In this issue of JCI Insight, Li et al. demonstrate amelioration of lupus-related pathology in mice with established disease following delivery of the DNA methyltransferase inhibitor 5-azacytidine to either CD4+ or CD8+ T cells using a nanolipogel delivery system. The cover image shows MASSON staining of the kidney of a lupus-prone MRL/lpr mouse after treatment with nanolipogel-5-azacytidine targeted to CD8+ cells.
The ability to image tissue morphogenesis in real-time and in 3-dimensions (3-D) remains an optical challenge. The advent of light-sheet fluorescence microscopy (LSFM) has advanced developmental biology and tissue regeneration research. In this review, we introduce a LSFM system in which the illumination lens reshapes a thin light-sheet to rapidly scan across a sample of interest while the detection lens orthogonally collects the imaging data. This multiscale strategy provides deep-tissue penetration, high-spatiotemporal resolution, and minimal photobleaching and phototoxicity, allowing in vivo visualization of a variety of tissues and processes, ranging from developing hearts in live zebrafish embryos to ex vivo interrogation of the microarchitecture of optically cleared neonatal hearts. Here, we highlight multiple applications of LSFM and discuss several studies that have allowed better characterization of developmental and pathological processes in multiple models and tissues. These findings demonstrate the capacity of multiscale light-sheet imaging to uncover cardiovascular developmental and regenerative phenomena.
Yichen Ding, Jianguo Ma, Adam D. Langenbacher, Kyung In Baek, Juhyun Lee, Chih-Chiang Chang, Jeffrey J. Hsu, Rajan P. Kulkarni, John Belperio, Wei Shi, Sara Ranjbarvaziri, Reza Ardehali, Yin Tintut, Linda L. Demer, Jau-Nian Chen, Peng Fei, René R. Sevag Packard, Tzung K. Hsiai
Airway smooth muscle (ASM) is a dynamic and complex tissue involved in regulation of bronchomotor tone, but the molecular events essential for the maintenance of ASM homeostasis are not well understood. Observational and genome-wide association studies in humans have linked airway function to the nutritional status of vitamin A and its bioactive metabolite retinoic acid (RA). Here, we provide evidence that ongoing RA signaling is critical for the regulation of adult ASM phenotype. By using dietary, pharmacologic, and genetic models in mice and humans, we show that (a) RA signaling is active in adult ASM in the normal lung, (b) RA-deficient ASM cells are hypertrophic, hypercontractile, profibrotic, but not hyperproliferative, (c) TGF-β signaling, known to cause ASM hypertrophy and airway fibrosis in human obstructive lung diseases, is hyperactivated in RA-deficient ASM, (d) pharmacologic and genetic inhibition of the TGF-β activity in ASM prevents the development of the aberrant phenotype induced by RA deficiency, and (e) the consequences of transient RA deficiency in ASM are long-lasting. These results indicate that RA signaling actively maintains adult ASM homeostasis, and disruption of RA signaling leads to aberrant ASM phenotypes similar to those seen in human chronic airway diseases such as asthma.
Felicia Chen, Fengzhi Shao, Anne Hinds, Sean Yao, Sumati Ram-Mohan, Timothy A. Norman, Ramaswamy Krishnan, Alan Fine
Acute respiratory distress syndrome (ARDS) is characterized by an excessive pulmonary inflammatory response. Removal of excess cholesterol from the plasma membrane of inflammatory cells helps reduce their activation. The secreted apolipoprotein A-I binding protein (AIBP) has been shown to augment cholesterol efflux from endothelial cells to the plasma lipoprotein HDL. Here, we find that AIBP was expressed in inflammatory cells in the human lung and was secreted into the bronchoalveolar space in mice subjected to inhalation of LPS. AIBP bound surfactant protein B and increased cholesterol efflux from alveolar macrophages to calfactant, a therapeutic surfactant formulation. In vitro, AIBP in the presence of surfactant reduced LPS-induced p65, ERK1/2 and p38 phosphorylation, and IL-6 secretion by alveolar macrophages. In vivo, inhalation of AIBP significantly reduced LPS-induced airspace neutrophilia, alveolar capillary leak, and secretion of IL-6. These results suggest that, similar to HDL in plasma, surfactant serves as a cholesterol acceptor in the lung. Furthermore, lung injury increases pulmonary AIBP expression, which likely serves to promote cholesterol efflux to surfactant and reduce inflammation.
Soo-Ho Choi, Aaron M. Wallace, Dina A. Schneider, Elianne Burg, Jungsu Kim, Elena Alekseeva, Niki D.J. Ubags, Carlyne D. Cool, Longhou Fang, Benjamin T. Suratt, Yury I. Miller
The hepatic glucose fasting response is gaining traction as a therapeutic pathway to enhance hepatic and whole-host metabolism. However, the mechanisms underlying these metabolic effects remain unclear. Here, we demonstrate the epidermal-type lipoxygenase, eLOX3 (encoded by its gene, Aloxe3), is a potentially novel effector of the therapeutic fasting response. We show that Aloxe3 is activated during fasting, glucose withdrawal, or trehalose/trehalose analogue treatment. Hepatocyte-specific Aloxe3 expression reduced weight gain and hepatic steatosis in diet-induced and genetically obese (db/db) mouse models. Aloxe3 expression, moreover, enhanced basal thermogenesis and abrogated insulin resistance in db/db diabetic mice. Targeted metabolomics demonstrated accumulation of the PPARγ ligand 12-KETE in hepatocytes overexpressing Aloxe3. Strikingly, PPARγ inhibition reversed hepatic Aloxe3–mediated insulin sensitization, suppression of hepatocellular ATP production and oxygen consumption, and gene induction of PPARγ coactivator-1α (PGC1α) expression. Moreover, hepatocyte-specific PPARγ deletion reversed the therapeutic effect of hepatic Aloxe3 expression on diet-induced insulin intolerance. Aloxe3 is, therefore, a potentially novel effector of the hepatocellular fasting response that leverages both PPARγ-mediated and pleiotropic effects to augment hepatic and whole-host metabolism, and it is, thus, a promising target to ameliorate metabolic disease.
Cassandra B. Higgins, Yiming Zhang, Allyson L. Mayer, Hideji Fujiwara, Alicyn I. Stothard, Mark J. Graham, Benjamin M. Swarts, Brian J. DeBosch
Defective DNA methylation in T cells leads to a series of T cell abnormalities in lupus; however, the full effect of T cell lineage–specific DNA methylation on disease expression has not been explored. Here, we show that 5-azacytidine, a DNA methyltransferase inhibitor, targeted to either CD4 or CD8 T cells in mice with established disease using a nanolipogel delivery system dramatically ameliorates lupus-related pathology through distinct mechanisms. In vivo targeted delivery of 5-azacytidine into CD4 T cells favors the expansion and function of Foxp3+ Tregs, whereas targeted delivery to CD8 T cells enhances the cytotoxicity and restrains the expansion of pathogenic TCR-αβ+CD4–CD8– double-negative T cells. Our results signify the importance of cell-specific inhibition of DNA methylation in the treatment of established lupus.
Hao Li, Maria G. Tsokos, Sean Bickerton, Amir Sharabi, Yi Li, Vaishali R. Moulton, Philip Kong, Tarek M. Fahmy, George C. Tsokos
Inhibiting MAPK14 (p38α) diminishes cardiac damage in myocardial ischemia. During myocardial ischemia, p38α interacts with TAB1, a scaffold protein, which promotes p38α autoactivation; active p38α (pp38α) then transphosphorylates TAB1. Previously, we solved the X-ray structure of the p38α-TAB1 (residues 384–412) complex. Here, we further characterize the interaction by solving the structure of the pp38α-TAB1 (residues 1–438) complex in the active state. Based on this information, we created a global knock-in (KI) mouse with substitution of 4 residues on TAB1 that we show are required for docking onto p38α. Whereas ablating p38α or TAB1 resulted in early embryonal lethality, the TAB1-KI mice were viable and had no appreciable alteration in their lymphocyte repertoire or myocardial transcriptional profile; nonetheless, following in vivo regional myocardial ischemia, infarction volume was significantly reduced and the transphosphorylation of TAB1 was disabled. Unexpectedly, the activation of myocardial p38α during ischemia was only mildly attenuated in TAB1-KI hearts. We also identified a group of fragments able to disrupt the interaction between p38α and TAB1. We conclude that the interaction between the 2 proteins can be targeted with small molecules. The data reveal that it is possible to selectively inhibit signaling downstream of p38α to attenuate ischemic injury.
Gian F. De Nicola, Rekha Bassi, Charlie Nichols, Mariana Fernandez-Caggiano, Pelin Arabacilar Golforoush, Dibesh Thapa, Rhys Anderson, Eva Denise Martin, Sharwari Verma, Jens Kleinjung, Adam Laing, Jonathan P. Hutchinson, Philip Eaton, James Clark, Michael S. Marber
Wilms’ tumor 1 (WT1) is a critical transcriptional regulator of mesothelial cells during lung development but is downregulated in postnatal stages and adult lungs. We recently showed that WT1 is upregulated in both mesothelial cells and mesenchymal cells in the pathogenesis of idiopathic pulmonary fibrosis (IPF), a fatal fibrotic lung disease. Although WT1-positive cell accumulation leading to severe fibrotic lung disease has been studied, the role of WT1 in fibroblast activation and pulmonary fibrosis remains elusive. Here, we show that WT1 functions as a positive regulator of fibroblast activation, including fibroproliferation, myofibroblast transformation, and extracellular matrix (ECM) production. Chromatin immunoprecipitation experiments indicate that WT1 binds directly to the promoter DNA sequence of α-smooth muscle actin (αSMA) to induce myofibroblast transformation. In support, the genetic lineage tracing identifies WT1 as a key driver of mesothelial-to-myofibroblast and fibroblast-to-myofibroblast transformation. Importantly, the partial loss of WT1 was sufficient to attenuate myofibroblast accumulation and pulmonary fibrosis in vivo. Further, our coculture studies show that WT1 upregulation leads to non–cell autonomous effects on neighboring cells. Thus, our data uncovered a pathogenic role of WT1 in IPF by promoting fibroblast activation in the peripheral areas of the lung and as a target for therapeutic intervention.
Vishwaraj Sontake, Rajesh K. Kasam, Debora Sinner, Thomas R. Korfhagen, Geereddy B. Reddy, Eric S. White, Anil G. Jegga, Satish K. Madala
The human adaptive starvation response allows for survival during long-term caloric deprivation. Whether the physiology of starvation is adaptive or maladaptive is context dependent: activation of pathways by caloric restriction may promote longevity, yet in the context of caloric excess, the same pathways may contribute to obesity. Here, we performed plasma metabolite profiling of longitudinally collected samples during a 10-day, 0-calorie fast in humans. We identify classical milestones in adaptive starvation, including the early consumption of gluconeogenic amino acids and the subsequent surge in plasma nonesterified fatty acids that marks the shift from carbohydrate to lipid metabolism, and demonstrate findings, including (a) the preferential release of unsaturated fatty acids and an associated shift in plasma lipid species with high degrees of unsaturation and (b) evidence that acute, starvation-mediated hypoleptinemia may be a driver of the transition from glucose to lipid metabolism in humans.
Matthew L. Steinhauser, Benjamin A. Olenchock, John O’Keefe, Mingyue Lun, Kerry A. Pierce, Hang Lee, Lorena Pantano, Anne Klibanski, Gerald I. Shulman, Clary B. Clish, Pouneh K. Fazeli
Although a subset of clear cell renal cell carcinoma (ccRCC) patients respond to immune checkpoint blockade (ICB), predictors of response remain uncertain. We investigated whether abnormal expression of endogenous retroviruses (ERVs) in tumors is associated with local immune checkpoint activation (ICA) and response to ICB. Twenty potentially immunogenic ERVs (πERVs) were identified in ccRCC in The Cancer Genome Atlas data set, and tumors were stratified into 3 groups based on their expression levels. πERV-high ccRCC tumors showed increased immune infiltration, checkpoint pathway upregulation, and higher CD8+ T cell fraction in infiltrating leukocytes compared with πERV-low ccRCC tumors. Similar results were observed in ER+/HER2− breast, colon, and head and neck squamous cell cancers. ERV expression correlated with expression of genes associated with histone methylation and chromatin regulation, and πERV-high ccRCC was enriched in BAP1 mutant tumors. ERV3-2 expression correlated with ICA in 11 solid cancers, including the 4 named above. In a small retrospective cohort of 24 metastatic ccRCC patients treated with single-agent PD-1/PD-L1 blockade, ERV3-2 expression in tumors was significantly higher in responders compared with nonresponders. Thus, abnormal expression of πERVs is associated with ICA in several solid cancers, including ccRCC, and ERV3-2 expression is associated with response to ICB in ccRCC.
Anshuman Panda, Aguirre A. de Cubas, Mark Stein, Gregory Riedlinger, Joshua Kra, Tina Mayer, Christof C. Smith, Benjamin G. Vincent, Jonathan S. Serody, Kathryn E. Beckermann, Shridar Ganesan, Gyan Bhanot, W. Kimryn Rathmell
Enterovirus D68 (EV-D68) shares biologic features with rhinovirus (RV). In 2014, a nationwide outbreak of EV-D68 was associated with severe asthma-like symptoms. We sought to develop a mouse model of EV-D68 infection and determine the mechanisms underlying airway disease. BALB/c mice were inoculated intranasally with EV-D68 (2014 isolate), RV-A1B, or sham, alone or in combination with anti–IL-17A or house dust mite (HDM) treatment. Like RV-A1B, lung EV-D68 viral RNA peaked 12 hours after infection. EV-D68 induced airway inflammation, expression of cytokines (TNF-α, IL-6, IL-12b, IL-17A, CXCL1, CXCL2, CXCL10, and CCL2), and airway hyperresponsiveness, which were suppressed by anti–IL-17A antibody. Neutrophilic inflammation and airway responsiveness were significantly higher after EV-D68 compared with RV-A1B infection. Flow cytometry showed increased lineage–, NKp46–, RORγt+ IL-17+ILC3s and γδ T cells in the lungs of EV-D68–treated mice compared with those in RV-treated mice. EV-D68 infection of HDM-exposed mice induced additive or synergistic increases in BAL neutrophils and eosinophils and expression of IL-17, CCL11, IL-5, and Muc5AC. Finally, patients from the 2014 epidemic period with EV-D68 showed significantly higher nasopharyngeal IL-17 mRNA levels compared with patients with RV-A infection. EV-D68 infection induces IL-17–dependent airway inflammation and hyperresponsiveness, which is greater than that generated by RV-A1B, consistent with the clinical picture of severe asthma-like symptoms.
Charu Rajput, Mingyuan Han, J. Kelley Bentley, Jing Lei, Tomoko Ishikawa, Qian Wu, Joanna L. Hinde, Amy P. Callear, Terri L. Stillwell, William T. Jackson, Emily T. Martin, Marc B. Hershenson
Alterations in the synthesis and bioavailability of NO are central to the pathogenesis of cardiovascular and metabolic disorders. Although endothelial NO synthase–derived (eNOS-derived) NO affects mitochondrial long-chain fatty acid β-oxidation, the pathophysiological significance of this regulation remains unclear. Accordingly, we determined the contributions of eNOS/NO signaling in the adaptive metabolic responses to fasting and in age-induced metabolic dysfunction. Four-month-old eNOS–/– mice are glucose intolerant and exhibit serum dyslipidemia and decreased capacity to oxidize fatty acids. However, during fasting, eNOS–/– mice redirect acetyl-CoA to ketogenesis to elevate circulating levels of β-hydroxybutyrate similar to wild-type mice. Treatment of 4-month-old eNOS–/– mice with nitrite for 10 days corrected the hypertension and serum hyperlipidemia and normalized the rate of fatty acid oxidation. Fourteen-month-old eNOS–/– mice exhibited metabolic derangements, resulting in reduced utilization of fat to generate energy, lower resting metabolic activity, and diminished physical activity. Seven-month administration of nitrite to eNOS–/– mice reversed the age-dependent metabolic derangements and restored physical activity. While the eNOS/NO signaling is not essential for the metabolic adaptation to fasting, it is critical for regulating systemic metabolic homeostasis in aging. The development of age-dependent metabolic disorder is prevented by low-dose replenishment of bioactive NO.
Margarita Tenopoulou, Paschalis-Thomas Doulias, Kent Nakamoto, Kiara Berrios, Gabriella Zura, Chenxi Li, Michael Faust, Veronika Yakovishina, Perry Evans, Lu Tan, Michael J. Bennett, Nathaniel W. Snyder, William J. Quinn III, Joseph A. Baur, Dmitriy N. Atochin, Paul L. Huang, Harry Ischiropoulos
Evofosfamide (TH-302) is a clinical-stage hypoxia-activated prodrug of a DNA-crosslinking nitrogen mustard that has potential utility for human papillomavirus (HPV) negative head and neck squamous cell carcinoma (HNSCC), in which tumor hypoxia limits treatment outcome. We report the preclinical efficacy, target engagement, preliminary predictive biomarkers and initial clinical activity of evofosfamide for HPV-negative HNSCC. Evofosfamide was assessed in 22 genomically characterized cell lines and 7 cell line–derived xenograft (CDX), patient-derived xenograft (PDX), orthotopic, and syngeneic tumor models. Biomarker analysis used RNA sequencing, whole-exome sequencing, and whole-genome CRISPR knockout screens. Five advanced/metastatic HNSCC patients received evofosfamide monotherapy (480 mg/m2 qw × 3 each month) in a phase 2 study. Evofosfamide was potent and highly selective for hypoxic HNSCC cells. Proliferative rate was a predominant evofosfamide sensitivity determinant and a proliferation metagene correlated with activity in CDX models. Evofosfamide showed efficacy as monotherapy and with radiotherapy in PDX models, augmented CTLA-4 blockade in syngeneic tumors, and reduced hypoxia in nodes disseminated from an orthotopic model. Of 5 advanced HNSCC patients treated with evofosfamide, 2 showed partial responses while 3 had stable disease. In conclusion, evofosfamide shows promising efficacy in aggressive HPV-negative HNSCC, with predictive biomarkers in development to support further clinical evaluation in this indication.
Stephen M.F. Jamieson, Peter Tsai, Maria K. Kondratyev, Pratha Budhani, Arthur Liu, Neil N. Senzer, E. Gabriela Chiorean, Shadia I. Jalal, John J. Nemunaitis, Dennis Kee, Avik Shome, Way W. Wong, Dan Li, Nooriyah Poonawala-Lohani, Purvi M. Kakadia, Nicholas S. Knowlton, Courtney R.H. Lynch, Cho R. Hong, Tet Woo Lee, Reidar A. Grénman, Laura Caporiccio, Trevor D. McKee, Mark Zaidi, Sehrish Butt, Andrew M.J. Macann, Nicholas P. McIvor, John M. Chaplin, Kevin O. Hicks, Stefan K. Bohlander, Bradly G. Wouters, Charles P. Hart, Cristin G. Print, William R. Wilson, Michael A. Curran, Francis W. Hunter
Idiopathic pulmonary fibrosis (IPF) is a devastating fibrotic lung disease of unknown etiology and limited therapeutic options. In this report, we characterize what we believe is a novel CCR10+ epithelial cell population in IPF lungs. There was a significant increase in the percentage of CCR10+ epithelial cells in IPF relative to normal lung explants and their numbers significantly correlated to lung remodeling in humanized NSG mice. Cultured CCR10-enriched IPF epithelial cells promoted IPF lung fibroblast invasion and collagen 1 secretion. Single-cell RNA sequencing analysis showed distinct CCR10+ epithelial cell populations enriched for inflammatory and profibrotic transcripts. Consistently, cultured IPF but not normal epithelial cells induced lung remodeling in humanized NSG mice, where the number of CCR10+ IPF, but not normal, epithelial cells correlated with hydroxyproline concentration in the remodeled NSG lungs. A subset of IPF CCR10hi epithelial cells coexpress EphA3 and ephrin A signaling induces the expression of CCR10 by these cells. Finally, EphA3+CCR10hi epithelial cells induce more consistent lung remodeling in NSG mice relative to EphA3–CCR10lo epithelial cells. Our results suggest that targeting epithelial cells, highly expressing CCR10, may be beneficial in IPF.
David M. Habiel, Milena S. Espindola, Isabelle C. Jones, Ana Lucia Coelho, Barry Stripp, Cory M. Hogaboam
Chronic kidney disease (CKD) leads to decreased sensitivity to the metabolic effects of insulin, contributing to protein energy wasting and muscle atrophy. Targeted metabolomics profiling during hyperinsulinemic-euglycemic insulin clamp testing may help identify aberrant metabolic pathways contributing to insulin resistance in CKD. Using targeted metabolomics profiling, we examined the plasma metabolome in 95 adults without diabetes in the fasted state (58 with CKD, 37 with normal glomerular filtration rate [GFR]) who underwent hyperinsulinemic-euglycemic clamp. We assessed heterogeneity in fasting metabolites and the response to insulin to identify potential metabolic pathways linking CKD with insulin resistance. Baseline differences and effect modification by CKD status on changes with insulin clamp testing were adjusted for confounders. Mean GFR among participants with CKD was 37.3 compared with 89.3 ml/min per 1.73 m2 among controls. Fasted-state differences between CKD and controls included abnormalities in tryptophan metabolism, ubiquinone biosynthesis, and the TCA cycle. Insulin infusion markedly decreased metabolite levels, predominantly amino acids and their metabolites. CKD was associated with attenuated insulin-induced changes in nicotinamide, arachidonic acid, and glutamine/glutamate metabolic pathways. Metabolomics profiling suggests disruption in amino acid metabolism and mitochondrial function as putative manifestations or mechanisms of the impaired anabolic effects of insulin in CKD.
Baback Roshanravan, Leila R. Zelnick, Daniel Djucovic, Haiwei Gu, Jessica A. Alvarez, Thomas R. Ziegler, Jorge L. Gamboa, Kristina Utzschneider, Bryan Kestenbaum, Jonathan Himmelfarb, Steven E. Kahn, Daniel Raftery, Ian H. de Boer
Metastatic medullary thyroid cancer (MTC) is incurable and FDA-approved kinase inhibitors that include oncogenic RET as a target do not result in complete responses. Association studies of human MTCs and murine models suggest that the CDK/RB pathway may be an alternative target. The objective of this study was to determine if CDKs represent therapeutic targets for MTC and to define mechanisms of activity. Using human MTC cells that are either sensitive or resistant to vandetanib, we demonstrate that palbociclib (CDK4/6 inhibitor) is not cytotoxic to MTC cells but that they are highly sensitive to dinaciclib (CDK1/2/5/9 inhibitor) accompanied by reduced CDK9 and RET protein and mRNA levels. CDK9 protein was highly expressed in 83 of 83 human MTCs and array–comparative genomic hybridization had copy number gain in 11 of 30 tumors. RNA sequencing demonstrated that RNA polymerase II–dependent transcription was markedly reduced by dinaciclib. The CDK7 inhibitor THZ1 also demonstrated high potency and reduced RET and CDK9 levels. ChIP-sequencing using H3K27Ac antibody identified a superenhancer in intron 1 of RET. Finally, combined inhibition of dinaciclib with a RET kinase inhibitor was synergistic. In summary, we have identified what we believe is a novel mechanism of RET transcription regulation that potentially can be exploited to improve RET therapeutic targeting.
Anisley Valenciaga, Motoyasu Saji, Lianbo Yu, Xiaoli Zhang, Ceimoani Bumrah, Ayse S. Yilmaz, Christina M. Knippler, Wayne Miles, Thomas J. Giordano, Gilbert J. Cote, Matthew D. Ringel
Although the cause of hypertension among individuals with obesity and insulin resistance is unknown, increased plasma insulin, acting in the kidney to increase sodium reabsorption, has been proposed as a potential mechanism. Insulin may also stimulate glucose uptake, but the contributions of tubular insulin signaling to sodium or glucose transport in the setting of insulin resistance is unknown. To directly study the role of insulin signaling in the kidney, we generated inducible renal tubule–specific insulin receptor–KO mice and used high-fat feeding and mineralocorticoids to model obesity and insulin resistance. Insulin receptor deletion did not alter blood pressure or sodium excretion in mice on a high-fat diet alone, but it mildly attenuated the increase in blood pressure with mineralocorticoid supplementation. Under these conditions, KO mice developed profound glucosuria. Insulin receptor deletion significantly reduced SGLT2 expression and increased urinary glucose excretion and urine flow. These data demonstrate a direct role for insulin receptor–stimulated sodium and glucose transport and a functional interaction of insulin signaling with mineralocorticoids in vivo. These studies uncover a potential mechanistic link between preserved insulin sensitivity and renal glucose handling in obesity and insulin resistance.
Jonathan M. Nizar, Blythe D. Shepard, Vianna T. Vo, Vivek Bhalla
AEP is an age-dependent lysosomal asparaginyl endopeptidase that cleaves numerous substrates including tau and α-synuclein and mediates their pathological roles in neurodegenerative diseases. However, the molecular mechanism regulating this critical protease remains incompletely understood. Here, we show that Akt phosphorylates AEP on residue T322 upon brain-derived neurotrophic factor (BDNF) treatment and triggers its lysosomal translocation and inactivation. When BDNF levels are reduced in neurodegenerative diseases, AEP T322 phosphorylation is attenuated. Consequently, AEP is activated and translocates into the cytoplasm, where it cleaves both tau and α-synuclein. Remarkably, the unphosphorylated T322A mutant increases tau or α-synuclein cleavage by AEP and augments cell death, whereas phosphorylation mimetic T322E mutant represses these effects. Interestingly, viral injection of T322E into Tau P301S mice antagonizes tau N368 cleavage and tau pathologies, rescuing synaptic dysfunction and cognitive deficits. By contrast, viral administration of T322A into young α-SNCA mice elicits α-synuclein N103 cleavage and promotes dopaminergic neuronal loss, facilitating motor defects. Therefore, our findings support the notion that BDNF contributes to the pathogenesis of neurodegenerative diseases by suppressing AEP via Akt phosphorylation.
Zhi-Hao Wang, Wanqiang Wu, Seong Su Kang, Xia Liu, Zhiping Wu, Junmin Peng, Shan Ping Yu, Fredric P. Manfredsson, Ivette M. Sandoval, Xuebo Liu, Jian-Zhi Wang, Keqiang Ye
ER stress in type II alveolar epithelial cells (AECs) is common in idiopathic pulmonary fibrosis (IPF), but the contribution of ER stress to lung fibrosis is poorly understood. We found that mice deficient in C/EBP homologous protein (CHOP), an ER stress–regulated transcription factor, were protected from lung fibrosis and AEC apoptosis in 3 separate models where substantial ER stress was identified. In mice treated with repetitive intratracheal bleomycin, we identified localized hypoxia in type II AECs as a potential mechanism explaining ER stress. To test the role of hypoxia in lung fibrosis, we treated mice with bleomycin, followed by exposure to 14% O2, which exacerbated ER stress and lung fibrosis. Under these experimental conditions, CHOP–/– mice, but not mice with epithelial HIF (HIF1/HIF2) deletion, were protected from AEC apoptosis and fibrosis. In vitro studies revealed that CHOP regulates hypoxia-induced apoptosis in AECs via the inositol-requiring enzyme 1α (IRE1α) and the PKR-like ER kinase (PERK) pathways. In human IPF lungs, CHOP and hypoxia markers were both upregulated in type II AECs, supporting a conclusion that localized hypoxia results in ER stress–induced CHOP expression, thereby augmenting type II AEC apoptosis and potentiating lung fibrosis.
Ankita Burman, Jonathan A. Kropski, Carla L. Calvi, Ana P. Serezani, Bruno D. Pascoalino, Wei Han, Taylor Sherrill, Linda Gleaves, William E. Lawson, Lisa R. Young, Timothy S. Blackwell, Harikrishna Tanjore
Ion channel-controlled cell volume regulation is of fundamental significance to the physiological function of sperm. In addition to volume regulation, LRRC8A-dependent volume-regulated anion channel (VRAC) activity is involved in cell cycle progression, insulin signaling, and cisplatin resistance. Nevertheless, the contribution of LRRC8A and its dependent VRAC activity in the germ cell lineage remain unknown. By utilizing a spontaneous Lrrc8a mouse mutation (c.1325delTG, p.F443*) and genetically engineered mouse models, we demonstrate that LRRC8A-dependent VRAC activity is essential for male germ cell development and fertility. Lrrc8a-null male germ cells undergo progressive degeneration independent of the apoptotic pathway during postnatal testicular development. Lrrc8a-deficient mouse sperm exhibit multiple morphological abnormalities of the flagella (MMAF), a feature commonly observed in the sperm of infertile human patients. Importantly, we identified a human patient with a rare LRRC8A hypomorphic mutation (c.1634G>A, p.Arg545His) possibly linked to Sertoli cell–only syndrome (SCOS), a male sterility disorder characterized by the loss of germ cells. Thus, LRRC8A is a critical factor required for germ cell development and volume regulation in the mouse, and it might serve as a novel diagnostic and therapeutic target for SCOS patients.
Jianqiang Bao, Carlos J. Perez, Jeesun Kim, Huan Zhang, Caitlin J. Murphy, Tewfik Hamidi, Jean Jaubert, Craig D. Platt, Janet Chou, Meichun Deng, Meng-Hua Zhou, Yuying Huang, Héctor Gaitán-Peñas, Jean-Louis Guénet, Kevin Lin, Yue Lu, Taiping Chen, Mark T. Bedford, Sharon Y.R. Dent, John H. Richburg, Raúl Estévez, Hui-Lin Pan, Raif S. Geha, Qinghua Shi, Fernando Benavides
Osteosarcoma (OS), a malignant tumor of bone, kills through aggressive metastatic spread almost exclusively to the lung. Mechanisms driving this tropism for lung tissue remain unknown, though likely invoke specific interactions between tumor cells and other cells within the lung metastatic niche. Aberrant overexpression of ΔNp63 in OS cells directly drives production of IL-6 and CXCL8. All these factors were expressed at higher levels in OS lung metastases than in matched primary tumors from the same patients. Expression in cell lines correlated strongly with lung colonization efficiency in murine xenograft models. Lentivirus-mediated expression endowed poorly metastatic OS cells with increased metastatic capacity. Disruption of IL-6 and CXCL8 signaling using genetic or pharmaceutical inhibitors had minimal effects on tumor cell proliferation in vitro or in vivo, but combination treatment inhibited metastasis across multiple models of metastatic OS. Strong interactions occurred between OS cells and both primary bronchial epithelial cells and bronchial smooth muscle cells that drove feed-forward amplification of IL-6 and CXCL8 production. These results identify IL-6 and CXCL8 as primary mediators of OS lung tropism and suggest pleiotropic, redundant mechanisms by which they might effect metastasis. Combination therapy studies demonstrate proof of concept for targeting these tumor-lung interactions to affect metastatic disease.
Amy C. Gross, Hakan Cam, Doris A. Phelps, Amanda J. Saraf, Hemant K. Bid, Maren Cam, Cheryl A. London, Sarah A. Winget, Michael A. Arnold, Laura Brandolini, Xiaokui Mo, John M. Hinckley, Peter J. Houghton, Ryan D. Roberts
Matthew J. Hartwell, Umut Özbek, Ernst Holler, Anne S. Renteria, Hannah Major-Monfried, Pavan Reddy, Mina Aziz, William J. Hogan, Francis Ayuk, Yvonne A. Efebera, Elizabeth O. Hexner, Udomsak Bunworasate, Muna Qayed, Rainer Ordemann, Matthias Wölfl, Stephan Mielke, Attaphol Pawarode, Yi-Bin Chen, Steven Devine, Andrew C. Harris, Madan Jagasia, Carrie L. Kitko, Mark R. Litzow, Nicolaus Kröger, Franco Locatelli, George Morales, Ryotaro Nakamura, Ran Reshef, Wolf Rösler, Daniela Weber, Kitsada Wudhikarn, Gregory A. Yanik, John E. Levine, James L.M. Ferrara