Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Virology

  • 74 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 6
  • 7
  • 8
  • Next →
Influenza-mediated reduction of lung epithelial ion channel activity leads to dysregulated pulmonary fluid homeostasis
Jeffrey D. Brand, … , Sadis Matalon, Kevin S. Harrod
Jeffrey D. Brand, … , Sadis Matalon, Kevin S. Harrod
Published October 18, 2018
Citation Information: JCI Insight. 2018;3(20):e123467. https://doi.org/10.1172/jci.insight.123467.
View: Text | PDF

Influenza-mediated reduction of lung epithelial ion channel activity leads to dysregulated pulmonary fluid homeostasis

  • Text
  • PDF
Abstract

Severe influenza (IAV) infection can develop into bronchopneumonia and edema, leading to acquired respiratory distress syndrome (ARDS) and pathophysiology. Underlying causes for pulmonary edema and aberrant fluid regulation largely remain unknown, particularly regarding the role of viral-mediated mechanisms. Herein, we show that distinct IAV strains reduced the functions of the epithelial sodium channel (ENaC) and the cystic fibrosis transmembrane regulator (CFTR) in murine respiratory and alveolar epithelia in vivo, as assessed by measurements of nasal potential differences and single-cell electrophysiology. Reduced ion channel activity was distinctly limited to virally infected cells in vivo and not bystander uninfected lung epithelium. Multiple lines of evidence indicated ENaC and CFTR dysfunction during the acute infection period; however, only CFTR dysfunction persisted beyond the infection period. ENaC, CFTR, and Na,K-ATPase activities and protein levels were also reduced in virally infected human airway epithelial cells. Reduced ENaC and CFTR led to changes in airway surface liquid morphology of human tracheobronchial cultures and airways of IAV-infected mice. Pharmacologic correction of CFTR function ameliorated IAV-induced physiologic changes. These changes are consistent with mucous stasis and pulmonary edema; furthermore, they indicate that repurposing therapeutic interventions correcting CFTR dysfunction may be efficacious for treatment of IAV lung pathophysiology.

Authors

Jeffrey D. Brand, Ahmed Lazrak, John E. Trombley, Ren-Jay Shei, A. Timothy Adewale, Jennifer L. Tipper, Zhihong Yu, Amit R. Ashtekar, Steven M. Rowe, Sadis Matalon, Kevin S. Harrod

×

HIV infection results in clonal expansions containing integrations within pathogenesis-related biological pathways
Kevin G. Haworth, … , Jennifer E. Adair, Hans-Peter Kiem
Kevin G. Haworth, … , Jennifer E. Adair, Hans-Peter Kiem
Published July 12, 2018
Citation Information: JCI Insight. 2018;3(13):e99127. https://doi.org/10.1172/jci.insight.99127.
View: Text | PDF

HIV infection results in clonal expansions containing integrations within pathogenesis-related biological pathways

  • Text
  • PDF
Abstract

The genomic integration of HIV into cells results in long-term persistence of virally infected cell populations. This integration event acts as a heritable mark that can be tracked to monitor infected cells that persist over time. Previous reports have documented clonal expansion in people and have linked them to proto-oncogenes; however, their significance or contribution to the latent reservoir has remained unclear. Here, we demonstrate that a directed pattern of clonal expansion occurs in vivo, specifically in gene pathways important for viral replication and persistence. These biological processes include cellular division, transcriptional regulation, RNA processing, and posttranslational modification pathways. This indicates preferential expansion when integration events occur within genes or biological pathways beneficial for HIV replication and persistence. Additionally, these expansions occur quickly during unsuppressed viral replication in vivo, reinforcing the importance of early intervention for individuals to limit reservoir seeding of clonally expanded HIV-infected cells.

Authors

Kevin G. Haworth, Lauren E. Schefter, Zachary K. Norgaard, Christina Ironside, Jennifer E. Adair, Hans-Peter Kiem

×

Nasal priming by a murine coronavirus provides protective immunity against lethal heterologous virus pneumonia
Xiaoyang Hua, … , Stephen Tilley, Stanley Perlman
Xiaoyang Hua, … , Stephen Tilley, Stanley Perlman
Published June 7, 2018
Citation Information: JCI Insight. 2018;3(11):e99025. https://doi.org/10.1172/jci.insight.99025.
View: Text | PDF

Nasal priming by a murine coronavirus provides protective immunity against lethal heterologous virus pneumonia

  • Text
  • PDF
Abstract

The nasal mucosa is an important component of mucosal immunity. Immunogenic particles in inspired air are known to activate the local nasal mucosal immune system and can lead to sinonasal inflammation; however, little is known about the effect of this activation on the lung immune environment. Here, we showed that nasal inoculation of murine coronavirus (CoV) in the absence of direct lung infection primes the lung immune environment by recruiting activated monocytes (Ly6C+ inflammatory monocytes) and NK cells into the lungs. Unlike infiltration of these cells into directly infected lungs, a process that requires type I IFN signaling, nasally induced infiltration of Ly6C+ inflammatory monocytes into the lungs is IFN-I independent. These activated macrophages ingested antigen and migrated to pulmonary lymph nodes, and enhanced both innate and adaptive immunity after heterologous virus infection. Clinically, such nasal-only inoculation of MHV-1 failed to cause pneumonia but significantly reduced mortality and morbidity of lethal pneumonia caused by severe acute respiratory syndrome CoV (SARS-CoV) or influenza A virus. Together, the data indicate that the nose and upper airway remotely prime the lung immunity to protect the lungs from direct viral infections.

Authors

Xiaoyang Hua, Rahul Vijay, Rudragouda Channappanvar, Jeremiah Athmer, David K. Meyerholz, Nitin Pagedar, Stephen Tilley, Stanley Perlman

×

Virus-like infection induces human β cell dedifferentiation
Masaya Oshima, … , Olivier Albagli-Curiel, Raphael Scharfmann
Masaya Oshima, … , Olivier Albagli-Curiel, Raphael Scharfmann
Published February 8, 2018
Citation Information: JCI Insight. 2018;3(3):e97732. https://doi.org/10.1172/jci.insight.97732.
View: Text | PDF

Virus-like infection induces human β cell dedifferentiation

  • Text
  • PDF
Abstract

Type 1 diabetes (T1D) is a chronic disease characterized by an autoimmune-mediated destruction of insulin-producing pancreatic β cells. Environmental factors such as viruses play an important role in the onset of T1D and interact with predisposing genes. Recent data suggest that viral infection of human islets leads to a decrease in insulin production rather than β cell death, suggesting loss of β cell identity. We undertook this study to examine whether viral infection could induce human β cell dedifferentiation. Using the functional human β cell line EndoC-βH1, we demonstrate that polyinosinic-polycytidylic acid (PolyI:C), a synthetic double-stranded RNA that mimics a byproduct of viral replication, induces a decrease in β cell–specific gene expression. In parallel with this loss, the expression of progenitor-like genes such as SOX9 was activated following PolyI:C treatment or enteroviral infection. SOX9 was induced by the NF-κB pathway and also in a paracrine non–cell-autonomous fashion through the secretion of IFN-α. Lastly, we identified SOX9 targets in human β cells as potentially new markers of dedifferentiation in T1D. These findings reveal that inflammatory signaling has clear implications in human β cell dedifferentiation.

Authors

Masaya Oshima, Klaus-Peter Knoch, Marc Diedisheim, Antje Petzold, Pierre Cattan, Marco Bugliani, Piero Marchetti, Pratik Choudhary, Guo-Cai Huang, Stefan R. Bornstein, Michele Solimena, Olivier Albagli-Curiel, Raphael Scharfmann

×

High-dimensional CyTOF analysis of dengue virus–infected human DCs reveals distinct viral signatures
Rebecca E. Hamlin, … , Miriam Merad, Ana Fernandez-Sesma
Rebecca E. Hamlin, … , Miriam Merad, Ana Fernandez-Sesma
Published July 6, 2017
Citation Information: JCI Insight. 2017;2(13):e92424. https://doi.org/10.1172/jci.insight.92424.
View: Text | PDF

High-dimensional CyTOF analysis of dengue virus–infected human DCs reveals distinct viral signatures

  • Text
  • PDF
Abstract

Dengue virus (DENV) is the most prevalent mosquito-borne virus causing human disease. Of the 4 DENV serotypes, epidemiological data suggest that DENV-2 secondary infections are associated with more severe disease than DENV-4 infections. Mass cytometry by time-of-flight (CyTOF) was used to dissect immune changes induced by DENV-2 and DENV-4 in human DCs, the initial targets of primary infections that likely affect infection outcomes. Strikingly, DENV-4 replication peaked earlier and promoted stronger innate immune responses, with increased expression of DC activation and migration markers and increased cytokine production, compared with DENV-2. In addition, infected DCs produced higher levels of inflammatory cytokines compared with bystander DCs, which mainly produced IFN-induced cytokines. These high-dimensional analyses during DENV-2 and DENV-4 infections revealed distinct viral signatures marked by different replication strategies and antiviral innate immune induction in DCs, which may result in different viral fitness, transmission, and pathogenesis.

Authors

Rebecca E. Hamlin, Adeeb Rahman, Theodore R. Pak, Kevin Maringer, Ignacio Mena, Dabeiba Bernal-Rubio, Uma Potla, Ana M. Maestre, Anthony C. Fredericks, El-ad D. Amir, Andrew Kasarskis, Irene Ramos, Miriam Merad, Ana Fernandez-Sesma

×

Clinical, virological, and biological parameters associated with outcomes of Ebola virus infection in Macenta, Guinea
Marie-Astrid Vernet, … , François L’Hériteau, Sylvain Baize
Marie-Astrid Vernet, … , François L’Hériteau, Sylvain Baize
Published March 23, 2017
Citation Information: JCI Insight. 2017;2(6):e88864. https://doi.org/10.1172/jci.insight.88864.
View: Text | PDF

Clinical, virological, and biological parameters associated with outcomes of Ebola virus infection in Macenta, Guinea

  • Text
  • PDF
Abstract

BACKGROUND. The pathogenesis of Ebola virus (EBOV) disease (EVD) is poorly characterized. The establishment of well-equipped diagnostic laboratories close to Ebola treatment centers (ETCs) has made it possible to obtain relevant virological and biological data during the course of EVD and to assess their association with the clinical course and different outcomes of the disease.

METHODS. We were responsible for diagnosing EBOV infection in patients admitted to two ETCs in forested areas of Guinea. The pattern of clinical signs was recorded, and an etiological diagnosis was established by RT-PCR for EBOV infection or a rapid test for malaria and typhoid fever. Biochemical analyses were also performed.

RESULTS. We handled samples from 168 patients between November 29, 2014, and January 31, 2015; 97 patients were found to be infected with EBOV, with Plasmodium falciparum coinfection in 18%. Overall mortality for EVD cases was 58%, rising to 86% if P. falciparum was also present. Viral load was higher in fatal cases of EVD than in survivors, and fatal cases were associated with higher aspartate aminotransferase (AST) and alanine aminotransferase (ALT), C-reactive protein (CRP), and IL-6 levels. Furthermore, regardless of outcome, EVD was characterized by higher creatine kinase (CPK), amylase, and creatinine levels than in febrile patients without EVD, with higher blood urea nitrogen (BUN) levels in fatal cases of EVD only.

CONCLUSION. These findings suggest that a high viral load at admission is a marker of poor EVD prognosis. In addition, high AST, ALT, CRP, and IL-6 levels are associated with a fatal outcome of EVD. Damage to the liver and other tissues, with massive rhabdomyolysis and, probably, acute pancreatitis, is associated with EVD and correlated with disease severity. Finally, biochemical analyses provide substantial added value at ETCs, making it possible to improve supportive rehydration and symptomatic care for patients.

FUNDING. The French Ministry of Foreign Affairs, the Agence Française de Développement, and Institut Pasteur.

Authors

Marie-Astrid Vernet, Stéphanie Reynard, Alexandra Fizet, Justine Schaeffer, Delphine Pannetier, Jeremie Guedj, Max Rives, Nadia Georges, Nathalie Garcia-Bonnet, Aboubacar I. Sylla, Péma Grovogui, Jean-Yves Kerherve, Christophe Savio, Sylvie Savio-Coste, Marie-Laure de Séverac, Philippe Zloczewski, Sandrine Linares, Souley Harouna, Bing M’Lebing Abdoul, Frederic Petitjean, Nenefing Samake, Susan Shepherd, Moumouni Kinda, Fara Roger Koundouno, Ludovic Joxe, Mathieu Mateo, Patrick Lecine, Audrey Page, Tang Maleki Tchamdja, Matthieu Schoenhals, Solenne Barbe, Bernard Simon, Tuan Tran-Minh, Christophe Longuet, François L’Hériteau, Sylvain Baize

×

Flow virometric sorting and analysis of HIV quasispecies from plasma
Thomas Musich, … , Robert Yarchoan, Marjorie Robert-Guroff
Thomas Musich, … , Robert Yarchoan, Marjorie Robert-Guroff
Published February 23, 2017
Citation Information: JCI Insight. 2017;2(4):e90626. https://doi.org/10.1172/jci.insight.90626.
View: Text | PDF

Flow virometric sorting and analysis of HIV quasispecies from plasma

  • Text
  • PDF
Abstract

Flow cytometry is utilized extensively for cellular analysis, but technical limitations have prevented its routine application for characterizing virus. The recent introduction of nanoscale fluorescence-activated cytometric cell sorting now allows analysis of individual virions. Here, we demonstrate staining and sorting of infectious HIV. Fluorescent antibodies specific for cellular molecules found on budding virions were used to label CCR5-tropic Bal HIV and CXCR4-tropic NL4.3 HIV Env-expressing pseudovirions made in THP-1 cells (monocyte/macrophage) and H9 cells (T cells), respectively. Using a flow cytometer, we resolved the stained virus beyond isotype staining and demonstrated purity and infectivity of sorted virus populations on cells with the appropriate coreceptors. We subsequently sorted infectious simian/human immunodeficiency virus from archived plasma. Recovery was approximately 0.5%, but virus present in plasma was already bound to viral-specific IgG generated in vivo, likely contributing to the low yield. Importantly, using two broadly neutralizing HIV antibodies, PG9 and VRC01, we also sorted virus from archived human plasma and analyzed the sorted populations genetically and by proteomics, identifying the quasispecies present. The ability to sort infectious HIV from clinically relevant samples provides material for detailed molecular, genetic, and proteomic analyses applicable to future design of vaccine antigens and potential development of personalized treatment regimens.

Authors

Thomas Musich, Jennifer C. Jones, Brandon F. Keele, Lisa M. Miller Jenkins, Thorsten Demberg, Thomas S. Uldrick, Robert Yarchoan, Marjorie Robert-Guroff

×

HLA-DQ β1 alleles associated with Epstein-Barr virus (EBV) infectivity and EBV gp42 binding to cells
Qingxue Li, … , Amitava Roy, Jeffrey I. Cohen
Qingxue Li, … , Amitava Roy, Jeffrey I. Cohen
Published February 23, 2017
Citation Information: JCI Insight. 2017;2(4):e85687. https://doi.org/10.1172/jci.insight.85687.
View: Text | PDF

HLA-DQ β1 alleles associated with Epstein-Barr virus (EBV) infectivity and EBV gp42 binding to cells

  • Text
  • PDF
Abstract

Epstein-Barr virus (EBV) infects B cells and ~95% of adults are infected. EBV glycoprotein gp42 is essential for entry of virus into B cells. EBV gp42 binds to the β1 chain of HLA-DQ, -DR, and -DP on B cells, and uses these molecules for infection. To investigate if certain HLA-DQ alleles are associated with EBV seronegativity, we recruited ~3,300 healthy adult blood donors, identified 106 EBV-seronegative individuals, and randomly selected a control group of EBV-seropositive donors from the donor pool. A larger than expected proportion of EBV-seronegative subjects were HLA-DQ β1 *04/*05 and *06/*06, and to a lesser extent, *02/*03, compared with the control group, while a larger than expected portion of EBV-seropositive persons were HLA-DQ β1 *02/*02. We examined the ability of EBV gp42 to bind to different HLA-DQ molecules using human and mouse cells stably expressing these alleles. EBV gp42 bound less effectively to cells expressing HLA-DQ β1 *04/*05, *06/*06, or *03/*03 than to cells expressing HLA-DQ β1 *02/*02. These data are consistent with our observations of increased EBV seronegativity with DQ β1 *04/*05 or *06/*06 alleles. These findings emphasize the importance of a single genetic locus (HLA-DQ β1) to influence infectivity with EBV.

Authors

Qingxue Li, Wei Bu, Erin Gabriel, Fiona Aguilar, Yo Hoshino, Hiroko Miyadera, Christoph Hess, Ronald L. Hornung, Amitava Roy, Jeffrey I. Cohen

×

Quantitative evaluation of the antiretroviral efficacy of dolutegravir
Sarah B. Laskey, Robert F. Siliciano
Sarah B. Laskey, Robert F. Siliciano
Published November 17, 2016
Citation Information: JCI Insight. 2016;1(19):e90033. https://doi.org/10.1172/jci.insight.90033.
View: Text | PDF

Quantitative evaluation of the antiretroviral efficacy of dolutegravir

  • Text
  • PDF
Abstract

The second-generation HIV-1 integrase strand transfer inhibitor (InSTI) dolutegravir (DTG) has had a major impact on the treatment of HIV-1 infection. Here we describe important but previously undetermined pharmacodynamic parameters for DTG. We show that the dose-response curve slope, which indicates cooperativity and is a major determinant of antiviral activity, is higher for DTG than for first-generation InSTIs. This steepness does not reflect inhibition of multiple steps in the HIV-1 life cycle, as is the case for allosteric integrase inhibitors and HIV-1 protease inhibitors. We also show that degree of independence, a metric of interaction favorability between antiretroviral drugs, is high for DTG and nucleoside reverse transcriptase inhibitors. Finally, we demonstrate poor selective advantage for HIV-1 bearing InSTI resistance mutations. Selective advantage, which incorporates both the magnitude of resistance conferred by a mutation and its fitness cost, explains the high genetic barrier to DTG resistance. Together, these parameters provide an explanation for the remarkable clinical success of DTG.

Authors

Sarah B. Laskey, Robert F. Siliciano

×

Ly6Chi monocytes regulate T cell responses in viral hepatitis
Jiangao Zhu, … , Songfu Jiang, Yiping Yang
Jiangao Zhu, … , Songfu Jiang, Yiping Yang
Published October 20, 2016
Citation Information: JCI Insight. 2016;1(17):e89880. https://doi.org/10.1172/jci.insight.89880.
View: Text | PDF

Ly6Chi monocytes regulate T cell responses in viral hepatitis

  • Text
  • PDF
Abstract

Viral hepatitis remains a global health challenge despite recent progress in the development of more effective therapies. Although virus-specific CD8+ and CD4+ T cell responses are essential for viral clearance, it remains largely unknown what regulates T cell–mediated viral clearance. Thus, a better understanding of the regulation of anti-viral T cell immunity would be critical for the design of more effective therapies for viral hepatitis. Using a model of adenovirus-induced hepatitis, here we showed that adenoviral infection induced recruitment of Ly6Chi monocytes to the liver in a CCR2-dependent manner. These recruited Ly6Chi monocytes suppressed CD8+ and CD4+ T cell responses to adenoviral infection, leading to a delay in viral clearance. In vivo depletion of Ly6Chi monocytes markedly enhanced anti-viral T cell responses and promoted viral clearance. Mechanistically, we showed that induction of iNOS and the production of NO by Ly6Chi monocytes are critical for the suppression of T cell responses. In addition, a contact-dependent mechanism mediated by PD-1 and PD-L1 interaction is also required for T cell suppression by Ly6Chi monocytes. These findings suggest a critical role for Ly6Chi monocytes in the regulation of T cell immunity in viral hepatitis and may provide new insights into development of more effective therapies for treating viral hepatitis based on targeting the immunosuppressing monocytes.

Authors

Jiangao Zhu, Huiyao Chen, Xiaopei Huang, Songfu Jiang, Yiping Yang

×
  • ← Previous
  • 1
  • 2
  • …
  • 6
  • 7
  • 8
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts