Xu et al. describe the immune landscape of primary Sjogren’s syndrome and characterize the differentiation trajectory of CD8+ tissue-resident memory T cells. The cover image shows multiplex staining of CD8 (green), CD103 (yellow), and granzyme K (red) in a labial gland specimen from an individual with primary Sjogren’s syndrome.
Glioblastomas are among the deadliest human cancers and are highly vascularized. Angiogenesis is dynamic during brain development, almost quiescent in the adult brain but reactivated in vascular-dependent CNS pathologies, including brain tumors. The oncofetal axis describes the reactivation of fetal programs in tumors, but its relevance in endothelial and perivascular cells of the human brain vasculature in glial brain tumors is unexplored. Nucleolin is a regulator of cell proliferation and angiogenesis, but its roles in the brain vasculature remain unknown. Here, we studied the expression of Nucleolin in the neurovascular unit in human fetal brains, adult brains, and human gliomas in vivo as well as its effects on sprouting angiogenesis and endothelial metabolism in vitro. Nucleolin is highly expressed in endothelial and perivascular cells during brain development, downregulated in the adult brain, and upregulated in glioma. Moreover, Nucleolin expression correlated with glioma malignancy in vivo. In culture, siRNA-mediated Nucleolin knockdown reduced human brain endothelial cell (HCMEC) and HUVEC sprouting angiogenesis, proliferation, filopodia extension, and glucose metabolism. Furthermore, inhibition of Nucleolin with the aptamer AS1411 decreased brain endothelial cell proliferation in vitro. Mechanistically, Nucleolin knockdown in HCMECs and HUVECs uncovered regulation of angiogenesis involving VEGFR2 and of endothelial glycolysis. These findings identify Nucleolin as a neurodevelopmental factor reactivated in glioma that promotes sprouting angiogenesis and endothelial metabolism, characterizing Nucleolin as an oncofetal protein. Our findings have potential implications in the therapeutic targeting of glioma.
Marc Schwab, Ignazio de Trizio, Moheb Ghobrial, Jau-Ye Shiu, Oguzkan Sürücü, Francesco Girolamo, Mariella Errede, Murat Yilmaz, Johannes Haybaeck, Alessandro Moiraghi, Philippe P. Monnier, Sean E. Lawler, Jeffrey P. Greenfield, Ivan Radovanovic, Karl Frei, Ralph Schlapbach, Viola Vogel, Daniela Virgintino, Katrien De Bock, Thomas Wälchli
Adipose tissue macrophages (ATMs) play an important role in obesity and inflammation, and they accumulate in adipose tissue (AT) with aging. Furthermore, increased ATM senescence has been shown in obesity-related AT remodeling and dysfunction. However, ATM senescence and its role are unclear in age-related AT dysfunction. Here, we show that ATMs (a) acquire a senescence-like phenotype during chronological aging; (b) display a global decline of basic macrophage functions such as efferocytosis, an essential process to preserve AT homeostasis by clearing dysfunctional or apoptotic cells; and (c) promote AT remodeling and dysfunction. Importantly, we uncover a major role for the age-associated accumulation of osteopontin (OPN) in these processes in visceral AT. Consistently, loss or pharmacologic inhibition of OPN and bone marrow transplantation of OPN–/– mice attenuate the ATM senescence-like phenotype, preserve efferocytosis, and finally restore healthy AT homeostasis in the context of aging. Collectively, our findings implicate pharmacologic OPN inhibition as a viable treatment modality to counter ATM senescence-mediated AT remodeling and dysfunction during aging.
Daigo Sawaki, Yanyan Zhang, Amel Mohamadi, Maria Pini, Zaineb Mezdari, Larissa Lipskaia, Suzain Naushad, Lucille Lamendour, Dogus Murat Altintas, Marielle Breau, Hao Liang, Maissa Halfaoui, Thaïs Delmont, Mathieu Surenaud, Déborah Rousseau, Takehiko Yoshimitsu, Fawzia Louache, Serge Adnot, Corneliu Henegar, Philippe Gual, Gabor Czibik, Geneviève Derumeaux
Necrotizing enterocolitis (NEC) is a deadly gastrointestinal disease of premature infants that is associated with an exaggerated inflammatory response, dysbiosis of the gut microbiome, decreased epithelial cell proliferation, and gut barrier disruption. We describe an in vitro model of the human neonatal small intestinal epithelium (Neonatal-Intestine-on-a-Chip) that mimics key features of intestinal physiology. This model utilizes intestinal enteroids grown from surgically harvested intestinal tissue from premature infants and cocultured with human intestinal microvascular endothelial cells within a microfluidic device. We used our Neonatal-Intestine-on-a-Chip to recapitulate NEC pathophysiology by adding infant-derived microbiota. This model, named NEC-on-a-Chip, simulates the predominant features of NEC, including significant upregulation of proinflammatory cytokines, decreased intestinal epithelial cell markers, reduced epithelial proliferation, and disrupted epithelial barrier integrity. NEC-on-a-Chip provides an improved preclinical model of NEC that facilitates comprehensive analysis of the pathophysiology of NEC using precious clinical samples. This model is an advance toward a personalized medicine approach to test new therapeutics for this devastating disease.
Wyatt E. Lanik, Cliff J. Luke, Lila S. Nolan, Qingqing Gong, Lauren C. Frazer, Jamie M. Rimer, Sarah E. Gale, Raymond Luc, Shay S. Bidani, Carrie A. Sibbald, Angela N. Lewis, Belgacem Mihi, Pranjal Agrawal, Martin Goree, Marlie Maestas, Elise Hu, David G. Peters, Misty Good
This study aimed to enhance antitumor immune responses to pancreatic cancer via Ab-based blockade of IL-6 and cytotoxic T-lymphocyte–associated protein 4 (CTLA-4). Mice bearing s.c. or orthotopic pancreatic tumors were treated with blocking Abs to IL‑6 and/or CTLA-4. In both tumor models, dual IL-6 and CTLA-4 blockade significantly inhibited tumor growth. Additional investigations revealed that dual therapy induced an overwhelming infiltration of T cells into the tumor as well as changes in CD4+ T cell subsets. Dual blockade therapy elicited CD4+ T cells to secrete increased IFN-γ in vitro. Likewise, in vitro stimulation of pancreatic tumor cells with IFN-γ profoundly increased tumor cell production of CXCR3-specific chemokines, even in the presence of IL-6. In vivo blockade of CXCR3 prevented orthotopic tumor regression in the presence of the combination treatment, demonstrating a dependence on the CXCR3 axis for antitumor efficacy. Both CD4+ and CD8+ T cells were required for the antitumor activity of this combination therapy, as their in vivo depletion via Abs impaired outcomes. These data represent the first report to our knowledge of IL-6 and CTLA‑4 blockade as a means to regress pancreatic tumors with defined operative mechanisms of efficacy.
Michael Brandon Ware, Maggie Phillips, Christopher McQuinn, Mohammad Y. Zaidi, Hannah M. Knochelmann, Emily Greene, Brian Robinson, Cameron J. Herting, Thomas A. Mace, Zhengjia Chen, Chao Zhang, Matthew R. Farren, Amanda N. Ruggieri, Jacob S. Bowers, Reena Shakya, Alton B. Farris, Gregory Young, William E. Carson III, Bassel El-Rayes, Chrystal M. Paulos, Gregory B. Lesinski
Mitochondrial dysfunction at birth predicts bronchopulmonary dysplasia (BPD) in extremely low–birth weight (ELBW) infants. Recently, nebulized thyroid hormone (TH), given as triiodothyronine (T3), was noted to decrease pulmonary fibrosis in adult animals through improved mitochondrial function. In this study, we tested the hypothesis that TH may have similar effects on hyperoxia-induced neonatal lung injury and mitochondrial dysfunction by testing whether i.n. T3 decreases neonatal hyperoxic lung injury in newborn mice; whether T3 improves mitochondrial function in lung homogenates, neonatal murine lung fibroblasts (NMLFs), and umbilical cord–derived mesenchymal stem cells (UC-MSCs) obtained from ELBW infants; and whether neonatal hypothyroxinemia is associated with BPD in ELBW infants. We found that inhaled T3 (given i.n.) attenuated hyperoxia-induced lung injury and mitochondrial dysfunction in newborn mice. T3 also reduced bioenergetic deficits in UC-MSCs obtained from both infants with no or mild BPD and those with moderate to severe BPD. T3 also increased the content of peroxisome proliferator–activated receptor γ coactivator 1α in lung homogenates of mice exposed to hyperoxia as well as mitochondrial potential in both NMLFs and UC-MSCs. ELBW infants who died or developed moderate to severe BPD had lower total T4 (TT4) compared with survivors with no or mild BPD. In conclusion, TH signaling and function may play a critical role in neonatal lung injury, and inhaled T3 supplementation may be useful as a therapeutic strategy for BPD.
Bianca M. Vamesu, Teodora Nicola, Rui Li, Snehashis Hazra, Sadis Matalon, Naftali Kaminski, Namasivayam Ambalavanan, Jegen Kandasamy
The main cause of malignancy-related mortality is metastasis. Although metastatic progression is driven by diverse tumor-intrinsic mechanisms, there is a growing appreciation for the contribution of tumor-extrinsic elements of the tumor microenvironment, especially macrophages, which correlate with poor clinical outcomes. Macrophages consist of bone marrow–derived and tissue-resident populations. In contrast to bone marrow–derived macrophages, the transcriptional pathways that govern the pro-metastatic activities of tissue-resident macrophages (TRMs) remain less clear. Alveolar macrophages (AMs) are a TRM population with critical roles in tissue homeostasis and metastasis. Wnt/β-catenin signaling is a hallmark of cancer and has been identified as a pathologic regulator of AMs in infection. We tested the hypothesis that β-catenin expression in AMs enhances metastasis in solid tumor models. Using a genetic β-catenin gain-of-function approach, we demonstrated that (a) enhanced β-catenin in AMs heightened lung metastasis; (b) β-catenin activity in AMs drove a dysregulated inflammatory program strongly associated with Tnf expression; and (c) localized TNF-α blockade abrogated this metastatic outcome. Last, β-catenin gene CTNNB1 and TNF expression levels were positively correlated in AMs of patients with lung cancer. Overall, our findings revealed a Wnt/β-catenin/TNF-α pro-metastatic axis in AMs with potential therapeutic implications against tumors refractory to the antineoplastic actions of TNF-α.
Elliot D. Kramer, Stephanie L. Tzetzo, Sean H. Colligan, Mary L. Hensen, Craig M. Brackett, Björn E. Clausen, Makoto M. Taketo, Scott I. Abrams
Posttransplant cyclophosphamide (PTCy) is associated with a low incidence of chronic graft-versus-host disease (cGVHD) following hematopoietic stem cell (HSC) transplantation. Previous studies have shown the important roles of B cell immunity in cGVHD development. Here, we investigated the long-term reconstitution of B lymphopoiesis after PTCy using murine models. We first demonstrated that the immune homeostatic abnormality leading to cGVHD is characterized by an initial increase in effector T cells in the bone marrow and subsequent B and Treg cytopenia. PTCy, but not cyclosporine A or rapamycin, inhibits the initial alloreactive T cell response, which restores intra-bone marrow B lymphogenesis with a concomitant vigorous increase in Tregs. This leads to profound changes in posttransplant B cell homeostasis, including decreased B cell activating factors, increased transitional and regulatory B cells, and decreased germinal center B cells. To identify the cells responsible for PTCy-induced B cell tolerance, we selectively depleted Treg populations that were graft or HSC derived using DEREG mice. Deletion of either Treg population without PTCy resulted in critical B cytopenia. PTCy rescued B lymphopoiesis from graft-derived Treg deletion. In contrast, the negative effect of HSC-derived Treg deletion could not be overcome by PTCy, indicating that HSC-derived Tregs are essential for maintaining favorable B lymphopoiesis following PTCy. These findings define the mechanisms by which PTCy restores homeostasis of the B cell lineage and reestablishes immune tolerance.
Yuichi Sumii, Takumi Kondo, Shuntaro Ikegawa, Takuya Fukumi, Miki Iwamoto, Midori Filiz Nishimura, Hiroyuki Sugiura, Yasuhisa Sando, Makoto Nakamura, Yusuke Meguri, Takashi Matsushita, Naoki Tanimine, Maiko Kimura, Noboru Asada, Daisuke Ennishi, Yoshinobu Maeda, Ken-ichi Matsuoka
Metabolic crosstalk from skeletal muscle to multiple organs is important for maintaining homeostasis, and its dysregulation can lead to various diseases. Chronic glucocorticoid administration often induces muscle atrophy and metabolic disorders such as diabetes and central obesity; however, the detailed underlying mechanism remains unclear. We previously reported that the deletion of glucocorticoid receptor (GR) in skeletal muscle increases muscle mass and reduces fat mass through muscle-liver-fat communication under physiological conditions. In this study, we show that muscle GR signaling plays a crucial role in accelerating obesity through the induction of hyperinsulinemia. Fat accumulation in liver and adipose tissue, muscle atrophy, hyperglycemia, and hyperinsulinemia induced by chronic corticosterone (CORT) treatment improved in muscle-specific GR-knockout (GR-mKO) mice. Such CORT-induced fat accumulation was alleviated by suppressing insulin production (streptozotocin injection), indicating that hyperinsulinemia enhanced by muscle GR signaling promotes obesity. Strikingly, glucose intolerance and obesity in ob/ob mice without CORT treatment were also improved in GR-mKO mice, indicating that muscle GR signaling contributes to obesity-related metabolic changes, regardless of systemic glucocorticoid levels. Thus, this study provides insight for the treatment of obesity and diabetes by targeting muscle GR signaling.
Hiroki Yamazaki, Masaaki Uehara, Noritada Yoshikawa, Akiko Kuribara-Souta, Motohisa Yamamoto, Yasuko Hirakawa, Yasuaki Kabe, Makoto Suematsu, Hirotoshi Tanaka
Apolipoprotein A4’s (APOA4’s) functions on HDL in humans are not well understood. A unique feature of APOA4 is that it is an intestinal apolipoprotein secreted on HDL and chylomicrons. The goal of this study was to gain a better understanding of the origin and function of APOA4 on HDL by studying its metabolism across 6 HDL sizes. Twelve participants completed a metabolic tracer study. HDL was isolated by APOA1 immunopurification and separated by size. Tracer enrichments for APOA4 and APOA1 were determined by targeted mass spectrometry, and metabolic rates were derived by compartmental modeling. APOA4 metabolism on small HDL (alpha3, prebeta, and very small prebeta) was distinct from that of APOA4 on large HDL (alpha0, 1, 2). APOA4 on small HDL appeared in circulation by 30 minutes and was relatively rapidly catabolized. In contrast, APOA4 on large HDL appeared in circulation later (1–2 hours) and had a much slower catabolism. The unique metabolic profiles of APOA4 on small and large HDL likely indicate that each has a distinct origin and function in humans. This evidence supports the notion that APOA4 on small HDL originates directly from the small intestine while APOA4 on large HDL originates from chylomicron transfer.
Allison B. Andraski, Sasha A. Singh, Hideyuki Higashi, Lang Ho Lee, Masanori Aikawa, Frank M. Sacks
The need for advances in the management/treatment options for ischemic stroke patients requires that upcoming preclinical research uses animals with more human-like brain characteristics. The porcine brain is considered appropriate, although the presence of the rete mirabile (RM) prevents direct catheterization of the intracranial arteries to produce focal cerebral ischemia. To develop a reproducible minimally invasive porcine stroke model, a guide catheter and guide wire were introduced through the femoral artery until reaching the left RM. Using the pressure cooker technique, Squid-12 embolization material was deposited to fill, overflow, and occlude the left RM, the left internal carotid artery, and left circle of Willis wing up to the origins of the middle cerebral arteries (MCAs), mimicking the occlusion produced in the filament model in rodents. Longitudinal multimodal cerebral MRI was conducted to assess the brain damage and cerebral blood supply. The technique we describe here occluded up to the origins of the MCAs in 7 of 8 swine, inducing early damage 90 minutes after occlusion that later evolved to a large cerebral infarction and producing no mortality during the intervention. This minimally invasive ischemic stroke model in swine produced reproducible infarcts and shows translational features common to human stroke.
Carlos Castaño, Marc Melià-Sorolla, Alexia García-Serran, Núria DeGregorio-Rocasolano, Maria Rosa García-Sort, María Hernandez-Pérez, Adrián Valls-Carbó, Osvaldo Pino, Jordi Grífols, Alba Iruela-Sánchez, Alicia Palomar-García, Josep Puig, Octavi Martí-Sistac, Antoni Dávalos, Teresa Gasull
Makorin ring finger protein 3 (MKRN3) was identified as an inhibitor of puberty initiation with the report of loss-of-function mutations in association with central precocious puberty. Consistent with this inhibitory role, a prepubertal decrease in Mkrn3 expression was observed in the mouse hypothalamus. Here, we investigated the mechanisms of action of MKRN3 in the central regulation of puberty onset. We showed that MKRN3 deletion in hypothalamic neurons derived from human induced pluripotent stem cells was associated with significant changes in expression of genes controlling hypothalamic development and plasticity. Mkrn3 deletion in a mouse model led to early puberty onset in female mice. We found that Mkrn3 deletion increased the number of dendritic spines in the arcuate nucleus but did not alter the morphology of GnRH neurons during postnatal development. In addition, we identified neurokinin B (NKB) as an Mkrn3 target. Using proteomics, we identified insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) as another target of MKRN3. Interactome analysis revealed that IGF2BP1 interacted with MKRN3, along with several members of the polyadenylate-binding protein family. Our data show that one of the mechanisms by which MKRN3 inhibits pubertal initiation is through regulation of prepubertal hypothalamic development and plasticity, as well as through effects on NKB and IGF2BP1.
Lydie Naulé, Alessandra Mancini, Sidney A. Pereira, Brandon M. Gassaway, John R. Lydeard, John C. Magnotto, Han Kyeol Kim, Joy Liang, Cynara Matos, Steven P. Gygi, Florian T. Merkle, Rona S. Carroll, Ana Paula Abreu, Ursula B. Kaiser
Glycolysis is central to homeostasis of nucleus pulposus (NP) cells in the avascular intervertebral disc. Since the glucose transporter, GLUT1, is a highly enriched phenotypic marker of NP cells, we hypothesized that it is vital for the development and postnatal maintenance of the disc. Surprisingly, primary NP cells treated with 2 well-characterized GLUT1 inhibitors maintained normal rates of glycolysis and ATP production, indicating intrinsic compensatory mechanisms. We showed in vitro that NP cells mitigated GLUT1 loss by rewiring glucose import through GLUT3. Of note, we demonstrated that substrates, such as glutamine and palmitate, did not compensate for glucose restriction resulting from dual inhibition of GLUT1/3, and inhibition compromised long-term cell viability. To investigate the redundancy of GLUT1 function in NP, we generated 2 NP-specific knockout mice: Krt19CreERT Glut1fl/fl and Foxa2Cre Glut1fl/fl. There were no apparent defects in postnatal disc health or development and maturation in mutant mice. Microarray analysis verified that GLUT1 loss did not cause transcriptomic alterations in the NP, supporting that cells are refractory to GLUT1 loss. These observations provide the first evidence to our knowledge of functional redundancy in GLUT transporters in the physiologically hypoxic intervertebral disc and underscore the importance of glucose as the indispensable substrate for NP cells.
Shira N. Johnston, Elizabeth S. Silagi, Vedavathi Madhu, Duc H. Nguyen, Irving M. Shapiro, Makarand V. Risbud
Cancer cachexia (CC), a wasting syndrome of muscle and adipose tissue resulting in weight loss, is observed in 50% of patients with solid tumors. Management of CC is limited by the absence of biomarkers and knowledge of molecules that drive its phenotype. To identify such molecules, we injected 54 human non–small cell lung cancer (NSCLC) lines into immunodeficient mice, 17 of which produced an unambiguous phenotype of cachexia or non-cachexia. Whole-exome sequencing revealed that 8 of 10 cachexia lines, but none of the non-cachexia lines, possessed mutations in serine/threonine kinase 11 (STK11/LKB1), a regulator of nutrient sensor AMPK. Silencing of STK11/LKB1 in human NSCLC and murine colorectal carcinoma lines conferred a cachexia phenotype after cell transplantation into immunodeficient (human NSCLC) and immunocompetent (murine colorectal carcinoma) models. This host wasting was associated with an alteration in the immune cell repertoire of the tumor microenvironments that led to increases in local mRNA expression and serum levels of CC-associated cytokines. Mutational analysis of circulating tumor DNA from patients with NSCLC identified 89% concordance between STK11/LKB1 mutations and weight loss at cancer diagnosis. The current data provide evidence that tumor STK11/LKB1 loss of function is a driver of CC, simultaneously serving as a genetic biomarker for this wasting syndrome.
Puneeth Iyengar, Aakash Y. Gandhi, Jorge Granados, Tong Guo, Arun Gupta, Jinhai Yu, Ernesto M. Llano, Faya Zhang, Ang Gao, Asha Kandathil, Dorothy Williams, Boning Gao, Luc Girard, Venkat S. Malladi, John M. Shelton, Bret M. Evers, Raquibul Hannan, Chul Ahn, John D. Minna, Rodney E. Infante
Sepsis is a lethal syndrome characterized by systemic inflammation and abnormal coagulation. Despite therapeutic advances, sepsis mortality remains substantially high. Herein, we investigated the role of the plasminogen/plasmin (Plg/Pla) system during sepsis. Plasma levels of Plg were significantly lower in mice subjected to severe compared with nonsevere sepsis, whereas systemic levels of IL-6, a marker of sepsis severity, were higher in severe sepsis. Plg levels correlated negatively with IL-6 in both septic mice and patients, whereas plasminogen activator inhibitor-1 levels correlated positively with IL-6. Plg deficiency render mice susceptible to nonsevere sepsis induced by cecal ligation and puncture (CLP), resulting in greater numbers of neutrophils and M1 macrophages, liver fibrin(ogen) deposition, lower efferocytosis, and increased IL-6 and neutrophil extracellular trap (NET) release associated with organ damage. Conversely, inflammatory features, fibrin(ogen), and organ damage were substantially reduced, and efferocytosis was increased by exogenous Pla given during CLP- and LPS-induced endotoxemia. Plg or Pla protected mice from sepsis-induced lethality and enhanced the protective effect of antibiotics. Mechanistically, Plg/Pla–afforded protection was associated with regulation of NET release, requiring Pla-protease activity and lysine binding sites. Plg/Pla are important host-protective players during sepsis, controlling local and systemic inflammation and collateral organ damage.
Juliana P. Vago, Isabella Zaidan, Luiza O. Perucci, Larissa Froede Brito, Lívia C.R. Teixeira, Camila Meirelles Souza Silva, Thaís C. Miranda, Eliza M. Melo, Alexandre S. Bruno, Celso Martins Queiroz-Junior, Michelle A. Sugimoto, Luciana P. Tavares, Laís C. Grossi, Isabela N. Borges, Ayda Henriques Schneider, Nagyung Baik, Ayda H. Schneider, André Talvani, Raphael G. Ferreira, José C. Alves-Filho, Vandack Nobre, Mauro M. Teixeira, Robert J. Parmer, Lindsey A. Miles, Lirlândia P. Sousa
Cisplatin is a widely used chemotherapy drug; however, it induces both acute and chronic kidney diseases (CKD) in patients with cancer. The pathogenesis of cisplatin-induced CKD is unclear, and effective renoprotective approaches are not available. Here, we report that repeated low-dose cisplatin (RLDC) treatment of C57BL/6 mice induced chronic cellular senescence in kidney tubules, accompanied with tubular degeneration and profibrotic phenotype transformation that culminated in maladaptive repair and renal fibrosis. Suppression of tubular senescence by senolytic drugs ABT-263 and Fisetin attenuated renal fibrosis and improved tubular repair, as indicated by restoration of tubular regeneration and renal function. In vitro, RLDC also induced senescence in mouse proximal tubular (BUMPT) cells. ABT-263 eliminated senescent BUMPT cells following RLDC treatment, reversed the profibrotic phenotype of the cells, and increased their clonogenic activity. Moreover, ABT-263 alleviated the paracrine effect of RLDC-treated BUMPT cells on fibroblasts for fibrosis. Consistently, knockdown of p16 suppressed post-RLDC senescence and fibrotic changes in BUMPT cells and alleviated their paracrine effects on renal fibroblast proliferation. These results indicate that persistent induction of tubular senescence plays an important role in promoting cisplatin-induced CKD. Targeting senescent tubular cells may be efficient for improvement of kidney repair and for the prevention and treatment of cisplatin-induced CKD.
Siyao Li, Man J. Livingston, Zhengwei Ma, Xiaoru Hu, Lu Wen, Han-Fei Ding, Daohong Zhou, Zheng Dong
BACKGROUND After its introduction as standard-of-care for severe COVID-19, dexamethasone has been administered to a large number of patients globally. Detailed knowledge of its impact on the cellular and humoral immune response to SARS-CoV-2 remains scarce.METHODS We included immunocompetent individuals with (a) mild COVID-19, (b) severe COVID-19 before introduction of dexamethasone treatment, and (c) severe COVID-19 infection treated with dexamethasone from prospective observational cohort studies at Charité-Universitätsmedizin Berlin, Germany. We analyzed SARS-CoV-2 spike–reactive T cells, spike-specific IgG titers, and serum neutralizing activity against B.1.1.7 and B.1.617.2 in samples ranging from 2 weeks to 6 months after infection. We also analyzed BA.2 neutralization in sera after booster immunization.RESULTS Patients with severe COVID-19 and dexamethasone treatment had lower T cell and antibody responses to SARS-CoV-2 compared with patients without dexamethasone treatment in the early phase of disease, which converged in both groups before 6 months after infection and also after immunization. Patients with mild COVID-19 had comparatively lower T cell and antibody responses than patients with severe disease, including a lower response to booster immunization during convalescence.CONCLUSION Dexamethasone treatment was associated with a short-term reduction in T cell and antibody responses in severe COVID-19 when compared with the nontreated group, but this difference evened out 6 months after infection. We confirm higher cellular and humoral immune responses in patients after severe versus mild COVID-19 and the concept of improved hybrid immunity upon immunization.FUNDING Berlin Institute of Health, German Federal Ministry of Education, and German Federal Institute for Drugs and Medical Devices.
Charlotte Thibeault, Lara Bardtke, Kanika Vanshylla, Veronica di Cristanziano, Kirsten A. Eberhardt, Paula Stubbemann, David Hillus, Pinkus Tober-Lau, Parnika Mukherjee, Friederike Münn, Lena J. Lippert, Elisa T. Helbig, Tilman Lingscheid, Fridolin Steinbeis, Mirja Mittermaier, Martin Witzenrath, Thomas Zoller, Pa-COVID study group, Florian Klein, Leif E. Sander, Florian Kurth
Sosuga virus (SOSV) is a recently discovered paramyxovirus with a single known human case of disease. There has been little laboratory research on SOSV pathogenesis or immunity, and no approved therapeutics or vaccines are available. Here, we report the discovery of human mAbs from the circulating memory B cells of the only known human case and survivor of SOSV infection. We isolated 6 mAbs recognizing the functional attachment protein hemagglutinin-neuraminidase (HN) and 18 mAbs against the fusion (F) protein. The anti-HN mAbs all targeted the globular head of the HN protein and could be organized into 4 competition-binding groups that exhibited epitope diversity. The anti-F mAbs can be divided into pre- or postfusion conformation-specific categories and further into 8 competition-binding groups. The only Ab in the panel that did not display neutralization activity was the single postfusion-specific anti-F mAb. Most of the anti-HN mAbs were more potently neutralizing than the anti-F mAbs, with mAbs in 1 of the HN competition-binding groups possessing ultrapotent (<1 ng/mL) half-maximal inhibitory virus neutralization values. These findings provide insight into the molecular basis for human Ab recognition of paramyxovirus surface proteins and the mechanisms of SOSV neutralization.
Helen M. Parrington, Nurgun Kose, Erica Armstrong, Laura Handal, Summer Diaz, Joseph Reidy, Jinhui Dong, Guillaume B.E. Stewart-Jones, Punya Shrivastava-Ranjan, Shilpi Jain, César G. Albariño, Robert H. Carnahan, James E. Crowe Jr.
BACKGROUND Fibrocytes are BM-derived circulating cells that traffic to the injured lungs and contribute to fibrogenesis. The mTOR inhibitor, sirolimus, inhibits fibrocyte CXCR4 expression, reducing fibrocyte traffic and attenuating lung fibrosis in animal models. We sought to test the hypothesis that short-term treatment with sirolimus reduces the concentration of CXCR4+ circulating fibrocytes in patients with idiopathic pulmonary fibrosis (IPF).METHODS We conducted a short-term randomized double-blind placebo-controlled crossover pilot trial to assess the safety and tolerability of sirolimus in IPF. Participants were randomly assigned to sirolimus or placebo for approximately 6 weeks, and after a 4-week washout, they were assigned to the alternate treatment. Toxicity, lung function, and the concentration of circulating fibrocytes were measured before and after each treatment.RESULTS In the 28 study participants, sirolimus resulted in a statistically significant 35% decline in the concentration of total fibrocytes, 34% decline in CXCR4+ fibrocytes, and 42% decline in fibrocytes expressing α-smooth muscle actin, but no significant change in these populations occurred on placebo. Respiratory adverse events occurred more frequently during treatment with placebo than sirolimus; the incidence of adverse events and drug tolerability did not otherwise differ during therapy with drug and placebo. Lung function was unaffected by either treatment, with the exception of a small decline in gas transfer during treatment with placebo.CONCLUSION As compared with placebo, short-term treatment with sirolimus resulted in reduction of circulating fibrocyte concentrations in participants with IPF, with an acceptable safety profile.TRIAL REGISTRATION ClinicalTrials.gov, accession no. NCT01462006.FUNDING NIH R01HL098329 and American Heart Association 18TPA34170486.
Diana C. Gomez-Manjarres, Dierdre B. Axell-House, Divya C. Patel, John Odackal, Victor Yu, Marie D. Burdick, Borna Mehrad
BACKGROUND Elevated circulating branched chain amino acids (BCAAs), measured at a single time point in middle life, are strongly associated with an increased risk of developing type 2 diabetes mellitus (DM). However, the longitudinal patterns of change in BCAAs through young adulthood and their association with DM in later life are unknown.METHODS We serially measured BCAAs over 28 years in the Coronary Artery Risk Development in Young Adults (CARDIA) study, a prospective cohort of apparently healthy Black and White young adults at baseline. Trajectories of circulating BCAA concentrations from years 2–30 (for prevalent DM) or years 2–20 (for incident DM) were determined by latent class modeling.RESULTS Among 3,081 apparently healthy young adults, trajectory analysis from years 2–30 revealed 3 distinct BCAA trajectory groups: low-stable (n = 1,427), moderate-stable (n = 1,384), and high-increasing (n = 270) groups. Male sex, higher body mass index, and higher atherogenic lipid fractions were more common in the moderate-stable and high-increasing groups. Higher risk of prevalent DM was associated with the moderate-stable (OR = 2.59, 95% CI: 1.90–3.55) and high-increasing (OR = 6.03, 95% CI: 3.86–9.43) BCAA trajectory groups in adjusted models. A separate trajectory group analysis from years 2–20 for incident DM after year 20 showed that moderate-stable and high-increasing trajectory groups were also significantly associated with higher risk of incident DM, after adjustment for clinical variables and glucose levels.CONCLUSION BCAA levels track over a 28-year span in most young adults, but serial clinical metabolomic measurements identify subpopulations with rising levels associated with high risk of DM in later life.FUNDING This research was supported by the NIH, under grants R01 HL146844 (JTW) and T32 HL069771 (MRC). The CARDIA study is conducted and supported by the NIH National Heart, Lung, and Blood Institute in collaboration with the University of Alabama at Birmingham (HHSN268201800005I and HHSN268201800007I), Northwestern University (HHSN268201800003I), the University of Minnesota (HHSN268201800006I), and Kaiser Foundation Research Institute (HHSN268201800004I).
Konrad T. Sawicki, Hongyan Ning, Norrina B. Allen, Mercedes R. Carnethon, Amisha Wallia, James D. Otvos, Issam Ben-Sahra, Elizabeth M. McNally, Janet K. Snell-Bergeon, John T. Wilkins
Primary Sjögren’s syndrome (pSS) is a systemic autoimmune inflammatory disease mainly defined by T cell–dominated destruction of exocrine glands. Currently, CD8+ T cells are thought to be involved in the pathogenesis of pSS. However, the single-cell immune profiling of pSS and molecular signatures of pathogenic CD8+ T cells have not been well elucidated. Our multiomics investigation showed that both T cells and B cells, especially CD8+ T cells, were undergoing significant clonal expansion in pSS patients. TCR clonality analysis revealed that peripheral blood granzyme K+ (GZMK+) CXCR6+CD8+ T cells had higher a proportion of clones shared with CD69+CD103–CD8+ tissue-resident memory T (Trm) cells in labial glands in pSS. CD69+CD103–CD8+ Trm cells featured by high expression of GZMK were more active and cytotoxic in pSS compared with their CD103+ counterparts. Peripheral blood GZMK+CXCR6+CD8+ T cells with higher CD122 expression were increased and harbored a gene signature similar to Trm cells in pSS. Consistently, IL-15 was significantly elevated in pSS plasma and showed the capacity to promote differentiation of CD8+ T cells into GZMK+CXCR6+CD8+ T cells in a STAT5-dependent manner. In summary, we depicted the immune profile of pSS and further conducted comprehensive bioinformatics analysis and in vitro experimental investigations to characterize the pathogenic role and differentiation trajectory of CD8+ Trm cells in pSS.
Ting Xu, Hao-Xian Zhu, Xing You, Jin-Fen Ma, Xin Li, Pan-Yue Luo, Yang Li, Zhe-Xiong Lian, Cai-Yue Gao
Fibroblastic reticular cells (FRCs) play important roles in tolerance by producing laminin α4 (Lama4) and altering lymph node (LN) structure and function. The present study revealed the specific roles of extracellular matrix Lama4 in regulating LN conduits using FRC-specific KO mouse strains. FRC-derived Lama4 maintained conduit fiber integrity, as its depletion altered conduit morphology and structure and reduced homeostatic conduit flow. Lama4 regulated the lymphotoxin β receptor (LTβR) pathway, which is critical for conduit and LN integrity. Depleting LTβR in FRCs further reduced conduits and impaired reticular fibers. Lama4 was indispensable for FRC generation and survival, as FRCs lacking Lama4 displayed reduced proliferation but upregulated senescence and apoptosis. During acute immunization, FRC Lama4 deficiency increased antigen flow through conduits. Importantly, adoptive transfer of WT FRCs to FRC Lama4–deficient mice rescued conduit structure, ameliorated Treg and chemokine distribution, and restored transplant allograft acceptance, which were all impaired by FRC Lama4 depletion. Single-cell RNA sequencing analysis of LN stromal cells indicated that the laminin and collagen signaling pathways linked crosstalk among FRC subsets and endothelial cells. This study demonstrated that FRC Lama4 is responsible for maintaining conduits by FRCs and can be harnessed to potentiate FRC-based immunomodulation.
Lushen Li, Long Wu, Allison Kensiski, Jing Zhao, Marina W. Shirkey, Yang Song, Wenji Piao, Tianshu Zhang, Zhongcheng Mei, Samuel J. Gavzy, Bing Ma, Vikas Saxena, Young S. Lee, Yanbao Xiong, Xiaofei Li, Xiaoxuan Fan, Reza Abdi, Jonathan S. Bromberg
Multiple randomized, controlled clinical trials have yielded discordant results regarding the efficacy of convalescent plasma in outpatients, with some showing an approximately 2-fold reduction in risk and others showing no effect. We quantified binding and neutralizing antibody levels in 492 of the 511 participants from the Clinical Trial of COVID-19 Convalescent Plasma in Outpatients (C3PO) of a single unit of COVID-19 convalescent plasma (CCP) versus saline infusion. In a subset of 70 participants, peripheral blood mononuclear cells were obtained to define the evolution of B and T cell responses through day 30. Binding and neutralizing antibody responses were approximately 2-fold higher 1 hour after infusion in recipients of CCP compared with saline plus multivitamin, but levels achieved by the native immune system by day 15 were almost 10-fold higher than those seen immediately after CCP administration. Infusion of CCP did not block generation of the host antibody response or skew B or T cell phenotype or maturation. Activated CD4+ and CD8+ T cells were associated with more severe disease outcome. These data show that CCP leads to a measurable boost in anti–SARS-CoV-2 antibodies but that the boost is modest and may not be sufficient to alter disease course.
John F. McDyer, Mahzad Azimpouran, Valerie L. Durkalski-Mauldin, Robert G. Clevenger, Sharon D. Yeatts, Xutao Deng, William Barsan, Robert Silbergleit, Nahed El Kassar, Iulia Popescu, Dimiter Dimitrov, Wei Li, Emily J. Lyons, Sophia C. Lieber, Mars Stone, Frederick K. Korley, Clifton W. Callaway, Larry J. Dumont, Philip J. Norris, for the SIREN-C3PO Investigators