Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Recently published
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Recently published
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact

Metabolism

  • 223 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 22
  • 23
  • Next →
Childhood severe acute malnutrition is associated with metabolic changes in adulthood
Debbie S. Thompson, … , Gerard Bryan Gonzales, Robert HJ Bandsma
Debbie S. Thompson, … , Gerard Bryan Gonzales, Robert HJ Bandsma
Published November 17, 2020
Citation Information: JCI Insight. 2020. https://doi.org/10.1172/jci.insight.141316.
View: Text | PDF

Childhood severe acute malnutrition is associated with metabolic changes in adulthood

  • Text
  • PDF
Abstract

Background Severe acute malnutrition (SAM) is a major contributor to global mortality in children under 5 years. Mortality has decreased, however the long-term cardiometabolic consequences of SAM and its subtypes, severe wasting (SW) and edematous malnutrition (EM), are not well understood. We evaluated the metabolic profiles of adult SAM survivors using targeted metabolomic analyses. Methods This cohort study of 122 adult SAM survivors (SW=69, EM=53) and 90 age, sex and BMI-matched community participants (CPs) quantified serum metabolites using direct flow injection mass spectrometry combined with reverse-phase liquid chromatography. Univariate and sparse partial least square discriminant analyses (sPLS-DA) assessed differences in metabolic profiles and identified the most discriminative metabolites. Results 77 metabolite variables were significant in distinguishing between SAM survivors (28.4 ± 8.8 years, 24.0 ± 6.1 kg/m2) and CPs (28.4 ± 8.9 years, 23.3 ± 4.4 kg/m2) (mean ± SDs) in univariate and sPLS-DA models. Compared to CPs, SAM survivors had less liver fat, higher branched-chained amino acids (BCAAs), urea cycle metabolites and kynurenine-tryptophan (KT) ratio (p<0.001) and lower β-hydroxybutyric acid and acylcarnitine:free carnitine ratio (p<0.001) which were both associated with hepatic steatosis (p<0.001). SW and EM survivors had similar metabolic profiles as did stunted and non-stunted SAM survivors. Conclusions Adult SAM survivors have distinct metabolic profiles that suggest reduced β-oxidation and greater risk of type 2 diabetes (BCAAs, KT ratio, urea cycle metabolites) compared to community participants. This indicates that early childhood SAM exposure has long-term metabolic consequences that may worsen with age and require targeted clinical management. Funding Health Research Council of New Zealand Caribbean Public Health Agency Centre for Global Child Health, Hospital for Sick Children. DST is an Academic Fellow and a Restracomp Fellow at the Centre for Global Child Health GBG is a postdoctoral fellow of the Research Foundation Flanders (FWO).

Authors

Debbie S. Thompson, Celine Bourdon, Paraskevi Massara, Michael S. Boyne, Terrence Forrester, Gerard Bryan Gonzales, Robert HJ Bandsma

×

Effects of TM6SF2 E167K on hepatic lipid and very low-density lipoprotein metabolism in humans
Jan Borén, … , Chris J. Packard, Marja-Riitta Taskinen
Jan Borén, … , Chris J. Packard, Marja-Riitta Taskinen
Published November 10, 2020
Citation Information: JCI Insight. 2020. https://doi.org/10.1172/jci.insight.144079.
View: Text | PDF

Effects of TM6SF2 E167K on hepatic lipid and very low-density lipoprotein metabolism in humans

  • Text
  • PDF
Abstract

Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation. The transmembrane 6 superfamily member 2 (TM6SF2) E167K genetic variant associates with NAFLD and with reduced plasma triglyceride levels in humans. However, the molecular mechanisms underlying these associations remain unclear. We hypothesized that TM6SF2 E167K affects hepatic very low-density lipoprotein (VLDL) secretion, and studied the kinetics of apolipoprotein B100 (apoB100) and triglyceride metabolism in VLDL in homozygous subjects. In 10 homozygote TM6SF2 E167K carriers and 10 matched controls, we employed stable-isotope tracer and compartmental modeling techniques to determine apoB100 and triglyceride kinetics in the two major VLDL subfractions: large triglyceride-rich VLDL1 and smaller, less triglyceride-rich VLDL2. VLDL1-apoB100 production was markedly reduced in homozygote TM6SF2 E167K carriers compared to controls. Likewise, VLDL1-triglyceride production was 35% lower in the TM6SF2 E167K carriers. In contrast, the direct production rates for VLDL2-apoB100 and triglyceride were not different between carriers and controls. In conclusion, the TM6SF2 E167K genetic variant was linked to a specific reduction in hepatic secretion of large triglyceride-rich VLDL1. The impaired secretion of VLDL1 explains the reduced plasma triglyceride concentration, and provides a basis for understanding the lower risk of cardiovascular disease associated with the TM6SF2 E167K genetic variant. Trial registration: Clinical Trials NCT04209816

Authors

Jan Borén, Martin Adiels, Elias Björnson, Niina Matikainen, Sanni Söderlund, Joel T. Rämo, Marcus Ståhlman, Pietari Ripatti, Samuli Ripatti, Aarno Palotie, Rosellina M. Mancina, Antti Hakkarainen, Stefano Romeo, Chris J. Packard, Marja-Riitta Taskinen

×

Depletion of protein kinase STK25 ameliorates renal lipotoxicity and protects against diabetic kidney disease
Emmelie Cansby, … , Brian W. Howell, Margit Mahlapuu
Emmelie Cansby, … , Brian W. Howell, Margit Mahlapuu
Published November 10, 2020
Citation Information: JCI Insight. 2020. https://doi.org/10.1172/jci.insight.140483.
View: Text | PDF

Depletion of protein kinase STK25 ameliorates renal lipotoxicity and protects against diabetic kidney disease

  • Text
  • PDF
Abstract

Diabetic kidney disease (DKD) is the most common cause of severe renal disease worldwide and the single strongest predictor of mortality in diabetes patients. Kidney steatosis has emerged as a critical trigger in the pathogenesis of DKD; however, the molecular mechanism of renal lipotoxicity remains largely unknown. Our recent studies in genetic mouse models, human cell lines, and well-characterized patient cohorts have identified serine/threonine protein kinase (STK)25 as a critical regulator of ectopic lipid storage in several metabolic organs prone to diabetic damage. Here, we demonstrate that overexpression of STK25 aggravates renal lipid accumulation and exacerbates structural and functional kidney injury in a mouse model of DKD. Reciprocally, inhibiting STK25 signaling in mice ameliorates diet-induced renal steatosis and alleviates the development of DKD-associated pathologies. Further, we find that STK25 silencing in human kidney cells protects against lipid deposition as well as oxidative and endoplasmic reticulum stress. Together, our results suggest that STK25 regulates a critical node governing susceptibility to renal lipotoxicity and that STK25 antagonism could mitigate DKD progression.

Authors

Emmelie Cansby, Mara Caputo, Lei Gao, Nagaraj M. Kulkarni, Annika Nerstedt, Marcus Ståhlman, Jan Boren, Rando Porosk, Ursel Soomets, Matteo Pedrelli, Paolo Parini, Hanns-Ulrich Marschall, Jenny Nyström, Brian W. Howell, Margit Mahlapuu

×

Early disruption of nerve mitochondrial and myelin lipid homeostasis in obesity-induced diabetes
Juan P. Palavicini, … , Jeffrey L. Dupree, Xianlin Han
Juan P. Palavicini, … , Jeffrey L. Dupree, Xianlin Han
Published November 5, 2020
Citation Information: JCI Insight. 2020;5(21):e137286. https://doi.org/10.1172/jci.insight.137286.
View: Text | PDF

Early disruption of nerve mitochondrial and myelin lipid homeostasis in obesity-induced diabetes

  • Text
  • PDF
Abstract

Diabetic neuropathy is a major complication of diabetes. Current treatment options alleviate pain but do not stop the progression of the disease. At present, there are no approved disease-modifying therapies. Thus, developing more effective therapies remains a major unmet medical need. Seeking to better understand the molecular mechanisms driving peripheral neuropathy, as well as other neurological complications associated with diabetes, we performed spatiotemporal lipidomics, biochemical, ultrastructural, and physiological studies on PNS and CNS tissue from multiple diabetic preclinical models. We unraveled potentially novel molecular fingerprints underlying nerve damage in obesity-induced diabetes, including an early loss of nerve mitochondrial (cardiolipin) and myelin signature (galactosylceramide, sulfatide, and plasmalogen phosphatidylethanolamine) lipids that preceded mitochondrial, myelin, and axonal structural/functional defects; started in the PNS; and progressed to the CNS at advanced diabetic stages. Mechanistically, we provided substantial evidence indicating that these nerve mitochondrial/myelin lipid abnormalities are (surprisingly) not driven by hyperglycemia, dysinsulinemia, or insulin resistance, but rather associate with obesity/hyperlipidemia. Importantly, our findings have major clinical implications as they open the door to novel lipid-based biomarkers to diagnose and distinguish different subtypes of diabetic neuropathy (obese vs. nonobese diabetics), as well as to lipid-lowering therapeutic strategies for treatment of obesity/diabetes-associated neurological complications and for glycemic control.

Authors

Juan P. Palavicini, Juan Chen, Chunyan Wang, Jianing Wang, Chao Qin, Eric Baeuerle, Xinming Wang, Jung A. Woo, David E. Kang, Nicolas Musi, Jeffrey L. Dupree, Xianlin Han

×

Repeated hypoglycemia remodels neural inputs and disrupts mitochondrial function to blunt glucose-inhibited GHRH neuron responsiveness
Mitchell Bayne, … , Patrick R. Hof, Sarah A. Stanley
Mitchell Bayne, … , Patrick R. Hof, Sarah A. Stanley
Published November 5, 2020
Citation Information: JCI Insight. 2020;5(21):e133488. https://doi.org/10.1172/jci.insight.133488.
View: Text | PDF

Repeated hypoglycemia remodels neural inputs and disrupts mitochondrial function to blunt glucose-inhibited GHRH neuron responsiveness

  • Text
  • PDF
Abstract

Hypoglycemia is a frequent complication of diabetes, limiting therapy and increasing morbidity and mortality. With recurrent hypoglycemia, the counterregulatory response (CRR) to decreased blood glucose is blunted, resulting in hypoglycemia-associated autonomic failure (HAAF). The mechanisms leading to these blunted effects are only poorly understood. Here, we report, with ISH, IHC, and the tissue-clearing capability of iDISCO+, that growth hormone releasing hormone (GHRH) neurons represent a unique population of arcuate nucleus neurons activated by glucose deprivation in vivo. Repeated glucose deprivation reduces GHRH neuron activation and remodels excitatory and inhibitory inputs to GHRH neurons. We show that low glucose sensing is coupled to GHRH neuron depolarization, decreased ATP production, and mitochondrial fusion. Repeated hypoglycemia attenuates these responses during low glucose. By maintaining mitochondrial length with the small molecule mitochondrial division inhibitor-1, we preserved hypoglycemia sensitivity in vitro and in vivo. Our findings present possible mechanisms for the blunting of the CRR, significantly broaden our understanding of the structure of GHRH neurons, and reveal that mitochondrial dynamics play an important role in HAAF. We conclude that interventions targeting mitochondrial fission in GHRH neurons may offer a new pathway to prevent HAAF in patients with diabetes.

Authors

Mitchell Bayne, Alexandra Alvarsson, Kavya Devarakonda, Rosemary Li, Maria Jimenez-Gonzalez, Darline Garibay, Kaetlyn Conner, Merina Varghese, Madhavika N. Serasinghe, Jerry E. Chipuk, Patrick R. Hof, Sarah A. Stanley

×

Pathogenic, glycolytic PD-1+ B cells accumulate in the hypoxic RA joint
Achilleas Floudas, … , Douglas J. Veale, Ursula Fearon
Achilleas Floudas, … , Douglas J. Veale, Ursula Fearon
Published November 5, 2020
Citation Information: JCI Insight. 2020;5(21):e139032. https://doi.org/10.1172/jci.insight.139032.
View: Text | PDF

Pathogenic, glycolytic PD-1+ B cells accumulate in the hypoxic RA joint

  • Text
  • PDF
Abstract

While autoantibodies are used in the diagnosis of rheumatoid arthritis (RA), the function of B cells in the inflamed joint remains elusive. Extensive flow cytometric characterization and SPICE algorithm analyses of single-cell synovial tissue from patients with RA revealed the accumulation of switched and double-negative memory programmed death-1 receptor–expressing (PD-1–expressing) B cells at the site of inflammation. Accumulation of memory B cells was mediated by CXCR3, evident by the observed increase in CXCR3-expressing synovial B cells compared with the periphery, differential regulation by key synovial cytokines, and restricted B cell invasion demonstrated in response to CXCR3 blockade. Notably, under 3% O2 hypoxic conditions that mimic the joint microenvironment, RA B cells maintained marked expression of MMP-9, TNF, and IL-6, with PD-1+ B cells demonstrating higher expression of CXCR3, CD80, CD86, IL-1β, and GM-CSF than their PD-1– counterparts. Finally, following functional analysis and flow cell sorting of RA PD-1+ versus PD-1– B cells, we demonstrate, using RNA-Seq and emerging fluorescence lifetime imaging microscopy of cellular NAD, a significant shift in metabolism of RA PD-1+ B cells toward glycolysis, associated with an increased transcriptional signature of key cytokines and chemokines that are strongly implicated in RA pathogenesis. Our data support the targeting of pathogenic PD-1+ B cells in RA as a focused, novel therapeutic option.

Authors

Achilleas Floudas, Nuno Neto, Viviana Marzaioli, Kieran Murray, Barry Moran, Michael G. Monaghan, Candice Low, Ronan H. Mullan, Navin Rao, Vinod Krishna, Sunil Nagpal, Douglas J. Veale, Ursula Fearon

×

Loss of habenular Prkar2a reduces hedonic eating and increases exercise motivation
Edra London, … , Chris J. McBain, Constantine A. Stratakis
Edra London, … , Chris J. McBain, Constantine A. Stratakis
Published November 3, 2020
Citation Information: JCI Insight. 2020. https://doi.org/10.1172/jci.insight.141670.
View: Text | PDF

Loss of habenular Prkar2a reduces hedonic eating and increases exercise motivation

  • Text
  • PDF
Abstract

The habenula (Hb) is a bilateral, evolutionarily conserved epithalamic structure connecting forebrain and midbrain structures that has gained attention for its roles in depression,(1) addiction,(2-5) rewards processing,(6) and motivation (7,8). Of its two major subdivisions, the medial (MHb) and lateral Hb (LHb), MHb circuitry and function is poorly understood relative to LHb (9). Prkar2a codes for cAMP-dependent protein kinase (PKA) regulatory subunit IIα (RIIα), a component of the PKA holoenzyme at the center of one of the major cell-signaling pathways conserved across systems and species. Type 2 regulatory subunits (RIIα, RIIβ) determine the subcellular localization of PKA, and unlike other PKA subunits, Prkar2a has minimal brain expression except in the MHb (10). We previously showed that RIIα knockout (RIIαKO) mice resist diet-induced obesity (DIO) (11). In the present study, we report that RIIαKO mice have decreased consumption of palatable, “rewarding” foods and increased motivation for voluntary exercise. Prkar2a deficiency led to decreased habenular PKA enzymatic activity and impaired dendritic localization of PKA catalytic subunits in MHb neurons. Re-expression of Prkar2a in the Hb rescued this phenotype confirming differential roles for Prkar2a in regulating the drives for palatable foods and voluntary exercise. Our findings show that in the MHb decreased PKA signaling and dendritic PKA activity decrease motivation for food rewards while enhancing the motivation for exercise, a desirable combination of behaviors.

Authors

Edra London, Jason C. Wester, Michelle S. Bloyd, Shelby Bettencourt, Chris J. McBain, Constantine A. Stratakis

×

MicroRNA-483 ameliorates hypercholesterolemia by inhibiting PCSK9 production
Jianjie Dong, … , Sotirios Tsimikas, John Y-J Shyy
Jianjie Dong, … , Sotirios Tsimikas, John Y-J Shyy
Published October 29, 2020
Citation Information: JCI Insight. 2020. https://doi.org/10.1172/jci.insight.143812.
View: Text | PDF

MicroRNA-483 ameliorates hypercholesterolemia by inhibiting PCSK9 production

  • Text
  • PDF
Abstract

Proprotein convertase subtilisin/kexin type 9 (PCSK9) affects cholesterol homeostasis by targeting hepatic low-density lipoprotein receptor (LDLR) for lysosomal degradation. Clinically, PCSK9 inhibitors effectively reduce LDL cholesterol (LDL-C) level and the incidence of cardiovascular events. Because microRNAs (miRs) are integral regulators of cholesterol homeostasis, we investigated the involvement of miR-483 in regulating LDL-C metabolism. Using in silico analysis, we predicted that miR-483-5p targets the 3’UTR of PCSK9 mRNA. In HepG2 cells, miR-483-5p targeted the PCSK9 3’UTR, leading to decreased PCSK9 protein and mRNA expression, increased LDLR expression and enhanced LDL-C uptake. In hyperlipidemic mice and humans, serum levels of total cholesterol and LDL-C were inversely correlated with miR-483-5p level. In mice, hepatic miR-483 overexpression increased LDLR level by targeting Pcsk9, with a significant reduction in plasma total cholesterol and LDL-C levels. Mechanistically, the cholesterol-lowering effect of miR-483-5p was significant in mice receiving AAV8 PCSK9-3’UTR but not Ldlr-knockout mice or mice receiving AAV8 PCSK9-3’UTR (deltaBS) with the miR-483-5p targeting site deleted. Thus, exogenously administered miR-483 or similarly optimized compounds have potential to ameliorate hypercholesterolemia.

Authors

Jianjie Dong, Ming He, Jie Li, Ariane R. Pessentheiner, Chen Wang, Jin Zhang, Yameng Sun, Wei-Ting Wang, Yuqing Zhang, Junhui Liu, Shen-Chih Wang, Po-Hsun Huang, Philip L.S.M. Gordts, Zu-Yi Yuan, Sotirios Tsimikas, John Y-J Shyy

×

A porcine model of phenylketonuria generated by CRISPR/Cas9 genome editing
Erik A. Koppes, … , Randall S. Prather, Robert D. Nicholls
Erik A. Koppes, … , Randall S. Prather, Robert D. Nicholls
Published October 15, 2020
Citation Information: JCI Insight. 2020;5(20):e141523. https://doi.org/10.1172/jci.insight.141523.
View: Text | PDF

A porcine model of phenylketonuria generated by CRISPR/Cas9 genome editing

  • Text
  • PDF
Abstract

Phenylalanine hydroxylase–deficient (PAH-deficient) phenylketonuria (PKU) results in systemic hyperphenylalaninemia, leading to neurotoxicity with severe developmental disabilities. Dietary phenylalanine (Phe) restriction prevents the most deleterious effects of hyperphenylalaninemia, but adherence to diet is poor in adult and adolescent patients, resulting in characteristic neurobehavioral phenotypes. Thus, an urgent need exists for new treatments. Additionally, rodent models of PKU do not adequately reflect neurocognitive phenotypes, and thus there is a need for improved animal models. To this end, we have developed PAH-null pigs. After selection of optimal CRISPR/Cas9 genome-editing reagents by using an in vitro cell model, zygote injection of 2 sgRNAs and Cas9 mRNA demonstrated deletions in preimplantation embryos, with embryo transfer to a surrogate leading to 2 founder animals. One pig was heterozygous for a PAH exon 6 deletion allele, while the other was compound heterozygous for deletions of exon 6 and of exons 6–7. The affected pig exhibited hyperphenylalaninemia (2000–5000 μM) that was treatable by dietary Phe restriction, consistent with classical PKU, along with juvenile growth retardation, hypopigmentation, ventriculomegaly, and decreased brain gray matter volume. In conclusion, we have established a large-animal preclinical model of PKU to investigate pathophysiology and to assess new therapeutic interventions.

Authors

Erik A. Koppes, Bethany K. Redel, Marie A. Johnson, Kristen J. Skvorak, Lina Ghaloul-Gonzalez, Megan E. Yates, Dale W. Lewis, Susanne M. Gollin, Yijen L. Wu, Shawn E. Christ, Martine Yerle, Angela Leshinski, Lee D. Spate, Joshua A. Benne, Stephanie L. Murphy, Melissa S. Samuel, Eric M. Walters, Sarah A. Hansen, Kevin D. Wells, Uta Lichter-Konecki, Robert A. Wagner, Joseph T. Newsome, Steven F. Dobrowolski, Jerry Vockley, Randall S. Prather, Robert D. Nicholls

×

In utero human intestine harbors unique metabolomic features including bacterial metabolites
Yujia Li, … , George Tseng, Liza Konnikova
Yujia Li, … , George Tseng, Liza Konnikova
Published October 1, 2020
Citation Information: JCI Insight. 2020. https://doi.org/10.1172/jci.insight.138751.
View: Text | PDF

In utero human intestine harbors unique metabolomic features including bacterial metabolites

  • Text
  • PDF
Abstract

Symbiotic microbial colonization through the establishment of the intestinal microbiome is critical to many intestinal functions including nutrient metabolism, intestinal barrier integrity and immune regulation. Recent studies suggest that education of the intestinal immunity maybe ongoing in utero. However, the drivers of this process are unknown. The microbiome and its byproducts are one potential source. Whether a fetal intestinal microbiome exists is controversial and if microbially derived metabolites are present in utero is unknown. Here, we aimed to determine whether bacterial DNA and microbially-derived metabolites can be detected in second trimester human intestinal samples. Although, we were unable to amplify bacterial DNA from fetal intestines, we report a unique fetal metabolomic intestinal profile with an abundance of bacterially derived and host derived metabolites commonly produced in response to microbiota. Though we did not directly assess their source and function, we hypothesize that these microbial associated metabolites come either from the maternal microbiome and are vertically transmitted to the fetus to prime the fetal immune system and prepare the gastrointestinal tract for postnatal microbial encounters or are produced locally by bacteria that was below our detection threshold.

Authors

Yujia Li, Jessica M. Toothaker, Shira Ben-Simon, Lital Ozeri, Ron Schweitzer, Blake T. McCourt, Collin C. McCourt, Lael Werner, Scott B. Snapper, Dror S. Shouval, Soliman Khatib, Omry Koren, Sameer Agnihorti, George Tseng, Liza Konnikova

×
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 22
  • 23
  • Next →

No posts were found with this tag.

Advertisement
Follow JCI Insight:
Copyright © 2021 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts