Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
An atypical form of 60S ribosomal subunit in Diamond-Blackfan anemia linked to RPL17 variants
Florence Fellmann, … , Erica E. Davis, Pierre-Emmanuel Gleizes
Florence Fellmann, … , Erica E. Davis, Pierre-Emmanuel Gleizes
Published August 1, 2024
Citation Information: JCI Insight. 2024;9(17):e172475. https://doi.org/10.1172/jci.insight.172475.
View: Text | PDF
Research Article Genetics Hematology

An atypical form of 60S ribosomal subunit in Diamond-Blackfan anemia linked to RPL17 variants

  • Text
  • PDF
Abstract

Diamond-Blackfan anemia syndrome (DBA) is a ribosomopathy associated with loss-of-function variants in more than 20 ribosomal protein (RP) genes. Here, we report the genetic, functional, and biochemical dissection of 2 multigenerational pedigrees with variants in RPL17, a large ribosomal subunit protein–encoding gene. Affected individuals had clinical features and erythroid proliferation defects consistent with DBA. Further, RPL17/uL22 depletion resulted in anemia and micrognathia in zebrafish larvae, and in vivo complementation studies indicated that RPL17 variants were pathogenic. Lymphoblastoid cell lines (LCLs) derived from patients displayed a ribosomal RNA maturation defect reflecting haploinsufficiency of RPL17. The proteins encoded by RPL17 variants were not incorporated into ribosomes, but 10%–20% of 60S ribosomal subunits contained a short form of 5.8S rRNA (5.8SC), a species that is marginal in normal cells. These atypical 60S subunits were actively engaged in translation. Ribosome profiling showed changes of the translational profile, but those are similar to LCLs bearing RPS19 variants. These results link an additional RP gene to DBA. They show that ribosomes can be modified substantially by RPL17 haploinsufficiency but support the paradigm that translation alterations in DBA are primarily related to insufficient ribosome production rather than to changes in ribosome structure or composition.

Authors

Florence Fellmann, Carol Saunders, Marie-Françoise O’Donohue, David W. Reid, Kelsey A. McFadden, Nathalie Montel-Lehry, Cong Yu, Mingyan Fang, Jianguo Zhang, Beryl Royer-Bertrand, Pietro Farinelli, Narjesse Karboul, Jason R. Willer, Lorraine Fievet, Zahurul Alam Bhuiyan, Alissa L.W. Kleinhenz, Julie Jadeau, Joy Fulbright, Carlo Rivolta, Raffaele Renella, Nicholas Katsanis, Jacques S. Beckmann, Christopher V. Nicchitta, Lydie Da Costa, Erica E. Davis, Pierre-Emmanuel Gleizes

×

Full Text PDF

Download PDF (6.09 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts