Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Osteopontin promotes age-related adipose tissue remodeling through senescence-associated macrophage dysfunction
Daigo Sawaki, … , Gabor Czibik, Geneviève Derumeaux
Daigo Sawaki, … , Gabor Czibik, Geneviève Derumeaux
Published April 24, 2023
Citation Information: JCI Insight. 2023;8(8):e145811. https://doi.org/10.1172/jci.insight.145811.
View: Text | PDF
Research Article Aging Immunology

Osteopontin promotes age-related adipose tissue remodeling through senescence-associated macrophage dysfunction

  • Text
  • PDF
Abstract

Adipose tissue macrophages (ATMs) play an important role in obesity and inflammation, and they accumulate in adipose tissue (AT) with aging. Furthermore, increased ATM senescence has been shown in obesity-related AT remodeling and dysfunction. However, ATM senescence and its role are unclear in age-related AT dysfunction. Here, we show that ATMs (a) acquire a senescence-like phenotype during chronological aging; (b) display a global decline of basic macrophage functions such as efferocytosis, an essential process to preserve AT homeostasis by clearing dysfunctional or apoptotic cells; and (c) promote AT remodeling and dysfunction. Importantly, we uncover a major role for the age-associated accumulation of osteopontin (OPN) in these processes in visceral AT. Consistently, loss or pharmacologic inhibition of OPN and bone marrow transplantation of OPN–/– mice attenuate the ATM senescence-like phenotype, preserve efferocytosis, and finally restore healthy AT homeostasis in the context of aging. Collectively, our findings implicate pharmacologic OPN inhibition as a viable treatment modality to counter ATM senescence-mediated AT remodeling and dysfunction during aging.

Authors

Daigo Sawaki, Yanyan Zhang, Amel Mohamadi, Maria Pini, Zaineb Mezdari, Larissa Lipskaia, Suzain Naushad, Lucille Lamendour, Dogus Murat Altintas, Marielle Breau, Hao Liang, Maissa Halfaoui, Thaïs Delmont, Mathieu Surenaud, Déborah Rousseau, Takehiko Yoshimitsu, Fawzia Louache, Serge Adnot, Corneliu Henegar, Philippe Gual, Gabor Czibik, Geneviève Derumeaux

×

Graphical abstract

Options: View larger image (or click on image)

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts