Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Urinary cytokeratin 20 as a predictor for chronic kidney disease following acute kidney injury
Rui Ma, … , Xiaobing Yang, Fan Fan Hou
Rui Ma, … , Xiaobing Yang, Fan Fan Hou
Published May 28, 2024
Citation Information: JCI Insight. 2024;9(13):e180326. https://doi.org/10.1172/jci.insight.180326.
View: Text | PDF
Clinical Research and Public Health Nephrology

Urinary cytokeratin 20 as a predictor for chronic kidney disease following acute kidney injury

  • Text
  • PDF
Abstract

BACKGROUND Identifying patients with acute kidney injury (AKI) at high risk of chronic kidney disease (CKD) progression remains a challenge.METHODS Kidney transcriptome sequencing was applied to identify the top upregulated genes in mice with AKI. The product of the top-ranking gene was identified in tubular cells and urine in mouse and human AKI. Two cohorts of patients with prehospitalization estimated glomerular filtration rate (eGFR) ≥ 45 mL/min/1.73 m2 who survived over 90 days after AKI were used to derive and validate the predictive models. AKI-CKD progression was defined as eGFR < 60 mL/min/1.73 m2 and with minimum 25% reduction from baseline 90 days after AKI in patients with prehospitalization eGFR ≥ 60 mL/min/1.73 m2. AKI-advanced CKD was defined as eGFR < 30 mL/min/1.73 m2 90 days after AKI in those with prehospitalization eGFR 45–59 mL/min/1.73 m2.RESULTS Kidney cytokeratin 20 (CK20) was upregulated in injured proximal tubular cells and detectable in urine within 7 days after AKI. High concentrations of urinary CK20 (uCK20) were independently associated with the severity of histological AKI and the risk of AKI-CKD progression. In the Test set, the AUC of uCK20 for predicting AKI-CKD was 0.80, outperforming reported biomarkers for predicting AKI. Adding uCK20 to clinical variables improved the ability to predict AKI-CKD progression, with an AUC of 0.90, and improved the risk reclassification.CONCLUSION These findings highlight uCK20 as a useful predictor for AKI-CKD progression and may provide a tool to identify patients at high risk of CKD following AKI.FUNDING National Natural Science Foundation of China, National Key R&D Program of China, 111 Plan, Guangdong Key R&D Program

Authors

Rui Ma, Han Ouyang, Shihong Meng, Jun Liu, Jianwei Tian, Nan Jia, Youhua Liu, Xin Xu, Xiaobing Yang, Fan Fan Hou

×

Full Text PDF

Download PDF (3.82 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts