Angiogenesis is a key process that allows nutrient uptake and cellular trafficking and is co-opted in cancer to enable tumor growth and metastasis. Recently, extracellular vesicles (EVs) have been shown to promote angiogenesis; however, it is unclear what unique features EVs contribute to the process. Here, we studied the role of EVs derived from head and neck squamous cell carcinoma (HNSCC) in driving tumor angiogenesis. Small EVs (SEVs), in the size range of exosomes (50-150 nm), induced angiogenesis both in vitro and in vivo. Proteomic analysis of HNSCC SEVs revealed the cell-cell signaling receptor EPHB2 as a promising candidate cargo to promote angiogenesis. Analysis of TCGA RNA-Seq and patient tissue microarray data further identified EPHB2 overexpression in HNSCC tumors to be associated with poor patient prognosis and tumor angiogenesis, especially in the context of overexpression of the exosome secretion regulator cortactin. Functional experiments revealed that EPHB2 expression in SEVs regulates angiogenesis both in vitro and in vivo and that EPHB2 carried by SEVs stimulates ephrin-B reverse signaling, inducing STAT3 phosphorylation. A STAT3 inhibitor greatly reduced SEV-induced angiogenesis. These data suggest a novel model in which EVs uniquely promote angiogenesis by transporting Eph transmembrane receptors to non-adjacent endothelial cells to induce ephrin reverse signaling.
Shinya Sato, Suhas Vasaikar, Adel Eskaros, Young Kim, James S. Lewis, Bing Zhang, Andries Zijlstra, Alissa M. Weaver
CADASIL leads to premature stroke and vascular dementia. Mechanism-specific therapies for this aggressive cerebral small vessel disease are lacking. CADASIL is caused by NOTCH3 mutations that influence vascular smooth muscle cell (VSMC) function through unknown processes. We investigated molecular mechanisms underlying the vasculopathy in CADASIL focusing on ER stress and RhoA/Rho kinase (ROCK). Peripheral small arteries and VSMCs were isolated from gluteal biopsies of CADASIL patients and mesentery of TgNotch3R169C mice (CADASIL model). CADASIL vessels exhibited impaired vasorelaxation, blunted vasoconstriction and hypertrophic remodelling. Expression of NOTCH3 and ER stress target genes was amplified and ER stress response, Rho kinase activity, superoxide production and cytoskeletal-associated protein phosphorylation were increased in CADASIL, processes associated with Nox5 upregulation. Aberrant vascular responses and signalling in CADASIL were ameliorated by inhibitors of Notch3 (gamma-secretase inhibitor), Nox5 (mellitin), ER stress (4-PBA) and ROCK (fasudil). Observations in human CADASIL were recapitulated in TgNotch3R169C mice. These findings indicate that vascular dysfunction in CADASIL involves ER stress/ROCK interplay driven by Notch3-induced Nox5 activation and that NOTCH3 mutation-associated vascular pathology, typical in cerebral vessels, also manifests peripherally. We define Notch3-Nox5/ERstress/ROCK signaling as a novel putative mechanism-specific target and suggest that peripheral artery responses may be an accessible biomarker in CADASIL.
Karla B. Neves, Adam P. Harvey, Fiona Moreton, Augusto C. Montezano, Francisco J. Rios, Rhéure Alves-Lopes, Aurelie Nguyen Dinh Cat, Paul Rocchiccioli, Christian Delles, Anne Joutel, Keith Muir, Rhian M. Touyz
The choroid plexus (ChP) is a highly vascularized tissue found in the brain ventricles, with an apical epithelial cell layer surrounding fenestrated capillaries. It is responsible for the production of most of the cerebrospinal fluid (CSF) in the ventricular system, subarachnoid space, and central canal of the spinal cord, while also constituting the blood-CSF barrier (BCSFB). In addition, epithelial cells of the choroid plexus (EChP) synthesize neurotrophic factors and other signaling molecules that are released into the CSF. Here we show that insulin is produced in EChP of mice and humans, and its expression and release are regulated by serotonin. Insulin mRNA and immune-reactive protein, including C-peptide, are present in EChP, as detected by several experimental approaches, and in much higher levels than any other brain region and non-pancreatic peripheral tissues. Moreover, insulin is produced in primary cultured mouse EChP, and its release, albeit Ca2+-sensitive, is not regulated by glucose. Instead, activation of the 5HT2C receptor by serotonin treatment led to activation of IP3-sensitive channels and Ca2+ mobilization from intracellular storage, leading to insulin secretion. In vivo depletion of brain serotonin in the dorsal raphe nucleus negatively affected insulin expression in the ChP, suggesting an endogenous modulation of ChP insulin by serotonin. Therefore, for the first time to our knowledge, here we show that insulin is produced by EChP in the brain, and its release is modulated at least by serotonin, and not glucose.
Caio Henrique Mazucanti, Qing-Rong Liu, Doyle Lang, Nicholas Huang, Jennifer F. O’Connell, Simonetta Camandola, Josephine M. Egan
Mitophagy, by maintaining mitochondrial quality control, plays a key role in maintaining kidney function and is impaired in pathologic states. Macrophages are well-known for their pathogenic role in kidney fibrosis. Here, we report that PINK1/Parkin-mediated mitophagy in macrophages is compromised in experimental and human kidney fibrosis. We demonstrate downregulation of mitophagy regulators, mitofusin-2 (MFN2) and Parkin, downstream of PINK1 in kidney fibrosis. Loss of either Pink1 or Prkn promoted renal extracellular matrix accumulation and frequency of profibrotic/M2 macrophages. Pink1-/- or Prkn-/- bone-marrow-derived macrophages (BMDMs) showed enhanced expression of rictor. Mitochondria from TGF-β1-treated Pink1-/- BMDMs exhibited increased superoxide levels, and reduced respiration and ATP production. In addition, mitophagy in macrophages involves PINK1-mediated phosphorylation of downstream MFN2 and MFN2-facilitated recruitment of Parkin to damaged mitochondria, and macrophage-specific deletion of Mfn2 aggravates kidney fibrosis. Moreover, mitophagy regulators were downregulated in human CKD kidney and TGF-β1-treated human renal macrophages, whereas Mdivi1 treatment suppressed mitophagy mediators and promoted fibrotic response. Taken together, our study is the first to demonstrate that macrophage mitophagy plays a protective role against kidney fibrosis via regulating PINK1/MFN2/Parkin-mediated pathway.
Divya Bhatia, Kuei-Pin Chung, Kiichi Nakahira, Edwin Patino, Michelle C. Rice, Lisa K. Torres, Thangamani Muthukumar, Augustine M.K. Choi, Oleh M. Akchurin, Mary E. Choi
Cardiomyopathies are complex heart muscle diseases that can be inherited or acquired. Dilated cardiomyopathy can result from mutations in LMNA, encoding the nuclear intermediate filament proteins lamin A/C. Some LMNA mutations lead to accumulation of the lamin A precursor, prelamin A, which is disease causing in a number of tissues yet its impact upon the heart is unknown. Here we discovered myocardial prelamin A accumulation occurred in a case of dilated cardiomyopathy and show that a novel mouse model of cardiac specific prelamin A accumulation exhibited a phenotype consistent with ‘inflammatory cardiomyopathy’ which we observed to be similar to HIV associated cardiomyopathy, an acquired disease state. Numerous HIV protease therapies are known to inhibit ZMPSTE24, the enzyme responsible for prelamin A processing, and we confirmed that accumulation of prelamin A occurred in HIV+ patient cardiac biopsies. These findings: (1) confirm a unifying pathological role for prelamin A common to genetic and acquired cardiomyopathies; (2) have implications for the management of HIV patients with cardiac disease suggesting protease inhibitors should be replaced with alternative therapies i.e. non-nucleoside reverse transcriptase inhibitors; and (3) suggest that targeting inflammation may be a useful treatment strategy for certain forms of inherited cardiomyopathy.
Daniel Brayson, Andrea Frustaci, Romina Verardo, Cristina Chimenti, Matteo Antonio Russo, Robert Hayward, Sadia Munir Ahmad, Gema Vizcay-Barrena, Andrea Protti, Peter S. Zammit, Cristobal G. dos Remedios, Elisabeth Ehler, Ajay M. Shah, Catherine M. Shanahan
The transcriptional activator IκBζ is a key regulator of psoriasis, but which cells mediate its pathogenic effect remains unknown. Here we found that IκBζ expression in keratinocytes triggers not only skin lesions, but also systemic inflammation in mouse psoriasis models. Specific depletion of IκBζ in keratinocytes was sufficient to suppress the induction of imiquimod- or IL-36-mediated psoriasis. Moreover, IκBζ ablation in keratinocytes prevented the onset of psoriatic lesions and systemic inflammation in keratinocyte-specific IL-17A transgenic mice. Mechanistically, this psoriasis protection was mediated by the fact that IκBζ deficiency in keratinocytes abrogated the induction of specific pro-inflammatory target genes, including Cxcl5, Cxcl2, Csf2 and Csf3, in response to IL-17A or IL-36. These IκBζ-dependent genes trigger the generation and recruitment of neutrophils and monocytes that are needed for skin inflammation. Consequently, our data uncover a surprisingly pivotal role of keratinocytes and keratinocyte-derived IκBζ as key mediators of psoriasis and psoriasis-related systemic inflammation.
Sebastian Lorscheid, Anne Müller, Jessica Löffler, Claudia Resch, Philip Bucher, Florian C. Kurschus, Ari Waisman, Knut Schäkel, Stephan Hailfinger, Klaus Schulze-Osthoff, Daniela Kramer
Mice homozygous for a hypomorphic allele of DNA replication factor minichromosome maintenance protein 2 (designated Mcm2cre/cre) develop precursor T-cell lymphoblastic leukemia/lymphoma (pre-T LBL) with 4-32 small interstitial deletions per tumor. Mice that express a NUP98-HOXD13 (NHD13) transgene develop multiple types of leukemia, including myeloid, T and B lymphocyte. All Mcm2cre/creNHD13+ mice develop pre-T LBL, and 26% develop an unrelated, concurrent B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Copy Number Alteration (CNA) analysis demonstrated that pre-T LBL were characterized by homozygous deletions of Pten and Tcf3, and partial deletions of Notch1 leading to Notch1 activation. In contrast, BCP-ALL were characterized by recurrent deletions involving Pax5 and Ptpn1, and copy number gain of Abl1 and Nup214 resulting in a Nup214-Abl1 fusion. We present a model in which Mcm2 deficiency leads to replicative stress, DNA double strand breaks, and resultant CNAs due to errors in DNA DSB repair. CNAs which involve critical oncogenic pathways are then selected in vivo as malignant lymphoblasts, due to a fitness advantage. Some CNAs, such as those involving Abl1 and Notch1, represent attractive targets for therapy.
Mianmian Yin, Timour Baslan, Robert L. Walker, Yuelin J. Zhu, Amy Freeland, Toshihiro Matsukawa, Sriram Sridharan, André Nussenzweig, Steven C. Pruitt, Scott W. Lowe, Paul S. Meltzer, Peter D. Aplan
Von Hippel–Lindau (Vhl) protein inhibits hypoxia-inducible factor (Hif), yet its deletion in murine retina does not cause the extensive angiogenesis expected with Hif induction. The mechanism is unclear. Here we show that retinoblastoma tumor suppressor (Rb1) constrains expression of Hif target genes in the Vhl-/- retina. Deleting Rb1 induced extensive retinal neovascularization and autophagic ablation of photoreceptors in the Vhl-/- retina. RNA sequencing, ChIP and reporter assays showed Rb1 recruitment to and repression of certain Hif target genes. Activating Rb1 by deleting cyclin D1 induced a partial defect in the retinal superficial vascular plexus (SVP). Unexpectedly, removing Vhl suppressed retinoblastoma formation in murine Rb1/Rbl1-deficient retina, but generated subretinal vascular growths resembling retinal angiomatous proliferation (RAP), and retinal capillary hemangioblastoma (RCH). Most stromal cells in the RAP/RCH-like lesions were Sox9+, suggesting a Müller glia origin, and expressed Lgals3, a marker of human brain hemangioblastoma. Thus, the Rb family limit Hif target gene expression in the Vhl-/- retina, and removing this inhibitory signal generates new models for RAP and RCH.
Ran Wei, Xiang Ren, Hongyu Kong, Zhongping Lv, Yongjiang Chen, Yunjing Tang, Yujiao Wang, Lirong Xiao, Sabiha Hacibekiroglu, Chen Liang, Andras Nagy, Rod Bremner, Danian Chen
Previous work has reported the important links between cellular bioenergetics and the development of chronic kidney disease, highlighting the potential for targeting metabolic functions to regulate disease progression. More recently, it has been shown that alterations in fatty acid oxidation (FAO) can have an important impact on the progression of kidney disease. In this work, we demonstrate that loss of miR-33, an important regulator of lipid metabolism, can prevent the repression of FAO in fibrotic kidneys and reduce lipid accumulation. These changes were associated with a dramatic reduction in the extent of fibrosis induced in two different mouse models of kidney disease. These effects were not related to changes in circulating leukocytes, as bone marrow transplant from miR-33 deficient animals did not have a similar impact on disease progression. Most importantly, targeted delivery of miR-33 peptide nucleic acid (PNA) inhibitors to the kidney and other acidic microenvironments was accomplished using pH low insertion peptides (pHLIP) as a carrier. This was effective at both increasing the expression of factors involved in FAO and reducing the development of fibrosis. Together, these findings suggest that miR-33 may be an attractive therapeutic target for the treatment of chronic kidney disease.
Nathan L. Price, Verónica Miguel, Wen Ding, Abhishek K. Singh, Shipra Malik, Noemi Rotllan, Anna Moshnikova, Jakub Toczek, Caroline Zeiss, Mehran M. Sadeghi, Noemi Arias, Ángel Baldán, Oleg A. Andreev, Diego Rodríguez-Puyol, Raman Bahal, Yana K. Reshetnyak, Yajaira Suárez, Carlos Fernández-Hernando, Santiago Lamas
To develop a systems biology model of fibrosis progression within the human lung we performed RNAseq and microRNA analysis on 95 samples obtained from 10 idiopathic pulmonary fibrosis (IPF) and 6 control lungs. Extent of fibrosis in each sample was assessed by microCT measured alveolar surface density (ASD) and confirmed by histology. Regulatory gene expression networks were identified using linear mixed-effect models and dynamic regulatory events miner (DREM). Differential gene expression analysis identified a core set of genes increased or decreased before fibrosis was histologically evident that continued to change with advanced fibrosis. DREM generated a systems biology model of fibrosis progression (available at http: www.sb.cs.cmu.edu/IPFReg) that identified progressively divergent gene expression tracks with microRNAs and transcription factors that specifically regulate early or advanced fibrosis. We confirmed model predictions by demonstrating that expression of POU2AF1, previously unassociated with lung disease but proposed by the model as regulator, is increased in B-lymphocytes in IPF lungs and that POU2AF1 knockout mice were protected from bleomycin induced lung fibrosis. Our results reveal distinct regulation of gene expression changes in IPF tissue that remained structurally normal compared with moderate or advanced fibrosis and suggest distinct regulatory mechanisms for each stage.
John E. McDonough, Farida Ahangari, Qin Li, Siddhartha Jain, Stijn E. Verleden, Jose Herazo-Maya, Milica Vukmirovic, Giuseppe DeIuliis, Argyrios Tzouvelekis, Naoya Tanabe, Fanny Chu, Xiting Yan, Johny Verschakelen, Robert J. Homer, Dimitris V. Manatakis, Junke Zhang, Jun Ding, Karen Maes, Laurens De Sadeleer, Robin Vos, Arne Neyrinck, Panayiotis V. Benos, Ziv Bar-Joseph, Dean Tantin, James C. Hogg, Bart M. Vanaudenaerde, Wim A. Wuyts, Naftali Kaminski
No posts were found with this tag.