus flavus. Mechanistically, upon the respiratory delivery, 2′3′-cGAMP was mainly internalized by alveolar macrophages, in which it activated the STING/IFN regulatory factor 3/type I IFN signaling axis to induce the production of inhibitory factors containing IFN-α, which blocked the IL-33–mediated activation of group 2 innate lymphoid (ILC2) cells in vivo. We further demonstrated that 2′3′-cGAMP directly suppressed the proliferation and function of both human and mouse ILC2 cells in vitro. Taken together, our findings suggest that STING activation by 2′3′-cGAMP in alveolar macrophages and ILC2 cells can negatively regulate type 2 immune responses, implying that the respiratory delivery of 2′3′-cGAMP might be further developed as an alternative strategy for treating type 2 immunopathologic diseases such as eosinophilic asthma.
Li She, Gema D. Barrera, Liping Yan, Hamad H. Alanazi, Edward G. Brooks, Peter H. Dube, Yilun Sun, Hong Zan, Daniel P. Chupp, Nu Zhang, Xin Zhang, Yong Liu, Xiao-Dong Li
Recent in vivo tracer studies demonstrated that targeted mass spectrometry (MS) on the Q Exactive Orbitrap could determine the metabolism of HDL proteins 100s-fold less abundant than apolipoprotein A1 (APOA1). In this study, we demonstrate that the Orbitrap Lumos can measure tracer in proteins whose abundances are 1000s-fold less than APOA1, specifically the lipid transfer proteins phospholipid transfer protein (PLTP), cholesterol ester transfer protein (CETP), and lecithin-cholesterol acyl transferase (LCAT). Relative to the Q Exactive, the Lumos improved tracer detection by reducing tracer enrichment compression, thereby providing consistent enrichment data across multiple HDL sizes from 6 participants. We determined by compartmental modeling that PLTP is secreted in medium and large HDL (alpha2, alpha1, and alpha0) and is transferred from medium to larger sizes during circulation from where it is catabolized. CETP is secreted mainly in alpha1 and alpha2 and remains in these sizes during circulation. LCAT is secreted mainly in medium and small HDL (alpha2, alpha3, prebeta). Unlike PLTP and CETP, LCAT’s appearance on HDL is markedly delayed, indicating that LCAT may reside for a time outside of systemic circulation before attaching to HDL in plasma. The determination of these lipid transfer proteins’ unique metabolic structures was possible due to advances in MS technologies.
Sasha A. Singh, Allison B. Andraski, Hideyuki Higashi, Lang Ho Lee, Ashisha Ramsaroop, Frank M. Sacks, Masanori Aikawa
The role of insulin receptor (IR) activated by hyperinsulinemia in obesity-induced kidney injury is not well understood. We hypothesized that activation of kidney proximal tubule epithelial IR contributes to obesity-induced kidney injury. We administered normal-fat diet (NFD) or high-fat diet (HFD) to control and kidney proximal tubule IR–knockout (KPTIRKO) mice for 4 months. Renal cortical IR expression was decreased by 60% in male and female KPTIRKO mice. Baseline serum glucose, serum creatinine, and the ratio of urinary albumin to creatinine (ACR) were similar in KPTIRKO mice compared to those of controls. On HFD, weight gain and increase in serum cholesterol were similar in control and KPTIRKO mice; blood glucose did not change. HFD increased the following parameters in the male control mice: renal cortical contents of phosphorylated IR and Akt, matrix proteins, urinary ACR, urinary kidney injury molecule-1–to-creatinine ratio, and systolic blood pressure. Renal cortical generation of hydrogen sulfide was reduced in HFD-fed male control mice. All of these parameters were ameliorated in male KPTIRKO mice. Interestingly, female mice were resistant to HFD-induced kidney injury in both genotypes. We conclude that HFD-induced kidney injury requires renal proximal tubule IR activation in male mice.
Hak Joo Lee, Meenalakshmi M. Mariappan, Luke Norton, Terry Bakewell, Denis Feliers, Sae Byeol Oh, Andrew Donati, Cherubina S. Rubannelsonkumar, Manjeri A. Venkatachalam, Stephen E. Harris, Isabelle Rubera, Michel Tauc, Goutam Ghosh Choudhury, C. Ronald Kahn, Kumar Sharma, Ralph A. DeFronzo, Balakuntalam S. Kasinath
CIS43 is a potent neutralizing human mAb that targets a highly conserved “junctional” epitope in the Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP). Enhancing the durability of CIS43 in vivo will be important for clinical translation. Here, 2 approaches were used to improve the durability of CIS43 in vivo while maintaining potent neutralization. First, the Fc domain was modified with the LS mutations (CIS43LS) to increase CIS43 binding affinity for the neonatal Fc receptor (FcRn). CIS43LS and CIS43 showed comparable in vivo protective efficacy. CIS43LS had 9- to 13-fold increased binding affinity for human (6.2 nM versus 54.2 nM) and rhesus (25.1 nM versus 325.8 nM) FcRn at endosomal pH 6.0 compared with CIS43. Importantly, the half-life of CIS43LS in rhesus macaques increased from 22 days to 39 days compared with CIS43. The second approach for sustaining antibody levels of CIS43 in vivo is through adeno-associated virus (AAV) expression. Mice administered once with AAV-expressing CIS43 had sustained antibody levels of approximately 300 μg/mL and mediated protection against sequential malaria challenges up to 36 weeks. Based on these data, CIS43LS has advanced to phase I clinical trials, and AAV delivery provides a potential next-generation approach for malaria prevention.
Neville K. Kisalu, Lais D. Pereira, Keenan Ernste, Yevel Flores-Garcia, Azza H. Idris, Mangaiarkarasi Asokan, Marlon Dillon, Scott MacDonald, Wei Shi, Xuejun Chen, Amarendra Pegu, Arne Schön, Fidel Zavala, Alejandro B. Balazs, Joseph R. Francica, Robert A. Seder
A hallmark of impaired myocardial energetics in failing hearts is the downregulation of the creatine kinase (CK) system. In heart failure patients and animal models, myocardial phosphocreatine content and the flux of the CK reaction are negatively correlated with the outcome of heart failure. While decreased CK activity is highly reproducible in failing hearts, the underlying mechanisms remains elusive. Here, we report an inverse relationship between the activity and acetylation of CK muscle form (CKM) in human and mouse failing hearts. Hyperacetylation of recombinant CKM disrupted MM homodimer formation and reduced enzymatic activity, which could be reversed by sirtuin 2 treatment. Mass spectrometry analysis identified multiple lysine residues on the MM dimer interface, which were hyperacetylated in the failing hearts. Molecular modeling of CK MM homodimer suggested that hyperacetylation prevented dimer formation through interfering salt bridges within and between the 2 monomers. Deacetylation by sirtuin 2 reduced acetylation of the critical lysine residues, improved dimer formation, and restored CKM activity from failing heart tissue. These findings reveal a potentially novel mechanism in the regulation of CK activity and provide a potential target for improving high-energy phosphoryl transfer in heart failure.
Matthew A. Walker, Juan Chavez, Outi Villet, Xiaoting Tang, Andrew Keller, James E. Bruce, Rong Tian
Spinocerebellar ataxia type 1 (SCA1) is an adult-onset neurodegenerative disorder characterized by motor incoordination, mild cognitive decline, respiratory dysfunction, and early lethality. It is caused by the expansion of the polyglutamine (polyQ) tract in Ataxin-1 (ATXN1), which stabilizes the protein, leading to its toxic accumulation in neurons. Previously, we showed that serine 776 (S776) phosphorylation is critical for ATXN1 stability and contributes to its toxicity in cerebellar Purkinje cells. Still, the therapeutic potential of disrupting S776 phosphorylation on noncerebellar SCA1 phenotypes remains unstudied. Here, we report that abolishing S776 phosphorylation specifically on the polyQ-expanded ATXN1 of SCA1-knockin mice reduces ATXN1 throughout the brain and not only rescues the cerebellar motor incoordination but also improves respiratory function and extends survival while not affecting the hippocampal learning and memory deficits. As therapeutic approaches are likely to decrease S776 phosphorylation on polyQ-expanded and WT ATXN1, we further disrupted S776 phosphorylation on both alleles and observed an attenuated rescue, demonstrating a potential protective role of WT allele. This study not only highlights the role of S776 phosphorylation to regulate ATXN1 levels throughout the brain but also suggests distinct brain region–specific disease mechanisms and demonstrates the importance of developing allele-specific therapies for maximal benefits in SCA1.
Larissa Nitschke, Stephanie L. Coffin, Eder Xhako, Dany B. El-Najjar, James P. Orengo, Elizabeth Alcala, Yanwan Dai, Ying-Wooi Wan, Zhandong Liu, Harry T. Orr, Huda Y. Zoghbi
Human lung adenocarcinoma (LUAD) in current or former smokers exhibits a high tumor mutational burden (TMB) and distinct mutational signatures. Syngeneic mouse models of clinically relevant smoking-related LUAD are lacking. We established and characterized a tobacco-associated, transplantable murine LUAD cell line, designated FVBW-17, from a LUAD induced by the tobacco carcinogen 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone in the FVB/N mouse strain. Whole-exome sequencing of FVBW-17 cells identified tobacco-associated KrasG12D and Trp53 mutations and a similar mutation profile to that of classic alkylating agents with a TMB greater than 500. FVBW-17 cells transplanted subcutaneously, via tail vein, and orthotopically generated tumors that were histologically similar to human LUAD in FVB/N mice. FVBW-17 tumors expressed programmed death ligand 1 (PD-L1), were infiltrated with CD8+ T cells, and were responsive to anti–PD-L1 therapy. FVBW-17 cells were also engineered to express green fluorescent protein and luciferase to facilitate detection and quantification of tumor growth. Distant metastases to lung, spleen, liver, and kidney were observed from subcutaneously transplanted tumors. This potentially novel cell line is a robust representation of human smoking-related LUAD biology and provides a much needed preclinical model in which to test promising new agents and combinations, including immune-based therapies.
Laura P. Stabile, Vinod Kumar, Autumn Gaither-Davis, Eric H. Huang, Frank P. Vendetti, Princey Devadassan, Sanja Dacic, Riyue Bao, Richard A. Steinman, Timothy F. Burns, Christopher J. Bakkenist
Hepatitis B virus–specific (HBV-specific) CD8+ T cells fail to acquire effector functions after priming in the liver, but the molecular basis for the dysfunction is poorly understood. By comparing the gene expression profile of intrahepatically primed, dysfunctional HBV-specific CD8+ T cells with that of systemically primed, functional effector counterparts, we found that the expression of interferon-stimulated genes (ISGs) is selectively suppressed in the dysfunctional CD8+ T cells. The ISG suppression was associated with impaired phosphorylation of STAT1 in response to IFN-α treatment. Importantly, a strong induction of type I interferons (IFN-Is) in the liver facilitated the functional differentiation of intrahepatically primed HBV-specific CD8+ T cells in association with the restoration of ISGs’ expression in the T cells. These results suggest that intrahepatic priming suppresses IFN-I signaling in CD8+ T cells, which may contribute to the dysfunction. The data also suggest a therapeutic value of the robust induction of intrahepatic IFN-Is for the treatment of chronic HBV infection.
Keigo Kawashima, Masanori Isogawa, Masaya Onishi, Ian Baudi, Satoru Saito, Atsushi Nakajima, Takashi Fujita, Yasuhito Tanaka
Paucity of the glucose transporter-1 (Glut1) protein resulting from haploinsufficiency of the SLC2A1 gene arrests cerebral angiogenesis and disrupts brain function to cause Glut1 deficiency syndrome (Glut1 DS). Restoring Glut1 to Glut1 DS model mice prevents disease, but the precise cellular sites of action of the transporter, its temporal requirements, and the mechanisms linking scarcity of the protein to brain cell dysfunction remain poorly understood. Here, we show that Glut1 functions in a cell-autonomous manner in the cerebral microvasculature to affect endothelial tip cells and, thus, brain angiogenesis. Moreover, brain endothelial cell–specific Glut1 depletion not only triggers a severe neuroinflammatory response in the Glut1 DS brain, but also reduces levels of brain-derived neurotrophic factor (BDNF) and causes overt disease. Reduced BDNF correlated with fewer neurons in the Glut1 DS brain. Controlled depletion of the protein demonstrated that brain pathology and disease severity was greatest when Glut1 scarcity was induced neonatally, during brain angiogenesis. Reducing Glut1 at later stages had mild or little effect. Our results suggest that targeting brain endothelial cells during early development is important to ensure proper brain angiogenesis, prevent neuroinflammation, maintain BDNF levels, and preserve neuron numbers. This requirement will be essential for any disease-modifying therapeutic strategy for Glut1 DS.
Maoxue Tang, Sarah H. Park, Sabrina Petri, Hang Yu, Carlos B. Rueda, E. Dale Abel, Carla Y. Kim, Elizabeth M.C. Hillman, Fanghua Li, Yeojin Lee, Lei Ding, Smitha Jagadish, Wayne N. Frankel, Darryl C. De Vivo, Umrao R. Monani
Computational models based on recent maps of the RBC proteome suggest that mature erythrocytes may harbor targets for common drugs. This prediction is relevant to RBC storage in the blood bank, in which the impact of small molecule drugs or other xenometabolites deriving from dietary, iatrogenic, or environmental exposures (“exposome”) may alter erythrocyte energy and redox metabolism and, in so doing, affect red cell storage quality and posttransfusion efficacy. To test this prediction, here we provide a comprehensive characterization of the blood donor exposome, including the detection of common prescription and over-the-counter drugs in blood units donated by 250 healthy volunteers in the Recipient Epidemiology and Donor Evaluation Study III Red Blood Cell–Omics (REDS-III RBC-Omics) Study. Based on high-throughput drug screenings of 1366 FDA-approved drugs, we report that approximately 65% of the tested drugs had an impact on erythrocyte metabolism. Machine learning models built using metabolites as predictors were able to accurately predict drugs for several drug classes/targets (bisphosphonates, anticholinergics, calcium channel blockers, adrenergics, proton pump inhibitors, antimetabolites, selective serotonin reuptake inhibitors, and mTOR), suggesting that these drugs have a direct, conserved, and substantial impact on erythrocyte metabolism. As a proof of principle, here we show that the antacid ranitidine — though rarely detected in the blood donor population — has a strong effect on RBC markers of storage quality in vitro. We thus show that supplementation of blood units stored in bags with ranitidine could — through mechanisms involving sphingosine 1–phosphate–dependent modulation of erythrocyte glycolysis and/or direct binding to hemoglobin — improve erythrocyte metabolism and storage quality.
Travis Nemkov, Davide Stefanoni, Aarash Bordbar, Aaron Issaian, Bernhard O. Palsson, Larry J. Dumont, Ariel Hay, Anren Song, Yang Xia, Jasmina S. Redzic, Elan Z. Eisenmesser, James C. Zimring, Steve Kleinman, Kirk C. Hansen, Michael P. Busch, Angelo D’Alessandro, the Recipient Epidemiology and Donor Evaluation Study III Red Blood Cell–Omics (REDS-III RBC-Omics) Study