Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact

Metabolism

  • 237 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 23
  • 24
  • Next →
Vasopressin mediates fructose-induced metabolic syndrome by activating the V1b receptor
Ana Andres-Hernando, … , Richard Johnson, Miguel Lanaspa
Ana Andres-Hernando, … , Richard Johnson, Miguel Lanaspa
Published December 15, 2020
Citation Information: JCI Insight. 2020. https://doi.org/10.1172/jci.insight.140848.
View: Text | PDF

Vasopressin mediates fructose-induced metabolic syndrome by activating the V1b receptor

  • Text
  • PDF
Abstract

Subjects with obesity frequently have elevated serum vasopressin levels, noted by the stable analog, copeptin. Vasopressin acts primarily to reabsorb water via urinary concentration. However, fat is also a source of metabolic water, raising the possibility that vasopressin might have a role in fat accumulation. Fructose has also been reported to stimulate vasopressin. Here we tested the hypothesis that fructose induced metabolic syndrome is mediated by vasopressin. Orally administered fructose, glucose or high fructose corn syrup increased vasopressin (copeptin) concentrations and was mediated by fructokinase, an enzyme specific for fructose metabolism. Suppressing vasopressin with hydration both prevented and ameliorated fructose-induced metabolic syndrome. The vasopressin effects were mediated by the Vasopressin 1b receptor, as Vasopressin 1b receptor knockout mice were completely protected while V1a knockout paradoxically showed worse metabolic syndrome. The mechanism is likely mediated in part by de novo expression of V1b in the liver that amplifies fructokinase expression in response to fructose. Thus, our studies document a new role for vasopressin in water conservation via the accumulation of fat as a source of metabolic water. Clinically, it also suggests that increased water intake may be a beneficial way to both prevent or treat metabolic syndrome.

Authors

Ana Andres-Hernando, Thomas J. Jensen, Masanari Kuwabara, David J. Orlicky, Christina Cicerchi, Nanxing Li, Carlos A. Roncal-Jimenez, Gabriela E. Garcia, Takuji Ishimoto, Paul S. Maclean, Petter Bjornstad, Laura Gabriela Sanchez-Lozada, Mehmet Kanbay, Takahiko Nakagawa, Richard Johnson, Miguel Lanaspa

×

Ketogenic diet and ketone bodies enhance the anticancer effects of PD1 blockade
Gladys Ferrere, … , Guido Kroemer, Laurence Zitvogel.
Gladys Ferrere, … , Guido Kroemer, Laurence Zitvogel.
Published December 15, 2020
Citation Information: JCI Insight. 2020. https://doi.org/10.1172/jci.insight.145207.
View: Text | PDF

Ketogenic diet and ketone bodies enhance the anticancer effects of PD1 blockade

  • Text
  • PDF
Abstract

Limited experimental evidence bridges nutrition and cancer immunosurveillance. Here, we show that ketogenic diet (KD) or its principal ketone body, 3-hydroxybutyrate (3HB), most specifically in an intermittent scheduling, induced T cell-dependent tumor growth retardation of aggressive tumor models. In conditions in which anti-PD-1, alone or in combination with anti-CTLA-4, failed to reduce tumor growth in mice receiving a standard diet, KD or oral supplementation of 3HB reestablished therapeutic responses. Supplementation of KD with sucrose (which breaks ketogenesis, abolishing 3HB production) or with a pharmacological antagonist of the 3HB receptor GPR109A abolished the antitumor effects. Mechanistically, 3HB prevented the ICB-linked upregulation of PD-L1 on myeloid cells while favoring the expansion of CXCR3+ T cells. KD induced compositional changes of the gut microbiota with distinct species such as Eisenbergiella massiliensis commonly emerging in mice and humans subjected to carbohydrate low diet interventions and highly correlating with serum concentrations of 3HB. Altogether, these results demonstrate that KD induces a 3HB-mediated antineoplastic effect that relies on T-cell mediated cancer immunosurveillance.

Authors

Gladys Ferrere, Maryam Tidjani Alou, Peng Liu, Anne-Gaëlle Goubet, Marine Fidelle, Oliver Kepp, Sylvère Durand, Valerio Iebba, Aurélie Fluckiger, Romain Daillère, Cassandra Thelemaque, Claudia Grajeda-Iglesias, Carolina Alves Costa Silva, Fanny Aprahamian, Deborah Lefevre, Liwei Zhao, Bernhard Ryffel, Emeline Colomba, Monica Arnedos, Damien Drubay, Conrad Rauber, Didier Raoult, Francesco Asnicar, Tim Spector, Nicola Segata, Lisa Derosa, Guido Kroemer, Laurence Zitvogel.

×

Metabolic reprogramming and epigenetic changes of vital organs in SARS-CoV-2 induced systemic toxicity
Shen Li, … , Vaithilingaraja Arumugaswami, Arjun Deb
Shen Li, … , Vaithilingaraja Arumugaswami, Arjun Deb
Published December 7, 2020
Citation Information: JCI Insight. 2020. https://doi.org/10.1172/jci.insight.145027.
View: Text | PDF

Metabolic reprogramming and epigenetic changes of vital organs in SARS-CoV-2 induced systemic toxicity

  • Text
  • PDF
Abstract

Extra-pulmonary manifestations of COVID-19 are associated with a much higher mortality rate. Yet, little is known about the pathogenesis of systemic complications of COVID-19. Here, we create a murine model of SARS-CoV-2 induced severe systemic toxicity and multi-organ involvement by expressing the human ACE2 transgene in multiple tissues via viral delivery followed by systemic administration of SARS-CoV-2. The animals develop a profound phenotype within 7 days with severe weight loss, morbidity and failure to thrive. We demonstrate there is metabolic suppression of oxidative phosphorylation and the tri-carboxylic acid (TCA) cycle in multiple organs with neutrophilia, lymphopenia and splenic atrophy mirroring human COVID-19 phenotypes. Animals had a significantly lower heart rate and electron microscopy demonstrated myofibrillar disarray and myocardial edema, a common pathogenic cardiac phenotype in human COVID-19. We perform metabolomic profiling of peripheral blood and identify a panel of TCA cycle metabolites that serve as biomarkers of depressed oxidative phosphorylation. Finally, we observed that SARS-CoV-2 induces epigenetic changes of DNA methylation, that affects expression of immune response genes and could in part contribute to COVID-19 pathogenesis. Our model suggests that SARS-CoV-2 induced metabolic reprogramming and epigenetic changes in internal organs could contribute to systemic toxicity and lethality in COVID-19.

Authors

Shen Li, Feiyang Ma, Tomohiro Yokota, Gustavo Garcia Jr., Amelia Palermo, Yijie Wang, Colin Farrell, Yu-Chen Wang, Rimao Wu, Zhiqiang Zhou, Calvin Pan, Marco Morselli, Michael A. Teitell, Sergey Ryazantsev, Gregory A. Fishbein, Johanna ten Hoeve, Valerie A. Arboleda, Joshua Bloom, Barbara J. Dillon, Matteo Pellegrini, Aldons J. Lusis, Thomas G. Graeber, Vaithilingaraja Arumugaswami, Arjun Deb

×

Adipose ABHD6 regulates tolerance to cold and thermogenic programs
Pegah Poursharifi, … , S.R. Murthy Madiraju, Marc Prentki
Pegah Poursharifi, … , S.R. Murthy Madiraju, Marc Prentki
Published November 17, 2020
Citation Information: JCI Insight. 2020. https://doi.org/10.1172/jci.insight.140294.
View: Text | PDF

Adipose ABHD6 regulates tolerance to cold and thermogenic programs

  • Text
  • PDF
Abstract

Enhanced energy expenditure in brown (BAT) and white (WAT) adipose tissues can be therapeutic against metabolic diseases. We examined the thermogenic role of adipose α/β-hydrolase domain-6 (ABHD6), which hydrolyzes monoacylglycerol (MAG), by employing adipose-specific ABHD6-KO mice. Control and KO mice show similar phenotype at room temperature and thermoneutral conditions. However, KO mice are resistant to hypothermia, which can be accounted for by the simultaneously increased lipolysis and lipogenesis of the thermogenic glycerolipid/free fatty acid (GL/FFA) cycle in visceral fat, despite unaltered UCP1 expression. Upon cold-stress, nuclear 2-MAG levels increase in visceral WAT of the KO mice. Evidence is provided that 2-MAG causes activation of PPARα in white adipocytes, leading to elevated expression and activity of GL/FFA cycle enzymes. In the ABHD6-ablated BAT, glucose and oxidative metabolism are elevated upon cold-induction, without changes in GL/FFA cycle and lipid turnover. Moreover, response to in vivo β3-adrenergic stimulation is comparable between KO and control mice. Our data reveal a MAG/PPARα/GL/FFA cycling metabolic signaling network in visceral adipose tissue, which contributes to cold-tolerance, and that adipose ABHD6 is a negative modulator of adaptive thermogenesis.

Authors

Pegah Poursharifi, Camille Attané, Yves Mugabo, Anfal Al-Mass, Anindya Ghosh, Clémence Schmitt, Shangang Zhao, Julian Guida, Roxane Lussier, Heidi Erb, Isabelle Chenier, Marie-Line Peyot, Erik Joly, Christophe Noll, André C. Carpentier, S.R. Murthy Madiraju, Marc Prentki

×

Childhood severe acute malnutrition is associated with metabolic changes in adulthood
Debbie S. Thompson, … , Gerard Bryan Gonzales, Robert HJ Bandsma
Debbie S. Thompson, … , Gerard Bryan Gonzales, Robert HJ Bandsma
Published November 17, 2020
Citation Information: JCI Insight. 2020. https://doi.org/10.1172/jci.insight.141316.
View: Text | PDF

Childhood severe acute malnutrition is associated with metabolic changes in adulthood

  • Text
  • PDF
Abstract

Background Severe acute malnutrition (SAM) is a major contributor to global mortality in children under 5 years. Mortality has decreased, however the long-term cardiometabolic consequences of SAM and its subtypes, severe wasting (SW) and edematous malnutrition (EM), are not well understood. We evaluated the metabolic profiles of adult SAM survivors using targeted metabolomic analyses. Methods This cohort study of 122 adult SAM survivors (SW=69, EM=53) and 90 age, sex and BMI-matched community participants (CPs) quantified serum metabolites using direct flow injection mass spectrometry combined with reverse-phase liquid chromatography. Univariate and sparse partial least square discriminant analyses (sPLS-DA) assessed differences in metabolic profiles and identified the most discriminative metabolites. Results 77 metabolite variables were significant in distinguishing between SAM survivors (28.4 ± 8.8 years, 24.0 ± 6.1 kg/m2) and CPs (28.4 ± 8.9 years, 23.3 ± 4.4 kg/m2) (mean ± SDs) in univariate and sPLS-DA models. Compared to CPs, SAM survivors had less liver fat, higher branched-chained amino acids (BCAAs), urea cycle metabolites and kynurenine-tryptophan (KT) ratio (p<0.001) and lower β-hydroxybutyric acid and acylcarnitine:free carnitine ratio (p<0.001) which were both associated with hepatic steatosis (p<0.001). SW and EM survivors had similar metabolic profiles as did stunted and non-stunted SAM survivors. Conclusions Adult SAM survivors have distinct metabolic profiles that suggest reduced β-oxidation and greater risk of type 2 diabetes (BCAAs, KT ratio, urea cycle metabolites) compared to community participants. This indicates that early childhood SAM exposure has long-term metabolic consequences that may worsen with age and require targeted clinical management. Funding Health Research Council of New Zealand Caribbean Public Health Agency Centre for Global Child Health, Hospital for Sick Children. DST is an Academic Fellow and a Restracomp Fellow at the Centre for Global Child Health GBG is a postdoctoral fellow of the Research Foundation Flanders (FWO).

Authors

Debbie S. Thompson, Celine Bourdon, Paraskevi Massara, Michael S. Boyne, Terrence Forrester, Gerard Bryan Gonzales, Robert HJ Bandsma

×

Effects of TM6SF2 E167K on hepatic lipid and very low-density lipoprotein metabolism in humans
Jan Borén, … , Chris J. Packard, Marja-Riitta Taskinen
Jan Borén, … , Chris J. Packard, Marja-Riitta Taskinen
Published November 10, 2020
Citation Information: JCI Insight. 2020. https://doi.org/10.1172/jci.insight.144079.
View: Text | PDF

Effects of TM6SF2 E167K on hepatic lipid and very low-density lipoprotein metabolism in humans

  • Text
  • PDF
Abstract

Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation. The transmembrane 6 superfamily member 2 (TM6SF2) E167K genetic variant associates with NAFLD and with reduced plasma triglyceride levels in humans. However, the molecular mechanisms underlying these associations remain unclear. We hypothesized that TM6SF2 E167K affects hepatic very low-density lipoprotein (VLDL) secretion, and studied the kinetics of apolipoprotein B100 (apoB100) and triglyceride metabolism in VLDL in homozygous subjects. In 10 homozygote TM6SF2 E167K carriers and 10 matched controls, we employed stable-isotope tracer and compartmental modeling techniques to determine apoB100 and triglyceride kinetics in the two major VLDL subfractions: large triglyceride-rich VLDL1 and smaller, less triglyceride-rich VLDL2. VLDL1-apoB100 production was markedly reduced in homozygote TM6SF2 E167K carriers compared to controls. Likewise, VLDL1-triglyceride production was 35% lower in the TM6SF2 E167K carriers. In contrast, the direct production rates for VLDL2-apoB100 and triglyceride were not different between carriers and controls. In conclusion, the TM6SF2 E167K genetic variant was linked to a specific reduction in hepatic secretion of large triglyceride-rich VLDL1. The impaired secretion of VLDL1 explains the reduced plasma triglyceride concentration, and provides a basis for understanding the lower risk of cardiovascular disease associated with the TM6SF2 E167K genetic variant. Trial registration: Clinical Trials NCT04209816

Authors

Jan Borén, Martin Adiels, Elias Björnson, Niina Matikainen, Sanni Söderlund, Joel T. Rämo, Marcus Ståhlman, Pietari Ripatti, Samuli Ripatti, Aarno Palotie, Rosellina M. Mancina, Antti Hakkarainen, Stefano Romeo, Chris J. Packard, Marja-Riitta Taskinen

×

Depletion of protein kinase STK25 ameliorates renal lipotoxicity and protects against diabetic kidney disease
Emmelie Cansby, … , Brian W. Howell, Margit Mahlapuu
Emmelie Cansby, … , Brian W. Howell, Margit Mahlapuu
Published November 10, 2020
Citation Information: JCI Insight. 2020. https://doi.org/10.1172/jci.insight.140483.
View: Text | PDF

Depletion of protein kinase STK25 ameliorates renal lipotoxicity and protects against diabetic kidney disease

  • Text
  • PDF
Abstract

Diabetic kidney disease (DKD) is the most common cause of severe renal disease worldwide and the single strongest predictor of mortality in diabetes patients. Kidney steatosis has emerged as a critical trigger in the pathogenesis of DKD; however, the molecular mechanism of renal lipotoxicity remains largely unknown. Our recent studies in genetic mouse models, human cell lines, and well-characterized patient cohorts have identified serine/threonine protein kinase (STK)25 as a critical regulator of ectopic lipid storage in several metabolic organs prone to diabetic damage. Here, we demonstrate that overexpression of STK25 aggravates renal lipid accumulation and exacerbates structural and functional kidney injury in a mouse model of DKD. Reciprocally, inhibiting STK25 signaling in mice ameliorates diet-induced renal steatosis and alleviates the development of DKD-associated pathologies. Further, we find that STK25 silencing in human kidney cells protects against lipid deposition as well as oxidative and endoplasmic reticulum stress. Together, our results suggest that STK25 regulates a critical node governing susceptibility to renal lipotoxicity and that STK25 antagonism could mitigate DKD progression.

Authors

Emmelie Cansby, Mara Caputo, Lei Gao, Nagaraj M. Kulkarni, Annika Nerstedt, Marcus Ståhlman, Jan Boren, Rando Porosk, Ursel Soomets, Matteo Pedrelli, Paolo Parini, Hanns-Ulrich Marschall, Jenny Nyström, Brian W. Howell, Margit Mahlapuu

×

Early disruption of nerve mitochondrial and myelin lipid homeostasis in obesity-induced diabetes
Juan P. Palavicini, … , Jeffrey L. Dupree, Xianlin Han
Juan P. Palavicini, … , Jeffrey L. Dupree, Xianlin Han
Published November 5, 2020
Citation Information: JCI Insight. 2020;5(21):e137286. https://doi.org/10.1172/jci.insight.137286.
View: Text | PDF

Early disruption of nerve mitochondrial and myelin lipid homeostasis in obesity-induced diabetes

  • Text
  • PDF
Abstract

Diabetic neuropathy is a major complication of diabetes. Current treatment options alleviate pain but do not stop the progression of the disease. At present, there are no approved disease-modifying therapies. Thus, developing more effective therapies remains a major unmet medical need. Seeking to better understand the molecular mechanisms driving peripheral neuropathy, as well as other neurological complications associated with diabetes, we performed spatiotemporal lipidomics, biochemical, ultrastructural, and physiological studies on PNS and CNS tissue from multiple diabetic preclinical models. We unraveled potentially novel molecular fingerprints underlying nerve damage in obesity-induced diabetes, including an early loss of nerve mitochondrial (cardiolipin) and myelin signature (galactosylceramide, sulfatide, and plasmalogen phosphatidylethanolamine) lipids that preceded mitochondrial, myelin, and axonal structural/functional defects; started in the PNS; and progressed to the CNS at advanced diabetic stages. Mechanistically, we provided substantial evidence indicating that these nerve mitochondrial/myelin lipid abnormalities are (surprisingly) not driven by hyperglycemia, dysinsulinemia, or insulin resistance, but rather associate with obesity/hyperlipidemia. Importantly, our findings have major clinical implications as they open the door to novel lipid-based biomarkers to diagnose and distinguish different subtypes of diabetic neuropathy (obese vs. nonobese diabetics), as well as to lipid-lowering therapeutic strategies for treatment of obesity/diabetes-associated neurological complications and for glycemic control.

Authors

Juan P. Palavicini, Juan Chen, Chunyan Wang, Jianing Wang, Chao Qin, Eric Baeuerle, Xinming Wang, Jung A. Woo, David E. Kang, Nicolas Musi, Jeffrey L. Dupree, Xianlin Han

×

Repeated hypoglycemia remodels neural inputs and disrupts mitochondrial function to blunt glucose-inhibited GHRH neuron responsiveness
Mitchell Bayne, … , Patrick R. Hof, Sarah A. Stanley
Mitchell Bayne, … , Patrick R. Hof, Sarah A. Stanley
Published November 5, 2020
Citation Information: JCI Insight. 2020;5(21):e133488. https://doi.org/10.1172/jci.insight.133488.
View: Text | PDF

Repeated hypoglycemia remodels neural inputs and disrupts mitochondrial function to blunt glucose-inhibited GHRH neuron responsiveness

  • Text
  • PDF
Abstract

Hypoglycemia is a frequent complication of diabetes, limiting therapy and increasing morbidity and mortality. With recurrent hypoglycemia, the counterregulatory response (CRR) to decreased blood glucose is blunted, resulting in hypoglycemia-associated autonomic failure (HAAF). The mechanisms leading to these blunted effects are only poorly understood. Here, we report, with ISH, IHC, and the tissue-clearing capability of iDISCO+, that growth hormone releasing hormone (GHRH) neurons represent a unique population of arcuate nucleus neurons activated by glucose deprivation in vivo. Repeated glucose deprivation reduces GHRH neuron activation and remodels excitatory and inhibitory inputs to GHRH neurons. We show that low glucose sensing is coupled to GHRH neuron depolarization, decreased ATP production, and mitochondrial fusion. Repeated hypoglycemia attenuates these responses during low glucose. By maintaining mitochondrial length with the small molecule mitochondrial division inhibitor-1, we preserved hypoglycemia sensitivity in vitro and in vivo. Our findings present possible mechanisms for the blunting of the CRR, significantly broaden our understanding of the structure of GHRH neurons, and reveal that mitochondrial dynamics play an important role in HAAF. We conclude that interventions targeting mitochondrial fission in GHRH neurons may offer a new pathway to prevent HAAF in patients with diabetes.

Authors

Mitchell Bayne, Alexandra Alvarsson, Kavya Devarakonda, Rosemary Li, Maria Jimenez-Gonzalez, Darline Garibay, Kaetlyn Conner, Merina Varghese, Madhavika N. Serasinghe, Jerry E. Chipuk, Patrick R. Hof, Sarah A. Stanley

×

Pathogenic, glycolytic PD-1+ B cells accumulate in the hypoxic RA joint
Achilleas Floudas, … , Douglas J. Veale, Ursula Fearon
Achilleas Floudas, … , Douglas J. Veale, Ursula Fearon
Published November 5, 2020
Citation Information: JCI Insight. 2020;5(21):e139032. https://doi.org/10.1172/jci.insight.139032.
View: Text | PDF

Pathogenic, glycolytic PD-1+ B cells accumulate in the hypoxic RA joint

  • Text
  • PDF
Abstract

While autoantibodies are used in the diagnosis of rheumatoid arthritis (RA), the function of B cells in the inflamed joint remains elusive. Extensive flow cytometric characterization and SPICE algorithm analyses of single-cell synovial tissue from patients with RA revealed the accumulation of switched and double-negative memory programmed death-1 receptor–expressing (PD-1–expressing) B cells at the site of inflammation. Accumulation of memory B cells was mediated by CXCR3, evident by the observed increase in CXCR3-expressing synovial B cells compared with the periphery, differential regulation by key synovial cytokines, and restricted B cell invasion demonstrated in response to CXCR3 blockade. Notably, under 3% O2 hypoxic conditions that mimic the joint microenvironment, RA B cells maintained marked expression of MMP-9, TNF, and IL-6, with PD-1+ B cells demonstrating higher expression of CXCR3, CD80, CD86, IL-1β, and GM-CSF than their PD-1– counterparts. Finally, following functional analysis and flow cell sorting of RA PD-1+ versus PD-1– B cells, we demonstrate, using RNA-Seq and emerging fluorescence lifetime imaging microscopy of cellular NAD, a significant shift in metabolism of RA PD-1+ B cells toward glycolysis, associated with an increased transcriptional signature of key cytokines and chemokines that are strongly implicated in RA pathogenesis. Our data support the targeting of pathogenic PD-1+ B cells in RA as a focused, novel therapeutic option.

Authors

Achilleas Floudas, Nuno Neto, Viviana Marzaioli, Kieran Murray, Barry Moran, Michael G. Monaghan, Candice Low, Ronan H. Mullan, Navin Rao, Vinod Krishna, Sunil Nagpal, Douglas J. Veale, Ursula Fearon

×
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 23
  • 24
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2021 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts