Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Recently published
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Recently published
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
Blood donor exposome and impact of common drugs on red blood cell metabolism
Travis Nemkov, … , Michael Busch, Angelo D’Alessandro
Travis Nemkov, … , Michael Busch, Angelo D’Alessandro
Published December 22, 2020
Citation Information: JCI Insight. 2020. https://doi.org/10.1172/jci.insight.146175.
View: Text | PDF
Research In-Press Preview Hematology Metabolism

Blood donor exposome and impact of common drugs on red blood cell metabolism

  • Text
  • PDF
Abstract

Computational models based on recent maps of the red blood cell proteome suggest that mature erythrocytes may harbor targets for common drugs. This prediction is relevant to red blood cell storage in the blood bank, in which the impact of small molecule drugs or other xenometabolites deriving from dietary, iatrogenic or environmental exposures (“exposome”) may alter erythrocyte energy and redox metabolism and, in so doing, affect red cell storage quality and post-transfusion efficacy. To test this prediction, here we provide a comprehensive characterization of the blood donor exposome, including the detection of common prescription and over-the-counter drugs in 250 units donated by healthy volunteers from the REDS-III RBC Omics study. Based on high-throughput drug screenings of 1,366 FDA-approved drugs, we report a significant impact of ~65% of the tested drugs on erythrocyte metabolism. Machine learning models built using metabolites as predictors were able to accurately predict drugs for several drug classes/targets (bisphosphonates, anticholinergics, calcium channel blockers, adrenergics, proton-pump inhibitors, antimetabolites, selective serotonin reuptake inhibitors, and mTOR) suggesting that these drugs have a direct, conserved, and significant impact on erythrocyte metabolism. As a proof of principle, here we show that the antiacid ranitidine – though rarely detected in the blood donor population – has a strong effect on RBC markers of storage quality in vitro. We thus show that ranitidine supplementation to blood units could improve erythrocyte metabolism and storage quality when supplemented to blood bags, through mechanisms involving sphingosine 1-phosphate-dependent modulation of erythrocyte glycolysis and/or direct binding to hemoglobin.

Authors

Travis Nemkov, Davide Stefanoni, Aarash Bordbar, Aaron Issaian, Bernhard O. Palsson, Larry J. Dumont, Ariel M. Hay, Anren Song, Yang Xia, Jasmina S. Redzic, Elan Z. Eisenmesser, James C. Zimring, Steve Kleinman, Kirk C. Hansen, Michael Busch, Angelo D’Alessandro

×

Full Text PDF | Download (6.29 MB)

Follow JCI Insight:
Copyright © 2021 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts