Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

In-Press Preview

  • 1,450 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • …
  • 144
  • 145
  • Next →
Tertiary lymphoid structure signatures are associated with immune checkpoint inhibitor related acute interstitial nephritis
Shailbala Singh, … , Cassian Yee, Jamie S. Lin
Shailbala Singh, … , Cassian Yee, Jamie S. Lin
Published December 6, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.165108.
View: Text | PDF

Tertiary lymphoid structure signatures are associated with immune checkpoint inhibitor related acute interstitial nephritis

  • Text
  • PDF
Abstract

Tertiary lymphoid structures (TLSs) are associated with anti-tumor response following immune checkpoint inhibitor (ICI) therapy, but a commensurate observation of TLS is absent for immune related adverse events (irAEs) i.e. acute interstitial nephritis (AIN). We hypothesized that TLS-associated inflammatory gene signatures are present in AIN and performed NanoString-based gene expression and multiplex 12-chemokine profiling on paired kidney tissue, urine and plasma specimens of 36 participants who developed acute kidney injury (AKI) on ICI therapy: AIN (18), acute tubular necrosis (9), or HTN nephrosclerosis (9). Increased T and B cell scores, a Th1-CD8+ T cell axis accompanied by interferon-g and TNF superfamily signatures were detected in the ICI-AIN group. TLS signatures were significantly increased in AIN cases and supported by histopathological identification. Furthermore, urinary TLS signature scores correlated with ICI-AIN diagnosis but not paired plasma. Urinary CXCL9 correlated best to tissue CXCL9 expression (rho 0.75, p < 0.001) and the ability to discriminate AIN vs. non-AIN (AUC 0.781, p-value 0.003). For the first time, we report the presence of TLS signatures in irAEs, define distinctive immune signatures, identify chemokine markers distinguishing ICI-AIN from common AKI etiologies and demonstrate that urine chemokine markers may be used as a surrogate for ICI-AIN diagnoses.

Authors

Shailbala Singh, James P. Long, Amanda Tchakarov, Yanlan Dong, Cassian Yee, Jamie S. Lin

×

Hepatocyte-derived DPP4 regulates portal GLP-1 bioactivity, glucose production, and its absence alters liver disease progression
Natasha A. Trzaskalski, … , Morgan D. Fullerton, Erin E. Mulvihill
Natasha A. Trzaskalski, … , Morgan D. Fullerton, Erin E. Mulvihill
Published December 6, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.154314.
View: Text | PDF

Hepatocyte-derived DPP4 regulates portal GLP-1 bioactivity, glucose production, and its absence alters liver disease progression

  • Text
  • PDF
Abstract

Elevated circulating dipeptidyl-peptidase 4 is a biomarker for liver disease, but its involvement in gluconeogenesis and in metabolic-associated fatty liver disease (MAFLD) progression remains unclear. Here we identified that DPP4 in hepatocytes but not Tie2+ endothelial cells regulates the local bioactivity of incretin hormones and gluconeogenesis. However, the complete absence of DPP4 (Dpp4-/-) in aged mice with metabolic syndrome accelerates liver fibrosis without altering dyslipidemia and steatosis. Analysis of transcripts from the livers of whole body Dpp4-/- displayed enrichment for inflammasome, p53, and senescence programs compared to littermate controls. High-fat high-cholesterol (HFHC)-feeding decreased Dpp4 expression in F4/80+ cells, with only minor changes in immune signaling. Moreover, in a lean mouse model of severe non-alcoholic fatty liver disease (NAFLD), phosphatidylethanolamine N-methyltransferase (Pemt -/-) mice fed with HFHC diet, we observed a 4-fold increase in circulating DPP4, disassociating its release from obesity. Lastly, we evaluated DPP4 levels in patients with hepatitis C infection with dysglycemia (HOMA-IR > 2) who underwent direct antiviral treatment (with or without ribavirin). DPP4 protein levels decreased with viral clearance, and DPP4 activity levels were reduced at longer-term follow-up in ribavirin-treated patients, although metabolic factors did not improve. These data suggest elevations in DPP4 during HCV infection are not primarily regulated by metabolic disturbances.

Authors

Natasha A. Trzaskalski, Branka Vulesevic, My-Anh Nguyen, Natasha Jeraj, Evgenia Fadzeyeva, Nadya M. Morrow, Cassandra A.A. Locatelli, Nicole Travis, Antonio A. Hanson, Julia R.C. Nunes, Conor O'Dwyer, Jelske N. Van der Veen, Ilka Lorenzen-Schmidt, Rick Seymour, Serena M. Pulente, Andrew C. Clément, Angela M. Crawley, René L. Jacobs, Mary-Anne Doyle, Curtis L. Cooper, Kyoung-Han Kim, Morgan D. Fullerton, Erin E. Mulvihill

×

Ciprofloxacin exacerbates dysfunction of smooth muscle cells in a microphysiological model of thoracic aortic aneurysm
Bitao Xiang, … , Jun Li, Kai Zhu
Bitao Xiang, … , Jun Li, Kai Zhu
Published December 6, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.161729.
View: Text | PDF

Ciprofloxacin exacerbates dysfunction of smooth muscle cells in a microphysiological model of thoracic aortic aneurysm

  • Text
  • PDF
Abstract

Ciprofloxacin use may be associated with adverse aortic events. However, the mechanism underlying the effect of ciprofloxacin on the progression of thoracic aortic aneurysm (TAA) is not well understood. Using an in vitro microphysiological model, we treated human aortic smooth muscle cells (HASMCs) derived from patients with bicuspid aortic valve (BAV)- or tricuspid aortic valve (TAV)-associated TAAs with ciprofloxacin. TAA C57/BL6 mouse models were utilized to verify the effects of ciprofloxacin exposure. In the microphysiological model, real-time polymerase chain reaction, western blotting, and RNA sequencing showed that ciprofloxacin exposure was associated with a downregulated contractile phenotype, an upregulated inflammatory reaction, and extracellular matrix (ECM) degradation in the normal HASMCs derived from the non-diseased aorta. Ciprofloxacin induced mitochondrial dysfunction in the HASMCs and further increased apoptosis by activating the ERK1/2 and P38 mitogen-activated protein kinase pathways. These adverse effects appeared to be more severe in the HASMCs derived from BAV- and TAV-associated TAAs than in the normal HASMCs when the ciprofloxacin concentration exceeded 100 µg/mL. In the aortic walls of the TAA-induced mice, ECM degradation and apoptosis were aggravated after ciprofloxacin exposure. Therefore, ciprofloxacin should be used with caution in patients with BAV- or TAV-associated TAAs.

Authors

Bitao Xiang, Mieradilijiang Abudupataer, Gang Liu, Xiaonan Zhou, Dingqian Liu, Shichao Zhu, Yang Ming, Xiujie Yin, Shiqiang Yan, Yongxin Sun, Hao Lai, Chunsheng Wang, Jun Li, Kai Zhu

×

Spatial transcriptomic characterization of COVID-19 pneumonitis identifies immune circuits related to tissue injury
Amy R. Cross, … , Stephen N. Sansom, Fadi Issa
Amy R. Cross, … , Stephen N. Sansom, Fadi Issa
Published December 6, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.157837.
View: Text | PDF

Spatial transcriptomic characterization of COVID-19 pneumonitis identifies immune circuits related to tissue injury

  • Text
  • PDF
Abstract

Severe lung damage in COVID-19 involves complex interactions between diverse populations of immune and stromal cells. In this study, we used a spatial transcriptomics approach to delineate the cells, pathways and genes present across the spectrum of histopathological damage in COVID-19 lung tissue. We applied correlation network-based approaches to deconvolve gene expression data from 46 areas of interest covering >62,000 cells within well preserved lung samples from three patients. Despite substantial inter-patient heterogeneity, we discovered evidence for a common immune cell signaling circuit in areas of severe tissue that involves crosstalk between cytotoxic lymphocytes and pro-inflammatory macrophages. Expression of IFNG by cytotoxic lymphocytes was associated with induction of chemokines including CXCL9, CXCL10 and CXCL11 which are known to promote the recruitment of CXCR3+ immune cells. The tumour necrosis factor (TNF) superfamily members BAFF (TNFSF13B) and TRAIL (TNFSF10) were found to be consistently upregulated in the areas with severe tissue damage. We used published spatial and single cell SARS-CoV-2 datasets to confirm our findings in the lung tissue from additional cohorts of COVID-19 patients. The resulting model of severe COVID-19 immune-mediated tissue pathology may inform future therapeutic strategies.

Authors

Amy R. Cross, Carlos E. de Andrea, María Villalba-Esparza, Manuel F. Landecho, Lucia Cerundolo, Praveen Weeratunga, Rachel E. Etherington, Laura Denney, Graham Ogg, Ling-Pei Ho, Ian S.D. Roberts, Joanna Hester, Paul Klenerman, Ignacio Melero, Stephen N. Sansom, Fadi Issa

×

LRP1 protects against excessive superior mesenteric artery remodeling by modulating angiotensin II-mediated signaling
Jackie M. Zhang, … , Alan Daugherty, Dudley K. Strickland
Jackie M. Zhang, … , Alan Daugherty, Dudley K. Strickland
Published December 6, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.164751.
View: Text | PDF

LRP1 protects against excessive superior mesenteric artery remodeling by modulating angiotensin II-mediated signaling

  • Text
  • PDF
Abstract

Vascular smooth muscle cells (vSMC) exert a critical role in sensing and maintaining vascular integrity. These cells abundantly express the low-density lipoprotein receptor-related protein 1 (LRP1), a large endocytic and signaling receptor that recognizes numerous ligands including ApoE-rich lipoproteins, proteases, and protease-inhibitor complexes. We observed the spontaneous formation of aneurysms in the superior mesenteric artery (SMA) of both male and female mice in which LRP1 was genetically deleted in v SMC (smLRP1-/- mice). Quantitative proteomics revealed elevated abundance of several proteins in smLRP1-/- mice that are known to be induced by angiotensin II (AngII)-mediated signaling, suggesting that this pathway is dysregulated. Administration of losartan, an AngII type I receptor antagonist, or an angiotensinogen antisense oligonucleotide to reduce plasma angiotensinogen concentrations restored the normal SMA phenotype in smLRP1-/- mice and prevented aneurysm formation. Additionally, employing a vascular injury model, we noted excessive vascular remodeling and neointima formation in smLRP1-/- mice that was restored by losartan administration. Together, these findings reveal that LRP1 regulates vascular integrity and remodeling of the SMA by attenuating excessive AngII-mediated signaling.

Authors

Jackie M. Zhang, Dianaly T. Au, Hisashi Sawada, Michael K. Franklin, Jessica J. Moorleghen, Deborah A. Howatt, Pengjun Wang, Brittany O. Aicher, Brian Hampton, Mary Migliorini, Fenge Ni, Adam E. Mullick, Mashhood M. Wani, Areck A. Ucuzian, Hong S. Lu, Selen C. Muratoglu, Alan Daugherty, Dudley K. Strickland

×

Interfering with lipid metabolism through targeting CES1 sensitizes hepatocellular carcinoma for chemotherapy
Gang Li, … , Richard Lehner, Kai Sun
Gang Li, … , Richard Lehner, Kai Sun
Published December 6, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.163624.
View: Text | PDF

Interfering with lipid metabolism through targeting CES1 sensitizes hepatocellular carcinoma for chemotherapy

  • Text
  • PDF
Abstract

Hepatocellular carcinoma (HCC) is the most common lethal form of liver cancer. Apart from surgical removal and transplantation, other treatments have not yet been well established for patients with HCC. Herein, we found that carboxylesterase 1 (CES1) was expressed at various levels in HCC. We further revealed that blockage of CES1 by pharmacological and genetical approaches leads to altered lipid profiles that are directly linked to impaired mitochondrial function. Mechanistically, LC-MS/MS and lipidomic analyses revealed that lipid signaling molecules, including polyunsaturated fatty acids (PUFAs), which activate PPARα/γ, were dramatically reduced upon CES1 inhibition. As a result, SCD, a PPARα/γ target gene involved in tumor progression and chemoresistance, was significantly downregulated. Consistently, clinical analysis demonstrated a strong correlation between the protein levels of CES1 and SCD in HCC. Interference with lipid signaling by targeting the “CES1-PPARα/γ-SCD” axis sensitized HCC cells to cisplatin treatment. As a demonstration, the growth of HCC xenograft tumors in NU/J mice was potently limited by co-administration of cisplatin and CES1 inhibition. Our results suggest that CES1 is a promising therapeutic target for HCC treatment.

Authors

Gang Li, Xin Li, Iqbal Mahmud, Jazmin Ysaguirre, Baharan Fekry, Shuyue Wang, Bo Wei, Kristin L. Eckel-Mahan, Philip L. Lorenzi, Richard Lehner, Kai Sun

×

TYRO3 agonist as a novel therapy for glomerular disease
Fang Zhong, … , Kyung Lee, John He
Fang Zhong, … , Kyung Lee, John He
Published December 1, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.165207.
View: Text | PDF

TYRO3 agonist as a novel therapy for glomerular disease

  • Text
  • PDF
Abstract

Podocyte injury and loss are key drivers of primary and secondary glomerular diseases, such as focal segmental glomerulosclerosis (FSGS) and diabetic kidney disease (DKD). We previously demonstrated the renoprotective role of protein S (PS) and its cognate tyrosine-protein kinase receptor, TYRO3, in models of FSGS and DKD and that their signaling exerts anti-apoptotic and anti-inflammatory effects to confer protection against podocyte loss. Among the three TAM receptors (TYRO3, AXL, and MER), only TYRO3 expression is largely restricted to podocytes, and glomerular TYRO3 mRNA expression negatively correlates with human glomerular disease progression. We, therefore, posited that the agonism PS-TYRO3 signaling could serve as a potential therapeutic approach to attenuate glomerular disease progression. As PS function is not limited to TYRO3-mediated signal transduction but includes its anticoagulant activity, we focused on the development of TYRO3 agonist as an optimal therapeutic approach to glomerular disease. Among the small molecule TYRO3 agonist compounds screened, compound-10 (C-10) showed a select activation of TYRO3 without any effects on AXL or MER. We also confirmed that C-10 directly binds to TYRO3, but not the other receptors. In vivo, C-10 attenuated proteinuria, glomerular injury, and podocyte loss in mouse models of adriamycin-induced nephropathy and db/db model of type 2 diabetes. Moreover, these renoprotective effects of C-10 are lost in Tyro3 knockout mice, indicating that C-10 is a select agonist of TYRO3 activity that mitigates podocyte injury and glomerular disease. Therefore, C-10, a novel TYRO3 agonist, could be potentially developed as a new therapy for glomerular disease.

Authors

Fang Zhong, Hong Cai, Jia Fu, Zeguo Sun, Zhengzhe Li, David Bauman, Lois Wang, Bhaskar Das, Kyung Lee, John He

×

Culture impact on the transcriptomic programs of primary and iPSC-derived human alveolar type 2 cells
Konstantinos-Dionysios Alysandratos, … , Carla F. Kim, Darrell N. Kotton
Konstantinos-Dionysios Alysandratos, … , Carla F. Kim, Darrell N. Kotton
Published December 1, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.158937.
View: Text | PDF

Culture impact on the transcriptomic programs of primary and iPSC-derived human alveolar type 2 cells

  • Text
  • PDF
Abstract

Dysfunction of alveolar epithelial type 2 cells (AEC2s), the facultative progenitors of lung alveoli, is implicated in pulmonary disease pathogenesis, highlighting the importance of human in vitro models. However, AEC2-like cells in culture have yet to be directly compared to their in vivo counterparts at single cell resolution. Here, we perform head-to-head comparisons between the transcriptomes of fresh primary (1o) adult human AEC2s, their cultured progeny, and human induced pluripotent stem cell-derived AEC2s (iAEC2s). We find each population occupies a distinct transcriptomic space with cultured AEC2s (1o and iAEC2s) exhibiting similarities to and differences from freshly purified 1o cells. Across each cell type, we find an inverse relationship between proliferative and maturation states, with pre-culture 1o AEC2s being most quiescent/mature and iAEC2s being most proliferative/least mature. Cultures of either type of human AEC2 do not generate detectable alveolar type 1 cells in these defined conditions; however, a subset of iAEC2s co-cultured with fibroblasts acquires a “transitional cell state” described in mice and humans to arise during fibrosis or following injury. Hence, we provide direct comparisons of the transcriptomic programs of 1o and engineered AEC2s, two in vitro models that can be harnessed to study human lung health and disease.

Authors

Konstantinos-Dionysios Alysandratos, Carolina Garcia-de-Alba, Changfu Yao, Patrizia Pessina, Jessie Huang, Carlos Villacorta-Martin, Olivia T. Hix, Kasey Minakin, Claire L. Burgess, Pushpinder Bawa, Aditi Murthy, Bindu Konda, Michael F. Beers, Barry R. Stripp, Carla F. Kim, Darrell N. Kotton

×

Longitudinal single-cell analysis of SARS-CoV-2-reactive B cells uncovers persistence of early-formed, antigen specific clones
Lydia Scharf, … , Mats Bemark, Davide Angeletti
Lydia Scharf, … , Mats Bemark, Davide Angeletti
Published November 29, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.165299.
View: Text | PDF

Longitudinal single-cell analysis of SARS-CoV-2-reactive B cells uncovers persistence of early-formed, antigen specific clones

  • Text
  • PDF
Abstract

Understanding persistence and evolution of B cell clones after COVID-19 infection and vaccination is crucial for predicting responses against emerging viral variants and optimizing vaccines. Here, we collected longitudinal samples from severe COVID-19 patients every third to seventh day during hospitalization and every third month after recovery. We profiled the antigen-specific immune cell dynamics by combining single cell RNA-Seq, Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE)-Seq, B cell receptor (BCR)-Seq with oligo-tagged antigen baits. While the proportion of Spike Receptor Binding Domain-specific memory B cells (MBC) increased from 3 months after infection, the other Spike- and Nucleocapsid-specific B cells remained constant. All patients showed ongoing class switching and sustained affinity maturation of antigen specific cells, which was not significantly increased early after vaccine. B cell analysis revealed a polyclonal response with limited clonal expansion; nevertheless, some clones detected during hospitalization, as plasmablasts, persisted for up to one year, as MBC. Monoclonal antibodies derived from persistent B cell families increased their binding and neutralization breadth and started recognizing viral variants by 3 months after infection. Overall, our findings provide important insights into the clonal evolution and dynamics of antigen specific B cell responses in longitudinally sampled COVID-19 infected patients.

Authors

Lydia Scharf, Hannes Axelsson, Aikaterini Emmanouilidi, Nimitha R. Mathew, Daniel J. Sheward, Susannah Leach, Pauline Isakson, Ilya V. Smirnov, Emelie Marklund, Nicolae Miron, Lars-Magnus Andersson, Magnus Gisslén, Ben Murrell, Anna Lundgren, Mats Bemark, Davide Angeletti

×

ZEB2 controls kidney stromal progenitor differentiation and inhibits abnormal myofibroblast expansion and kidney fibrosis
Sudhir Kumar, … , David J. Salant, Weining Lu
Sudhir Kumar, … , David J. Salant, Weining Lu
Published November 29, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.158418.
View: Text | PDF

ZEB2 controls kidney stromal progenitor differentiation and inhibits abnormal myofibroblast expansion and kidney fibrosis

  • Text
  • PDF
Abstract

FOXD1+ derived stromal cells give rise to pericytes and fibroblasts that support the kidney vasculature and interstitium but are also major precursors of myofibroblasts. ZEB2 is a SMAD-interacting transcription factor that is expressed in developing kidney stromal progenitors. Here we show that Zeb2 is essential for normal FOXD1+ stromal progenitor development. Specific deletion of mouse Zeb2 in FOXD1+ stromal progenitors (Zeb2 cKO) leads to abnormal interstitial stromal cell development, differentiation, and kidney fibrosis. Immunofluorescent staining analyses revealed abnormal expression of interstitial stromal cell markers MEIS1/2/3, CDKN1C, and CSPG4 (NG2) in newborn and 3-week-old Zeb2 cKO mouse kidneys. Zeb2 deficient FOXD1+ stromal progenitors also took on a myofibroblast fate that led to kidney fibrosis and kidney failure. Cell marker studies further confirmed that these myofibroblasts expressed pericyte and resident fibroblast markers including PDGFRβ, CSPG4, Desmin, GLI1, and NT5E. Notably, increased interstitial collagen deposition associated with loss of Zeb2 in FOXD1+ stromal progenitors was accompanied by increased expression of activated SMAD1/5/8, SMAD2/3, SMAD4, and AXIN2. Thus, our study identifies a key role of ZEB2 in maintaining the cell fate of FOXD1+ stromal progenitors during kidney development whereas loss of ZEB2 leads to differentiation of FOXD1+ stromal progenitors into myofibroblasts and kidney fibrosis.

Authors

Sudhir Kumar, Xueping Fan, Hila Milo Rasouly, Richa Sharma, David J. Salant, Weining Lu

×
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • …
  • 144
  • 145
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts