Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Asymmetric cell division promotes therapeutic resistance in glioblastoma stem cells
Masahiro Hitomi, … , Bjarne W. Kristensen, Justin D. Lathia
Masahiro Hitomi, … , Bjarne W. Kristensen, Justin D. Lathia
Published December 22, 2020
Citation Information: JCI Insight. 2021;6(3):e130510. https://doi.org/10.1172/jci.insight.130510.
View: Text | PDF
Research Article Cell biology Stem cells

Asymmetric cell division promotes therapeutic resistance in glioblastoma stem cells

  • Text
  • PDF
Abstract

Asymmetric cell division (ACD) enables the maintenance of a stem cell population while simultaneously generating differentiated progeny. Cancer stem cells (CSCs) undergo multiple modes of cell division during tumor expansion and in response to therapy, yet the functional consequences of these division modes remain to be determined. Using a fluorescent reporter for cell surface receptor distribution during mitosis, we found that ACD generated a daughter cell with enhanced therapeutic resistance and increased coenrichment of EGFR and neurotrophin receptor (p75NTR) from a glioblastoma CSC. Stimulation of both receptors antagonized differentiation induction and promoted self-renewal capacity. p75NTR knockdown enhanced the therapeutic efficacy of EGFR inhibition, indicating that coinheritance of p75NTR and EGFR promotes resistance to EGFR inhibition through a redundant mechanism. These data demonstrate that ACD produces progeny with coenriched growth factor receptors, which contributes to the generation of a more therapeutically resistant CSC population.

Authors

Masahiro Hitomi, Anastasia P. Chumakova, Daniel J. Silver, Arnon M. Knudsen, W. Dean Pontius, Stephanie Murphy, Neha Anand, Bjarne W. Kristensen, Justin D. Lathia

×

Full Text PDF

Download PDF (1.61 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts