Next generation sequencing can identify previously uncharacterized gene expression patterns in disease. Beyond differentially expressed genes analysis, we investigated the ability of within-population diversity (α-diversity) of the transcriptome to reveal additional biological information in alcohol-associated liver disease (ALD), comparing Differential Shannon diversity (DSD) to transcriptome heterogeneity changes. RNA sequencing data from normal livers and patients with early ALD and severe AH were analyzed. α-diversity indices and Percent Shannon Diversity of a gene, which refers to this gene's contribution to total Shannon entropy, were calculated. Ingenuity pathway analysis identified canonical pathways determined by differentially expressed genes (DEG) and DSD approaches. ALD significantly decreased hepatic transcriptome α-diversity correlating with increased relative contribution of select genes. These changes were driven by lower abundance gene expression loss. DEG and DSD analyses showed overlapping genes and canonical pathways, but DSD also identified additional genes and pathways not highlighted by DEG, including fatty acid oxidation, extracellular matrix degradation, and cholesterol metabolism pathways that may represent additional therapeutic targets. Importantly, DSD more effectively identified differences between ASH and AH. Overall, α-diversity analysis revealed that ALD progressively reduces transcriptome heterogeneity, and that DSD provides complementary insights into disease mechanisms missed by standard approaches.
Sudrishti Chaudhary, Jia-Jun Liu, Silvia Liu, Marissa Di, Juliane I. Beier, Ramon Bataller, Josepmaria Argemi, Panayiotis V. Benos, Gavin E. Arteel
Activation of lung fibroblasts in response to epithelial injury and inflammation provokes pulmonary fibrosis (PF). Endogenous molecular brakes counteracting fibroblast activity can be targets for therapies. Preclinical studies of synthetic C-type natriuretic peptide (CNP) indicated that this hormone might provide such a brake. As shown here, CNP exerts antifibrotic effects in cultured lung fibroblasts as well as precision cut lung slices from patients with PF, supporting clinical relevance. Therefore, augmenting or supplementing endogenous CNP could improve the treatment of such patients. To unravel whether paracrine CNP counteracts inflammation-driven PF, we studied mice with fibroblast-restricted knock-out of guanylyl-cyclase-B (GC-B), its cGMP-synthesizing receptor. Fibroblast GC-B-KO mice had enhanced bleomycin-induced lung inflammation, with increased expression of proinflammatory, profibrotic cytokines. Nevertheless, subsequent PF was not exacerbated. Molecular studies revealed that inflammation led to inhibition of CNP signaling in resident myofibroblasts, namely GC-B downregulation and induction of CNP/cGMP-degrading pathways. Despite this, a single subcutaneous injection of the recently developed long-acting CNP analog, MS~[Gln6,14]CNP-38, abrogated experimental lung inflammation and fibrosis. We conclude that CNP signaling in lung fibroblasts has anti-inflammatory and antifibrotic effects. Attenuation of this endogenous brake participates in the pathogenesis of PF and rescuing this pathway with long-acting CNP-analogs may have therapeutic potential.
Rene Weyer, Katharina Völker, Tamara Potapenko, Lisa Krebes, Marco Abesser, Anna-Lena Friedrich, Eva Lessmann, Ali Khadim, Clemens Ruppert, Elie El Agha, Dalia Sheta, Andreas Beilhack, Daniel V. Santi, Eric L. Schneider, Michaela Kuhn, Swati Dabral
Iron regulatory protein 1 (IRP1) is a post-transcriptional regulator of cellular iron metabolism. In mice, loss of IRP1 causes polycythemia through translational de-repression of hypoxia-inducible factor 2α (HIF2α) mRNA, which increases renal erythropoietin production. Here we show that Irp1-/- mice develop fasting hypoglycemia and are protected against high-fat diet–induced hyperglycemia and hepatic steatosis. Discovery-based proteomics of Irp1-/- livers revealed a mitochondrial dysfunction signature. Seahorse flux analysis in primary hepatocytes and differentiated skeletal muscle myotubes confirmed impaired respiratory capacity, with a shift from oxidative phosphorylation to glycolytic ATP production. This metabolic rewiring was associated with enhanced insulin sensitivity and increased glucose uptake in skeletal muscle. Under metabolic stress, IRP1 deficiency altered the redox balance of mitochondrial iron, resulting in inefficient energy production and accumulation of amino acids and metabolites in skeletal muscle, rendering them unavailable for hepatic gluconeogenesis. These findings identify IRP1 as a critical regulator of systemic energy homeostasis.
Wen Gu, Nicole Wilkinson, Carine Fillebeen, Darren Blackburn, Korin Sahinyan, Eric Bonneil, Tao Zhao, Zhi Luo, Vahab Soleimani, Vincent Richard, Christoph H. Borchers, Albert Koulman, Benjamin Jenkins, Bernhard Michalke, Hans Zischka, Judith Sailer, Vivek Venkataramani, Othon Iliopoulos, Gary Sweeney, Kostas Pantopoulos
Multisystemic Smooth Muscle Dysfunction Syndrome (MSMDS) is a rare disorder caused by ACTA2 mutations, including the R179H variant, which alters actin filament stability and dynamics and smooth muscle contractility. While cardiovascular complications dominate its clinical presentation, gastrointestinal (GI) dysfunction significantly impacts quality of life. To investigate the structural, functional, and cellular basis of gut dysmotility in MSMDS, we reviewed clinical data from 24 MSMDS patients and studied the ACTA2 R179H mouse model Patients exhibited severe gut dysmotility, with 75% requiring medication for chronic constipation. ACTA2 mutant mice displayed cecal and colonic dilatation, reduced intestinal length, and disrupted colonic migrating motor complexes (CMMCs). Delayed whole-gut transit and impaired contractile responses to electrical and pharmacological stimulation were observed. Transcriptomic analysis revealed significant actin cytoskeleton-related gene changes in smooth muscle cells, and immune profiling identified increased lymphocytic infiltration. Despite functional abnormalities, there were no obvious changes in the enteric nervous system. These findings establish ACTA2 mice as a robust model for studying GI pathology in MSMDS, elucidating the role of smooth muscle dysfunction in gut dysmotility. This model provides a foundation for developing targeted therapies aimed at restoring intestinal motility by directly addressing actin cytoskeletal disruptions in smooth muscle cells.
Ahmed A. Rahman, Rhian Stavely, Leah C. Ott, Christopher Y. Han, Kensuke Ohishi, Ryo Hotta, Alan J. Burns, Sabyasachi Das, Emily Da Cruz, Diana Tambala, Mark E. Lindsay, Patricia L. Musolino, Allan M. Goldstein
Functional antibody responses to malaria transmission-blocking vaccines (TBVs) are assessed using the Standard Membrane Feeding Assay (SMFA). This assay quantifies percentage reduction of oocyst levels in mosquitoes fed gametocytes mixed with antisera/antibodies, referred to as transmission-reducing activity (TRA). As TBVs advance to large clinical trials, new scalable assays are needed to characterize vaccine responses. Here, we developed an epitope-specific competitive ELISA platform (P230Compete) for TBV candidate Pfs230D1, based on single-chain variable fragments (scFv) against epitopes recognized by human monoclonal antibodies with high TRA. We quantified functional epitope-specific antibody responses (F) in Phase 1 Pfs230D1-EPA/AS01 vaccine trial participants, using 171 serum samples collected at two post-vaccination timepoints. Five antibody features were examined by P230Compete including total IgG (reported as ELISA units, EUF), IgG subclasses (IgG1F, IgG3F, IgG4F), and bound complement factor C1q (C1qF). EUF and IgG1F demonstrated strong correlation and excellent prediction of TRA≥80% in logistic regression analysis (AUC of 0.81 for both assays post-dose 3, and 0.80 and 0.76 post-dose 4). Furthermore, combining EUF and IgG1F showed even better predictive performance at each timepoint. P230Compete offers a promising proxy assay to replace SMFA in late-stage Pfs230D1 trials.
Cristina A. Meehan, Matthew V. Cowles, Robert D. Morrison, Yuyan Yi, Jingwen Gu, Jen C.C. Hume, Mina P. Peyton, Issaka Sagara, Sara A. Healy, Jonathan P. Renn, Patrick E. Duffy
This investigation leverages single-cell RNA sequencing (scRNA-Seq) to delineate the contributions of muscle-resident Schwann cells to neuromuscular junction (NMJ) remodeling by comparing a model of stable innervation with models of reinnervation following partial or complete denervation. The study discovered multiple distinct Schwann cell subtypes, including a novel terminal Schwann cell (tSC) subtype integral to the denervation-reinnervation cycle, identified by a transcriptomic signature indicative of cell migration and polarization. The data also characterizes three myelin Schwann cell subtypes, which are distinguished based on enrichment of genes associated with myelin production, mesenchymal differentiation or collagen synthesis. Importantly, SPP1 signaling emerges as a pivotal regulator of NMJ dynamics, promoting Schwann cell proliferation and muscle reinnervation across nerve injury models. These findings advance our understanding of NMJ maintenance and regeneration and underscore the therapeutic potential of targeting specific molecular pathways to treat neuromuscular and neurodegenerative disorders.
Steve D. Guzman, Ahmad Abu-Mahfouz, Carol S. Davis, Lloyd P. Ruiz, Peter C.D. Macpherson, Susan V. Brooks
C-type natriuretic peptide (CNP) is known to promote chondrocyte proliferation and bone formation; however, CNP’s extremely short half-life necessitates continuous intravascular administration to achieve bone-lengthening effects. Vosoritide, a CNP analog designed for resistance to neutral endopeptidase, allows for once daily administration. Nonetheless, it distributes systemically rather than localizing to target tissues, which may result in adverse effects such as hypotension. To enhance local drug delivery and therapeutic efficacy, we developed a novel synthetic protein by fusing a collagen-binding domain (CBD) to CNP, termed CBD-CNP. This fusion protein exhibited stability under heat conditions and retained the collagen-binding ability and bioactivity as CNP. CBD-CNP localized to articular cartilage in fetal murine tibiae and promoted bone elongation. Spatial transcriptomic analysis revealed that the upregulation of chondromodulin expression may contribute to its therapeutic effects. Treatment of CBD-CNP mixed with collagen powder to a fracture site of a mouse model increased bone mineral content and bone volume rather than CNP-22. Intra-articular injection of CBD-CNP to a mouse model of knee osteoarthritis suppressed subchondral bone thickening. By addressing the limitations of CNP’s rapid degeneration, CBD-CNP leverages its collagen-binding capacity to achieve targeted, sustained delivery in collagen-rich tissues, offering a promising strategy for enhancing chondrogenesis and osteogenesis.
Kenta Hirai, Kenta Sawamura, Ryusaku Esaki, Ryusuke Sawada, Yuka Okusha, Eriko Aoyama, Hiroki Saito, Kentaro Uchida, Takehiko Mima, Satoshi Kubota, Hirokazu Tsukahara, Shiro Imagama, Masaki Matsushita, Osamu Matsushita, Yasuyuki Hosono
Clonal haematopoiesis of indeterminate potential (CHIP) is the expansion of blood stem cells and progeny after somatic mutation. CHIP associates with increased cardiovascular disease (CVD) with inflammation from macrophages a proposed common effector. However, mouse CHIP studies are discordant for clonal expansion and inflammation. Similarly, directionality of association between CHIP and CVD remains debated. We investigated effects of three CHIP mutations on macrophage cytokines, clonal expansion and atherosclerosis in parallel. We find that Tet2 and Dnmt3a mutations increase cytokines and inflammasome activation in Tet2 but decrease in Dnmt3a. However, Jak2 mutant macrophages produced equivalent cytokine as wild-type. In mice, Tet2 mutants clonally expanded, but Dnmt3a and Jak2 mutants didn’t. Expansion was unaffected by systemic inflammation, while hyperlipidemia expanded Tet2-/- cells, but not mono-allelic mutants. Similarly, human Mendelian randomisation showed no effect of serum cytokines or CVD on CHIP risk. Experimental atherosclerosis was increased in females with Tet2 and males with Jak2, but unchanged with Dnmt3a mutations. Together, common CHIP mutations have disparate effects on macrophage cytokines and clonal expansion, and sex-dependent effects on atherogenesis, suggesting a common mechanism across CHIP is unlikely. Thus, CHIP mutations differ in pathophysiology and clinical sequalae across sexes and should be treated as different entities.
Paul R. Carter, Lauren Kitt, Amanda Rodgers, Nichola Figg, Ang Zhou, Chengrui Zhu, Ziyang Wang, Peter Libby, Stephen Burgess, George S. Vassiliou, Murray CH. Clarke
Background: Sleep is increasingly recognized as essential to human health, yet the adverse health consequences of acute sleep deprivation are unknown. We hypothesized that acute sleep deprivation is associated with health outcomes and modulated by sleep-associated genotypes. Methods: LOESS smoothing was performed on sleep estimates from Fitbit users (N = 14,681) between June 1, 2016 and July 1, 2022. Dates when population minutes slept were less than the 90% confidence interval of the LOESS regression were named acute sleep deprivation events (ASDEs). Phenome-wide disease incidence among the AoU population (N = 287,012) in the 10 days post-ASDE was compared to a preceding reference period by McNemar test. Circadian rhythm and sleep duration-associated SNPs were screened to identify genotypes associated with shorter ASDE sleep duration. Influences of sleep and circadian genotype on post-ASDE influenza risk were modeled using binomial family generalized estimating equations. Results: We identified 32 ASDEs spanning major national events. A phenome-wide screen found increased risk of influenza (OR = 1.54 [1.40, 1.70], P-value = 1.00 x 10-18) following ASDEs. 56 SNPs were associated with decreased sleep duration on ASDEs. Higher quantiles of ASDE-related SNP genotype burden were associated with less ASDE sleep duration and a greater risk of influenza-associated healthcare visits. Conclusion: Major national events are associated with acute sleep deprivation and greater influenza risk which is amplified by sleep genotypes. These findings should inform public health vigilance surrounding major national events.
Neil J. Kelly, Rahul Chaudhary, Wadih El Khoury, Nishita Kalepalli, Jesse Wang, Priya Patel, Irene Chan, Haris Rahman, Aisha Saiyed, Anisha N. Shah, Colleen A. McClung, Satoshi Okawa, Mehdi Nouraie, Stephen Y. Chan
Hofbauer cells (HBC) are fetal-derived macrophages located in the placenta that contribute to antimicrobial defense, angiogenesis, tissue remodeling, and metabolic processes within the chorionic villi. Although their roles in placental biology are increasingly recognized, the mechanisms that regulate HBC identity and function are not yet fully defined. This study aimed to define the core transcriptomic and epigenomic features of HBCs in term placentas and to examine their capacity for transcriptional responsiveness and phenotypic variation. Using chromatin accessibility profiling and bulk RNA sequencing, we found that HBCs exhibit a unique gene expression and chromatin accessibility profile compared to other fetal and adult macrophages. We identified a coordinated transcriptional network involving nuclear receptors NR4A1–3, the glucocorticoid receptor (GR), and RFX family members (RFX1, RFX2, RFX5) that appears to shape HBC identity, particularly through pathways linked to lipid metabolism and angiogenesis. Although exploratory in nature, in vitro stimulation studies showed that HBCs exhibited increased transcriptional activity in response to combined IL-4 and RSG treatment, including induction of the lipid transporter CD36. Mass cytometry analysis revealed surface markers indicative of both immature and mature macrophage states. Together, these results indicated that HBCs represent a distinct and diverse macrophage population with specialized and adaptable regulatory program in the human placenta.
Benjámin R. Baráth, Dóra Bojcsuk, Krisztian Bene, Noemí Caballero-Sánchez, Tímea Cseh, João CR. de Freitas, Petros Tzerpos, Marta Toth, Zhonghua Tang, Seth Guller, Zoárd Tibor Krasznai, Patrícia Neuperger, Gabor J. Szebeni, Gergely Nagy, Tamás Deli, Laszlo Nagy
No posts were found with this tag.