Although oxidative stress plays central roles in postischemic renal injury, region-specific alterations in energy and redox metabolism caused by short-duration ischemia remain unknown. Imaging mass spectrometry enabled us to reveal spatial heterogeneity of energy and redox metabolites in the postischemic murine kidney. After 10-minute ischemia and 24-hour reperfusion (10mIR), in the cortex and outer stripes of the outer medulla, ATP substantially decreased, but not in the inner stripes of the outer medulla and inner medulla. 10mIR caused renal injury with elevation of fractional excretion of sodium, although histological damage by oxidative stress was limited. Ischemia-induced NADH elevation in the cortex indicated prolonged production of reactive oxygen species by xanthine oxidase (XOD). However, consumption of reduced glutathione after reperfusion suggested the amelioration of oxidative stress. An XOD inhibitor, febuxostat, which blocks the degradation pathway of adenine nucleotides, promoted ATP recovery and exerted renoprotective effects in the postischemic kidney. Because effects of febuxostat were canceled by silencing of the hypoxanthine phosphoribosyl transferase 1 gene in cultured tubular cells, mechanisms for the renoprotective effects appear to involve the purine salvage pathway, which uses hypoxanthine to resynthesize adenine nucleotides, including ATP. These findings suggest a novel therapeutic approach for acute ischemia/reperfusion renal injury with febuxostat through salvaging high-energy adenine nucleotides.
Kentaro Fujii, Akiko Kubo, Kazutoshi Miyashita, Masaaki Sato, Aika Hagiwara, Hiroyuki Inoue, Masaki Ryuzaki, Masanori Tamaki, Takako Hishiki, Noriyo Hayakawa, Yasuaki Kabe, Hiroshi Itoh, Makoto Suematsu
Cardiomyopathies are complex heart muscle diseases that can be inherited or acquired. Dilated cardiomyopathy can result from mutations in LMNA, encoding the nuclear intermediate filament proteins lamin A/C. Some LMNA mutations lead to accumulation of the lamin A precursor, prelamin A, which is disease causing in a number of tissues, yet its impact upon the heart is unknown. Here, we discovered myocardial prelamin A accumulation occurred in a case of dilated cardiomyopathy, and we show that a potentially novel mouse model of cardiac-specific prelamin A accumulation exhibited a phenotype consistent with inflammatory cardiomyopathy, which we observed to be similar to HIV-associated cardiomyopathy, an acquired disease state. Numerous HIV protease therapies are known to inhibit ZMPSTE24, the enzyme responsible for prelamin A processing, and we confirmed that accumulation of prelamin A occurred in HIV+ patient cardiac biopsies. These findings (a) confirm a unifying pathological role for prelamin A common to genetic and acquired cardiomyopathies; (b) have implications for the management of HIV patients with cardiac disease, suggesting protease inhibitors should be replaced with alternative therapies (i.e., nonnucleoside reverse transcriptase inhibitors); and (c) suggest that targeting inflammation may be a useful treatment strategy for certain forms of inherited cardiomyopathy.
Daniel Brayson, Andrea Frustaci, Romina Verardo, Cristina Chimenti, Matteo Antonio Russo, Robert Hayward, Sadia Ahmad, Gema Vizcay-Barrena, Andrea Protti, Peter S. Zammit, Cristobal G. dos Remedios, Elisabeth Ehler, Ajay M. Shah, Catherine M. Shanahan
In addition to its well-known beneficial effects for the treatment of several types of cancer, PD-1 blockade has shown encouraging results in preclinical models of sepsis and in a recent clinical trial in sepsis. Because cancer is the most common comorbidity in septic patients, here we aimed to determine the efficacy of PD-1 checkpoint blockade in the setting of sepsis complicated with preexisting malignancy. In a model of established lung cancer followed by cecal ligation and puncture–induced (CLP-induced) sepsis, PD-1 blockade exhibited no therapeutic effect on sepsis survival. This diminished efficacy of PD-1 blockade in cancer septic animals (septic animals with cancer) was characterized by a reduction in both the quality and quantity of PD-1+ responder cells. Specifically, CD8+ T cells isolated from cancer septic animals exhibited decreased CD28 expression and a reduction in the CXCR5+PD-1+ subset. In addition, flow cytometric analysis of T cells isolated from cancer septic animals revealed 2B4 as another possible checkpoint under these conditions. Administration of anti-2B4 to cancer septic animals significantly improved sepsis survival and was associated with increased T cell costimulatory receptor expression and decreased coinhibitory receptor expression. These results illustrate functions of coinhibitory receptors in the setting of sepsis complicated with cancer.
Ching-wen Chen, Ming Xue, Wenxiao Zhang, Jianfeng Xie, Craig M. Coopersmith, Mandy L. Ford
Von Hippel–Lindau (Vhl) protein inhibits hypoxia-inducible factor (Hif), yet its deletion in murine retina does not cause the extensive angiogenesis expected with Hif induction. The mechanism is unclear. Here we show that retinoblastoma tumor suppressor (Rb1) constrains expression of Hif target genes in the Vhl–/– retina. Deleting Rb1 induced extensive retinal neovascularization and autophagic ablation of photoreceptors in the Vhl–/– retina. RNA-sequencing, ChIP, and reporter assays showed Rb1 recruitment to and repression of certain Hif target genes. Activating Rb1 by deleting cyclin D1 induced a partial defect in the retinal superficial vascular plexus. Unexpectedly, removing Vhl suppressed retinoblastoma formation in murine Rb1/Rbl1–deficient retina but generated subretinal vascular growths resembling retinal angiomatous proliferation (RAP) and retinal capillary hemangioblastoma (RCH). Most stromal cells in the RAP/RCH–like lesions were Sox9+, suggesting a Müller glia origin, and expressed Lgals3, a marker of human brain hemangioblastoma. Thus, the Rb family limit Hif target gene expression in the Vhl–/– retina, and removing this inhibitory signal generates new models for RAP and RCH.
Ran Wei, Xiang Ren, Hongyu Kong, Zhongping Lv, Yongjiang Chen, Yunjing Tang, Yujiao Wang, Lirong Xiao, Tao Yu, Sabiha Hacibekiroglu, Chen Liang, Andras Nagy, Rod Bremner, Danian Chen
The adult mammalian heart regenerates poorly after injury and, as a result, ischemic heart diseases are among the leading causes of death worldwide. The recovery of the injured heart is dependent on orchestrated repair processes including inflammation, fibrosis, cardiomyocyte survival, proliferation, and contraction properties that could be modulated in patients. In this work we designed an automated high-throughput screening system for small molecules that induce cardiomyocyte proliferation in vitro and identified the small molecule Chicago Sky Blue 6B (CSB). Following induced myocardial infarction, CSB treatment reduced scar size and improved heart function of adult mice. Mechanistically, we show that although initially identified using in vitro screening for cardiomyocyte proliferation, in the adult mouse CSB promotes heart repair through (i) inhibition of CaMKII signaling, which improves cardiomyocyte contractility; and (ii) inhibition of neutrophil and macrophage activation, which attenuates the acute inflammatory response, thereby contributing to reduced scarring. In summary, we identified CSB as a potential therapeutic agent that enhances cardiac repair and function by suppressing postinjury detrimental processes, with no evidence for cardiomyocyte renewal.
Oren Yifa, Karen Weisinger, Elad Bassat, Hanjun Li, David Kain, Haim Barr, Noga Kozer, Alexander Genzelinakh, Dana Rajchman, Tamar Eigler, Kfir Baruch Umansky, Daria Lendengolts, Ori Brener, Nenad Bursac, Eldad Tzahor
BACKGROUND Bilateral loss of vestibular (inner ear inertial) sensation causes chronically blurred vision during head movement, postural instability, and increased fall risk. Individuals who fail to compensate despite rehabilitation therapy have no adequate treatment options. Analogous to hearing restoration via cochlear implants, prosthetic electrical stimulation of vestibular nerve branches to encode head motion has garnered interest as a potential treatment, but prior studies in humans have not included continuous long-term stimulation or 3D binocular vestibulo-ocular reflex (VOR) oculography, without which one cannot determine whether an implant selectively stimulates the implanted ear’s 3 semicircular canals.METHODS We report binocular 3D VOR responses of 4 human subjects with ototoxic bilateral vestibular loss unilaterally implanted with a Labyrinth Devices Multichannel Vestibular Implant System vestibular implant, which provides continuous, long-term, motion-modulated prosthetic stimulation via electrodes in 3 semicircular canals.RESULTS Initiation of prosthetic stimulation evoked nystagmus that decayed within 30 minutes. Stimulation targeting 1 canal produced 3D VOR responses approximately aligned with that canal’s anatomic axis. Targeting multiple canals yielded responses aligned with a vector sum of individual responses. Over 350–812 days of continuous 24 h/d use, modulated electrical stimulation produced stable VOR responses that grew with stimulus intensity and aligned approximately with any specified 3D head rotation axis.CONCLUSION These results demonstrate that a vestibular implant can selectively, continuously, and chronically provide artificial sensory input to all 3 implanted semicircular canals in individuals disabled by bilateral vestibular loss, driving reflexive VOR eye movements that approximately align in 3D with the head motion axis encoded by the implant.TRIAL REGISTRATION ClinicalTrials.gov: NCT02725463.FUNDING NIH/National Institute on Deafness and Other Communication Disorders: R01DC013536 and 2T32DC000023; Labyrinth Devices, LLC; and Med-El GmbH.
Peter J. Boutros, Desi P. Schoo, Mehdi Rahman, Nicolas S. Valentin, Margaret R. Chow, Andrianna I. Ayiotis, Brian J. Morris, Andreas Hofner, Aitor Morillo Rascon, Andreas Marx, Ross Deas, Gene Y. Fridman, Natan S. Davidovics, Bryan K. Ward, Carolina Treviño, Stephen P. Bowditch, Dale C. Roberts, Kelly E. Lane, Yoav Gimmon, Michael C. Schubert, John P. Carey, Andreas Jaeger, Charles C. Della Santina
Mutations in B cell lymphoma 2–associated athanogene 3 (BAG3) are recurrently associated with dilated cardiomyopathy (DCM) and muscular dystrophy. Using isogenic genome-edited human induced pluripotent stem cell–derived cardiomyocytes (iPSC-CMs), we examined how a DCM-causing BAG3 mutation (R477H), as well as complete loss of BAG3 (KO), impacts myofibrillar organization and chaperone networks. Although unchanged at baseline, fiber length and alignment declined markedly in R477H and KO iPSC-CMs following proteasome inhibition. RNA sequencing revealed extensive baseline changes in chaperone- and stress response protein–encoding genes, and protein levels of key BAG3 binding partners were perturbed. Molecular dynamics simulations of the BAG3-HSC70 complex predicted a partial disengagement by the R477H mutation. In line with this, BAG3-R477H bound less HSC70 than BAG3-WT in coimmunoprecipitation assays. Finally, myofibrillar disarray triggered by proteasome inhibition in R477H cells was mitigated by overexpression of the stress response protein heat shock factor 1 (HSF1). These studies reveal the importance of BAG3 in coordinating protein quality control subsystem usage within the cardiomyocyte and suggest that augmenting HSF1 activity might be beneficial as a means to mitigate proteostatic stress in the context of BAG3-associated DCM.
Chris McDermott-Roe, Wenjian Lv, Tania Maximova, Shogo Wada, John Bukowy, Maribel Marquez, Shuping Lai, Amarda Shehu, Ivor Benjamin, Aron Geurts, Kiran Musunuru
Thymic stromal lymphopoietin (TSLP) is a cytokine mainly released by epithelial cells that plays important roles in inflammation, autoimmune disease, and cancer. While TSLP is expressed in the liver at high levels, the role of TSLP in liver ischemia/reperfusion (I/R) injury remains unknown. Experiments were carried out to determine the role of TSLP in liver I/R injury. Wild-type (WT) and TSLP receptor–knockout (TSLPR–/–) mice were subjected to liver partial warm I/R injury. Liver injury was assessed by measuring serum alanine aminotransferase (ALT) level, necrotic areas by liver histology, hepatocyte death, and local hepatic inflammatory responses. Signal pathways were explored in vivo and in vitro to identify possible mechanisms for TSLP in I/R injury. TSLP and TSLPR protein expression increased during liver I/R in vivo and following hepatocyte hypoxia/reoxygenation in vitro. Deletion of TSLPR or neutralization of TSLP with anti-TSLP antibody exacerbated liver injury in terms of serum ALT levels as well as necrotic areas in liver histology. Administration of exogenous recombinant mouse TSLP to WT mice significantly reduced liver damage compared with controls, but failed to prevent I/R injury in TSLPR–/– mice. TSLP induced autophagy in hepatocytes during liver I/R injury. Mechanistically, Akt was activated in WT mice during liver I/R injury. The opposite results were observed in TSLPR–/– mice. In addition, TSLP could directly induce Akt activation in hepatocytes independent of nonparenchymal cells in vitro. Furthermore, the Akt agonist, insulin-like growth factor-1 (IGF-1), prevented I/R injury in TSLPR–/– mice and an Akt inhibitor, LY294002, blocked the protective effects of TSLP in WT mice subjected to I/R. Our data indicate that TSLP protects against liver I/R injury via activation of the PI3K/Akt pathway. Through this pathway, TSLP induces autophagy in hepatocytes. Thus, TSLP is a potent inhibitor of stress-induced hepatocyte necrosis.
Shilai Li, Zhongjie Yi, Meihong Deng, Melanie J. Scott, Chenxuan Yang, Wenbo Li, Zhao Lei, Nicole M. Santerre, Patricia Loughran, Timothy R. Billiar
Broadly neutralizing Abs targeting the HA stem can provide broad protection against different influenza subtypes, raising the question of how best to elicit such Abs. We have previously demonstrated that vaccination with pandemic live-attenuated influenza vaccine (pLAIV) establishes immune memory for HA head-specific Abs. Here, we determine the extent to which matched versus mismatched LAIV-inactivated subunit vaccine (IIV) prime-boost vaccination elicits stem-specific memory B cells and Abs. We vaccinated African green monkeys with H5N1 pLAIV-pIIV or H5N1 pLAIV followed by seasonal IIV (sIIV) or with H5N1 pLAIV alone and measured Abs and HA-specific B cell responses. While we observed an increase in stem-specific memory B cells, head-specific memory B cell responses were substantially higher than stem-specific responses and were dominant even following boost with mismatched IIV. Neutralizing Abs against heterologous influenza viruses were undetectable. Head-specific B cells from draining lymph nodes exhibited germinal center markers, while stem-specific B cells found in the spleen and peripheral blood did not. Thus, although mismatched prime-boost generated a pool of stem-specific memory B cells, head-specific B cells and serum Abs substantially dominated the immune response. These findings have implications for including full-length native HA in prime-boost strategies intended to induce stem-specific Abs for universal influenza vaccination.
Sinthujan Jegaskanda, Sarah F. Andrews, Adam K. Wheatley, Jonathan W. Yewdell, Adrian B. McDermott, Kanta Subbarao
Dysregulated citrullination, a unique form of posttranslational modification catalyzed by the peptidylarginine deiminases (PADs), has been observed in several human diseases, including rheumatoid arthritis. However, the physiological roles of PADs in the immune system are still poorly understood. Here, we report that global inhibition of citrullination enhances the differentiation of type 2 helper T (Th2) cells but attenuates the differentiation of Th17 cells, thereby increasing the susceptibility to allergic airway inflammation. This effect on Th cells is due to inhibition of PAD2 but not PAD4. Mechanistically, PAD2 directly citrullinates GATA3 and RORγt, 2 key transcription factors determining the fate of differentiating Th cells. Citrullination of R330 of GATA3 weakens its DNA binding ability, whereas citrullination of 4 arginine residues of RORγt strengthens its DNA binding. Finally, PAD2-deficient mice also display altered Th2/Th17 immune response and heightened sensitivity to allergic airway inflammation. Thus, our data highlight the potential and caveat of PAD2 as a therapeutic target of Th cell–mediated diseases.
Bo Sun, Hui-Hsin Chang, Ari Salinger, Beverly Tomita, Mandar Bawadekar, Caitlyn L. Holmes, Miriam A. Shelef, Eranthie Weerapana, Paul R. Thompson, I-Cheng Ho
Anemia of β-thalassemia is caused by ineffective erythropoiesis and reduced red cell survival. Several lines of evidence indicate that iron/heme restriction is a potential therapeutic strategy for the disease. Glycine is a key initial substrate for heme and globin synthesis. We provide evidence that bitopertin, a glycine transport inhibitor administered orally, improves anemia, reduces hemolysis, diminishes ineffective erythropoiesis, and increases red cell survival in a mouse model of β-thalassemia (Hbbth3/+ mice). Bitopertin ameliorates erythroid oxidant damage, as indicated by a reduction in membrane-associated free α-globin chain aggregates, in reactive oxygen species cellular content, in membrane-bound hemichromes, and in heme-regulated inhibitor activation and eIF2α phosphorylation. The improvement of β-thalassemic ineffective erythropoiesis is associated with diminished mTOR activation and Rab5, Lamp1, and p62 accumulation, indicating an improved autophagy. Bitopertin also upregulates liver hepcidin and diminishes liver iron overload. The hematologic improvements achieved by bitopertin are blunted by the concomitant administration of the iron chelator deferiprone, suggesting that an excessive restriction of iron availability might negate the beneficial effects of bitopertin. These data provide important and clinically relevant insights into glycine restriction and reduced heme synthesis strategies for the treatment of β-thalassemia.
Alessandro Matte, Enrica Federti, Michael Winter, Annette Koerner, Anja Harmeier, Norman Mazer, Tomas Tomka, Maria Luisa Di Paolo, Luigia De Falco, Immacolata Andolfo, Elisabetta Beneduce, Achille Iolascon, Alejandra Macias-Garcia, Jane-Jane Chen, Anne Janin, Christhophe Lebouef, Franco Turrini, Carlo Brugnara, Lucia De Franceschi
Glomerular disease is characterized by proteinuria and glomerulosclerosis, two pathologic features caused by podocyte injury and mesangial cell activation, respectively. However, whether these two events are linked remains elusive. Here, we report that sonic hedgehog (Shh) is the mediator that connects podocyte damage to mesangial activation and glomerulosclerosis. Shh was induced in glomerular podocytes in various models of proteinuric chronic kidney diseases (CKD). However, mesangial cells in the glomeruli, but not podocytes, responded to hedgehog ligand. In vitro, Shh was induced in podocytes after injury and selectively promoted mesangial cell activation and proliferation. In a miniorgan culture of isolated glomeruli, Shh promoted mesangial activation but did not affect the integrity of podocytes. Podocyte-specific ablation of Shh in vivo exhibited no effect on proteinuria after adriamycin injection but hampered mesangial activation and glomerulosclerosis. Consistently, pharmacologic blockade of Shh signaling decoupled proteinuria from glomerulosclerosis. In humans, Shh was upregulated in glomerular podocytes in patients with CKD and its circulating level was associated with glomerulosclerosis but not proteinuria. These studies demonstrate that Shh mechanistically links podocyte injury to mesangial activation in the pathogenesis of glomerular diseases. Our findings also illustrate a crucial role for podocyte-mesangial communication in connecting proteinuria to glomerulosclerosis.
Dong Zhou, Haiyan Fu, Yang Han, Lu Zhang, Shijia Liu, Lin Lin, Donna B. Stolz, Youhua Liu
The ciliopathies are a group of phenotypically overlapping disorders caused by structural or functional defects in the primary cilium. Although disruption of numerous signaling pathways and cellular trafficking events have been implicated in ciliary pathology, treatment options for affected individuals remain limited. Here, we performed a genome-wide RNAi (RNA interference) screen to identify genetic suppressors of BBS4, one of the genes mutated in Bardet-Biedl syndrome (BBS). We discovered 10 genes that, when silenced, ameliorate BBS4-dependent pathology. One of these encodes USP35, a negative regulator of the ubiquitin proteasome system, suggesting that inhibition of a deubiquitinase, and subsequent facilitation of the clearance of signaling components, might ameliorate BBS-relevant phenotypes. Testing of this hypothesis in transient and stable zebrafish genetic models showed this posit to be true; suppression or ablation of usp35 ameliorated hallmark ciliopathy defects including impaired convergent extension (CE), renal tubule convolution, and retinal degeneration with concomitant clearance of effectors such as β-catenin and rhodopsin. Together, our findings reinforce a direct link between proteasome-dependent degradation and ciliopathies and suggest that augmentation of this system might offer a rational path to novel therapeutic modalities.
I-Chun Tsai, Kevin A. Adams, Joyce A. Tzeng, Omar Shennib, Perciliz L. Tan, Nicholas Katsanis
BACKGROUND Myeloid-derived suppressor cells (MDSCs) are elevated in the circulation of patients with glioblastoma (GBM), present in tumor tissue, and associated with poor prognosis. While low-dose chemotherapy reduces MDSCs in preclinical models, the use of this strategy to reduce MDSCs in GBM patients has yet to be evaluated.METHODS A phase 0/I dose-escalation clinical trial was conducted in patients with recurrent GBM treated 5–7 days before surgery with low-dose chemotherapy via capecitabine, followed by concomitant low-dose capecitabine and bevacizumab. Clinical outcomes, including progression-free and overall survival, were measured, along with safety and toxicity profiles. Over the treatment time course, circulating MDSC levels were measured by multiparameter flow cytometry, and tumor tissue immune profiles were assessed via time-of-flight mass cytometry.RESULTS Eleven patients total were enrolled across escalating dose cohorts of 150, 300, and 450 mg bid. No serious adverse events related to the drug combination were observed. Compared with pretreatment baseline, circulating MDSCs were found to be higher after surgery in the 150-mg treatment arm and lower in the 300-mg and 450-mg treatment arms. Increased cytotoxic immune infiltration was observed after low-dose capecitabine compared with untreated GBM patients in the 300-mg and 450-mg treatment arms.CONCLUSIONS Low-dose, metronomic capecitabine in combination with bevacizumab was well tolerated in GBM patients and was associated with a reduction in circulating MDSC levels and an increase in cytotoxic immune infiltration into the tumor microenvironment.TRIAL REGISTRATION ClinicalTrials.gov NCT02669173.FUNDING This research was funded by the Cleveland Clinic, Case Comprehensive Cancer Center, the Musella Foundation, B*CURED, the NIH, the National Cancer Institute, the Sontag Foundation, Blast GBM, the James B. Pendleton Charitable Trust, and the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation. Capecitabine was provided in kind by Mylan Pharmaceuticals.
David M. Peereboom, Tyler J. Alban, Matthew M. Grabowski, Alvaro G. Alvarado, Balint Otvos, Defne Bayik, Gustavo Roversi, Mary McGraw, Pengjing Huang, Alireza M. Mohammadi, Harley I. Kornblum, Tomas Radivoyevitch, Manmeet S. Ahluwalia, Michael A. Vogelbaum, Justin D. Lathia
The transcriptional activator IκBζ is a key regulator of psoriasis, but which cells mediate its pathogenic effect remains unknown. Here we found that IκBζ expression in keratinocytes triggers not only skin lesions but also systemic inflammation in mouse psoriasis models. Specific depletion of IκBζ in keratinocytes was sufficient to suppress the induction of imiquimod- or IL-36–mediated psoriasis. Moreover, IκBζ ablation in keratinocytes prevented the onset of psoriatic lesions and systemic inflammation in keratinocyte-specific IL-17A–transgenic mice. Mechanistically, this psoriasis protection was mediated by IκBζ deficiency in keratinocytes abrogating the induction of specific proinflammatory target genes, including Cxcl5, Cxcl2, Csf2, and Csf3, in response to IL-17A or IL-36. These IκBζ-dependent genes trigger the generation and recruitment of neutrophils and monocytes that are needed for skin inflammation. Consequently, our data uncover a surprisingly pivotal role of keratinocytes and keratinocyte-derived IκBζ as key mediators of psoriasis and psoriasis-related systemic inflammation.
Sebastian Lorscheid, Anne Müller, Jessica Löffler, Claudia Resch, Philip Bucher, Florian C. Kurschus, Ari Waisman, Knut Schäkel, Stephan Hailfinger, Klaus Schulze-Osthoff, Daniela Kramer
Aging is a major risk factor for cardiovascular disease. Although the impact of aging has been extensively studied, little is known regarding the aging processes in cells of the heart. Here we analyzed the transcriptomes of hearts of 12-week-old and 18-month-old mice by single-nucleus RNA-sequencing. Among all cell types, aged fibroblasts showed most significant differential gene expression, increased RNA dynamics, and network entropy. Aged fibroblasts exhibited significantly changed expression patterns of inflammatory, extracellular matrix organization angiogenesis, and osteogenic genes. Functional analyses indicated deterioration of paracrine signatures between fibroblasts and endothelial cells in old hearts. Aged heart-derived fibroblasts had impaired endothelial cell angiogenesis and autophagy and augmented proinflammatory response. In particular, expression of Serpine1 and Serpine2 were significantly increased and secreted by old fibroblasts to exert antiangiogenic effects on endothelial cells, an effect that could be significantly prevented by using neutralizing antibodies. Moreover, we found an enlarged subpopulation of aged fibroblasts expressing osteoblast genes in the epicardial layer associated with increased calcification. Taken together this study provides system-wide insights and identifies molecular changes of aging cardiac fibroblasts, which may contribute to declined heart function.
Ramon Vidal, Julian Uwe Gabriel Wagner, Caroline Braeuning, Cornelius Fischer, Ralph Patrick, Lukas Tombor, Marion Muhly-Reinholz, David John, Magdalena Kliem, Thomas Conrad, Nuno Guimarães-Camboa, Richard Harvey, Stefanie Dimmeler, Sascha Sauer
Previous work has reported the important links between cellular bioenergetics and the development of chronic kidney disease, highlighting the potential for targeting metabolic functions to regulate disease progression. More recently, it has been shown that alterations in fatty acid oxidation (FAO) can have an important impact on the progression of kidney disease. In this work, we demonstrate that loss of miR-33, an important regulator of lipid metabolism, can partially prevent the repression of FAO in fibrotic kidneys and reduce lipid accumulation. These changes were associated with a dramatic reduction in the extent of fibrosis induced in 2 mouse models of kidney disease. These effects were not related to changes in circulating leukocytes because bone marrow transplants from miR-33–deficient animals did not have a similar impact on disease progression. Most important, targeted delivery of miR-33 peptide nucleic acid inhibitors to the kidney and other acidic microenvironments was accomplished using pH low insertion peptides as a carrier. This was effective at both increasing the expression of factors involved in FAO and reducing the development of fibrosis. Together, these findings suggest that miR-33 may be an attractive therapeutic target for the treatment of chronic kidney disease.
Nathan L. Price, Verónica Miguel, Wen Ding, Abhishek K. Singh, Shipra Malik, Noemi Rotllan, Anna Moshnikova, Jakub Toczek, Caroline Zeiss, Mehran M. Sadeghi, Noemi Arias, Ángel Baldán, Oleg A. Andreev, Diego Rodríguez-Puyol, Raman Bahal, Yana K. Reshetnyak, Yajaira Suárez, Carlos Fernández-Hernando, Santiago Lamas
BACKGROUND IL-33, found in high levels in participants with allergic disorders, is thought to mediate allergic reactions. Etokimab, an anti–IL-33 biologic, has previously demonstrated a good safety profile and favorable pharmacodynamic properties in many clinical studies.METHODS In this 6-week placebo-controlled phase 2a study, we evaluated the safety and the ability of a single dose of etokimab to desensitize peanut-allergic adults. Participants received either etokimab (n = 15) or blinded placebo (n = 5). Clinical tests included oral food challenges and skin prick tests at days 15 and 45. Blood samples were collected for IgE levels and measurement of ex vivo peanut-stimulated T cell cytokine production.RESULTS Efficacy measurements for active vs. placebo participants at the day 15 and 45 food challenge (tolerating a cumulative 275 mg of peanut protein, which was the food challenge outcome defined in this paper) demonstrated, respectively, 73% vs. 0% (P = 0.008) to 57% vs. 0% (ns). The etokimab group had fewer adverse events compared with placebo. IL-4, IL-5, IL-9, IL-13, and ST2 levels in CD4+ T cells were reduced in the active vs. placebo arm upon peanut-induced T cell activation (P = 0.036 for IL-13 and IL-9 at day 15), and peanut-specific IgE was reduced in active vs. placebo (P = 0.014 at day 15).CONCLUSION The phase 2a results suggest etokimab is safe and well tolerated and that a single dose of etokimab could have the potential to desensitize peanut-allergic participants and possibly reduce atopy-related adverse events.TRIAL REGISTRATION ClinicalTrials.gov NCT02920021.FUNDING This work was supported by NIH grant R01AI140134, AnaptysBio, the Hartman Vaccine Fund, and the Sean N. Parker Center for Allergy and Asthma Research at Stanford University.
Sharon Chinthrajah, Shu Cao, Cherie Liu, Shu-Chen Lyu, Sayantani B. Sindher, Andrew Long, Vanitha Sampath, Daniel Petroni, Marco Londei, Kari C. Nadeau
To develop a systems biology model of fibrosis progression within the human lung we performed RNA sequencing and microRNA analysis on 95 samples obtained from 10 idiopathic pulmonary fibrosis (IPF) and 6 control lungs. Extent of fibrosis in each sample was assessed by microCT-measured alveolar surface density (ASD) and confirmed by histology. Regulatory gene expression networks were identified using linear mixed-effect models and dynamic regulatory events miner (DREM). Differential gene expression analysis identified a core set of genes increased or decreased before fibrosis was histologically evident that continued to change with advanced fibrosis. DREM generated a systems biology model (www.sb.cs.cmu.edu/IPFReg) that identified progressively divergent gene expression tracks with microRNAs and transcription factors that specifically regulate mild or advanced fibrosis. We confirmed model predictions by demonstrating that expression of POU2AF1, previously unassociated with lung fibrosis but proposed by the model as regulator, is increased in B lymphocytes in IPF lungs and that POU2AF1-knockout mice were protected from bleomycin-induced lung fibrosis. Our results reveal distinct regulation of gene expression changes in IPF tissue that remained structurally normal compared with moderate or advanced fibrosis and suggest distinct regulatory mechanisms for each stage.
John E. McDonough, Farida Ahangari, Qin Li, Siddhartha Jain, Stijn E. Verleden, Jose Herazo-Maya, Milica Vukmirovic, Giuseppe DeIuliis, Argyrios Tzouvelekis, Naoya Tanabe, Fanny Chu, Xiting Yan, Johny Verschakelen, Robert J. Homer, Dimitris V. Manatakis, Junke Zhang, Jun Ding, Karen Maes, Laurens De Sadeleer, Robin Vos, Arne Neyrinck, Panayiotis V. Benos, Ziv Bar-Joseph, Dean Tantin, James C. Hogg, Bart M. Vanaudenaerde, Wim A. Wuyts, Naftali Kaminski
While gene transfer using recombinant adeno-associated viral (rAAV) vectors has shown success in some clinical trials, there remain many tissues that are not well transduced. Because of the recent success in reprogramming islet-derived cells into functional β cells in animal models, we constructed 2 highly complex barcoded replication competent capsid shuffled libraries and selected for high-transducing variants on primary human islets. We describe the generation of a chimeric AAV capsid (AAV-KP1) that facilitates transduction of primary human islet cells and human embryonic stem cell–derived β cells with up to 10-fold higher efficiency compared with previously studied best-in-class AAV vectors. Remarkably, this chimeric capsid also enabled transduction of both mouse and human hepatocytes at very high levels in a humanized chimeric mouse model, thus providing a versatile vector that has the potential to be used in both preclinical testing and human clinical trials for liver-based diseases and diabetes.
Katja Pekrun, Gustavo De Alencastro, Qing-Jun Luo, Jun Liu, Youngjin Kim, Sean Nygaard, Feorillo Galivo, Feijie Zhang, Ren Song, Matthew R. Tiffany, Jianpeng Xu, Matthias Hebrok, Markus Grompe, Mark A. Kay
Mammalian focal adhesion proteins Pinch1 and Pinch2 regulate integrin activation and cell–extracellular matrix adhesion and migration. Here, we show that deleting Pinch1 in osteocytes and mature osteoblasts using the 10-kb mouse Dmp1-Cre and Pinch2 globally (double KO; dKO) results in severe osteopenia throughout life, while ablating either gene does not cause bone loss, suggesting a functional redundancy of both factors in bone. Pinch deletion in osteocytes and mature osteoblasts generates signals that inhibit osteoblast and bone formation. Pinch-deficient osteocytes and conditioned media from dKO bone slice cultures contain abundant sclerostin protein and potently suppress osteoblast differentiation in primary BM stromal cells (BMSC) and calvarial cultures. Pinch deletion increases adiposity in the BM cavity. Primary dKO BMSC cultures display decreased osteoblastic but enhanced adipogenic, differentiation capacity. Pinch loss decreases expression of integrin β3, integrin-linked kinase (ILK), and α-parvin and increases that of active caspase-3 and -8 in osteocytes. Pinch loss increases osteocyte apoptosis in vitro and in bone. Pinch loss upregulates expression of both Rankl and Opg in the cortical bone and does not increase osteoclast formation and bone resorption. Finally, Pinch ablation exacerbates hindlimb unloading–induced bone loss and impairs active ulna loading–stimulated bone formation. Thus, we establish a critical role of Pinch in control of bone homeostasis.
Yishu Wang, Qinnan Yan, Yiran Zhao, Xin Liu, Simin Lin, Peijun Zhang, Liting Ma, Yumei Lai, Xiaochun Bai, Chuanju Liu, Chuanyue Wu, Jian Q. Feng, Di Chen, Huiling Cao, Guozhi Xiao
BACKGROUND Innate immune activation impacts lung transplant outcomes. Dectin-1 is an innate receptor important for pathogen recognition. We hypothesized that genotypes reducing dectin-1 activity would be associated with infection, graft dysfunction, and death in lung transplant recipients.METHODS We assessed the rs16910526 CLEC7A gene polymorphism Y238X, which results in dectin-1 truncation, in 321 lung allograft recipients at a single institution and in 1,129 lung allograft recipients in the multicenter Lung Transplant Outcomes Group (LTOG) cohort. Differences in dectin-1 mRNA, cytokines, protein levels, immunophenotypes, and clinical factors were assessed.RESULTS Y238X carriers had decreased dectin-1 mRNA expression (P = 0.0001), decreased soluble dectin-1 protein concentrations in bronchoalveolar lavage (P = 0.008) and plasma (P = 0.04), and decreased monocyte surface dectin-1 (P = 0.01) compared with wild-type subjects. Y238X carriers had an increased risk of fungal pathogens (HR 1.17, CI 1.0–1.4), an increased risk of graft dysfunction or death (HR 1.6, CI 1.0–2.6), as well increased mortality in the UCSF cohort (HR 1.8, CI 1.1–3.8) and in the LTOG cohort (HR 1.3, CI 1.1–1.6), compared with wild-type CLEC7A subjects.CONCLUSION Increased rates of graft dysfunction and death associated with this dectin-1 polymorphism may be amplified by immunosuppression that drives higher fungal burden from compromised pathogen recognition.FUNDING The UCSF Nina Ireland Program for Lung Health Innovative Grant program, the Clinical Sciences Research & Development Service of the VA Office of Research and Development, and the Joel D. Cooper Career Development Award from the International Society for Heart and Lung Transplantation.
Daniel R. Calabrese, Ping Wang, Tiffany Chong, Jonathan Hoover, Jonathan P. Singer, Dara Torgerson, Steven R. Hays, Jeffrey A. Golden, Jasleen Kukreja, Daniel Dugger, Jason D. Christie, LTOG investigators, John R. Greenland