Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

  • 4,186 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • …
  • 418
  • 419
  • Next →
Enhanced lipid metabolism serves as a metabolic vulnerability to polyunsaturated fatty acids in glioblastoma
Shiva Kant, Yi Zhao, Pravin Kesarwani, Kumari Alka, Jacob F. Oyeniyi, Ghulam Mohammad, Nadia Ashrafi, Stewart F. Graham, C. Ryan Miller, Prakash Chinnaiyan
Shiva Kant, Yi Zhao, Pravin Kesarwani, Kumari Alka, Jacob F. Oyeniyi, Ghulam Mohammad, Nadia Ashrafi, Stewart F. Graham, C. Ryan Miller, Prakash Chinnaiyan
View: Text | PDF

Enhanced lipid metabolism serves as a metabolic vulnerability to polyunsaturated fatty acids in glioblastoma

  • Text
  • PDF
Abstract

Enhanced lipid metabolism, which involves the active import, storage, and utilization of fatty acids from the tumor microenvironment, plays a contributory role in malignant glioma transformation, thereby serving as an important gain of function. In this work, through studies initially designed to understand and reconcile possible mechanisms underlying the antitumor activity of a high-fat ketogenic diet, we discovered that this phenotype of enhanced lipid metabolism observed in glioblastoma may also serve as a metabolic vulnerability to diet modification. Specifically, exogenous polyunsaturated fatty acids (PUFAs) demonstrate the unique ability of short-circuiting lipid homeostasis in glioblastoma cells. This leads to lipolysis-mediated lipid droplet breakdown, an accumulation of intracellular free fatty acids, and lipid peroxidation–mediated cytotoxicity, which was potentiated when combined with radiation therapy. Leveraging these data, we formulated a PUFA-rich modified diet that does not require carbohydrate restriction, which would likely improve long-term adherence when compared with a ketogenic diet. The modified PUFA-rich diet demonstrated both antitumor activity and potent synergy when combined with radiation therapy in mouse glioblastoma models. Collectively, this work offers both a mechanistic understanding and a potentially translatable approach of targeting this metabolic phenotype in glioblastoma through diet modification and/or nutritional supplementation that may be readily integrated into clinical practice.

Authors

Shiva Kant, Yi Zhao, Pravin Kesarwani, Kumari Alka, Jacob F. Oyeniyi, Ghulam Mohammad, Nadia Ashrafi, Stewart F. Graham, C. Ryan Miller, Prakash Chinnaiyan

×

Protein-protein interaction–interfering peptide rescues dysregulated NMDA receptor signaling
Robert E. Featherstone, Hongbin Li, Ameet S. Sengar, Karin E. Borgmann-Winter, Olya Melnychenko, Lindsey M. Crown, Ray L. Gifford, Felix Amirfathi, Anamika Banerjee, AiVi Tran, Krishna Parekh, Margaret Heller, Wenyu Zhang, Robert J. Gallop, Adam D. Marc, Pragya Komal, Michael W. Salter, Steven J. Siegel, Chang-Gyu Hahn
Robert E. Featherstone, Hongbin Li, Ameet S. Sengar, Karin E. Borgmann-Winter, Olya Melnychenko, Lindsey M. Crown, Ray L. Gifford, Felix Amirfathi, Anamika Banerjee, AiVi Tran, Krishna Parekh, Margaret Heller, Wenyu Zhang, Robert J. Gallop, Adam D. Marc, Pragya Komal, Michael W. Salter, Steven J. Siegel, Chang-Gyu Hahn
View: Text | PDF

Protein-protein interaction–interfering peptide rescues dysregulated NMDA receptor signaling

  • Text
  • PDF
Abstract

The complex and heterogeneous genetic architecture of neuropsychiatric illnesses compels us to look beyond individual risk genes for therapeutic strategies and target the interactive dynamics and convergence of their protein products. A mechanistic substrate for convergence of synaptic neuropsychiatric risk genes are protein-protein interactions (PPIs) in the N-methyl-D-aspartate receptor (NMDAR) complex. NMDAR hypofunction in schizophrenia is associated with hypoactivity of Src kinase, resulting from convergent alterations in PPIs of Src with its partners. Of these, the association of Src with PSD-95, which inhibits the activity of this kinase in the NMDAR complex, is known to be increased in schizophrenia. Here, we devised a strategy to suppress the inhibition of Src by PSD-95 by employing a cell-penetrating and Src-activating PSD-95 inhibitory peptide (TAT-SAPIP). TAT-SAPIP enhanced synaptic NMDAR currents in Src+/– and Sdy–/– mice manifesting NMDAR hypofunction phenotypes. Chronic intracerebroventricularly (ICV) injection of TAT-SAPIP rescued cognitive deficits in trace fear conditioning in Src +/– mice. Moreover, TAT-SAPIP enhanced Src activity in synaptoneurosomes derived from dorsolateral prefrontal cortex of 14 patients. We propose blockade of the Src–PSD-95 interaction as a proof of concept for the use of interfering peptides as a therapeutic strategy to reverse NMDAR hypofunction in schizophrenia and other illnesses.

Authors

Robert E. Featherstone, Hongbin Li, Ameet S. Sengar, Karin E. Borgmann-Winter, Olya Melnychenko, Lindsey M. Crown, Ray L. Gifford, Felix Amirfathi, Anamika Banerjee, AiVi Tran, Krishna Parekh, Margaret Heller, Wenyu Zhang, Robert J. Gallop, Adam D. Marc, Pragya Komal, Michael W. Salter, Steven J. Siegel, Chang-Gyu Hahn

×

EGFR-mutant transformed small cell lung cancer harbors intratumoral heterogeneity targetable with MEK inhibitor combination therapy
Atsuko Ogino, Amir Vajdi, Xinmeng Jasmine Mu, Navin R. Mahadevan, Kenneth Ngo, Matthew A. Booker, Paloma Cejas, Jeffrey J. Okoro, Man Xu, Benjamin F. Springer, Benjamin K. Eschle, Cameron M. Messier, Stephen Wang, Sudeepa Syamala, Rubii M. Tamen, Anika E. Adeni, Emily S. Chambers, Israel Canadas, Tran Thai, Camilla L. Christensen, Chunxiao Xu, Patrick H. Lizotte, Geoffrey R. Oxnard, Hideo Watanabe, Henry W. Long, Prafulla C. Gokhale, Cloud P. Paweletz, Lynette M. Sholl, Matthew G. Oser, David A. Barbie, Michael Y. Tolstorukov, Pasi A. Jänne
Atsuko Ogino, Amir Vajdi, Xinmeng Jasmine Mu, Navin R. Mahadevan, Kenneth Ngo, Matthew A. Booker, Paloma Cejas, Jeffrey J. Okoro, Man Xu, Benjamin F. Springer, Benjamin K. Eschle, Cameron M. Messier, Stephen Wang, Sudeepa Syamala, Rubii M. Tamen, Anika E. Adeni, Emily S. Chambers, Israel Canadas, Tran Thai, Camilla L. Christensen, Chunxiao Xu, Patrick H. Lizotte, Geoffrey R. Oxnard, Hideo Watanabe, Henry W. Long, Prafulla C. Gokhale, Cloud P. Paweletz, Lynette M. Sholl, Matthew G. Oser, David A. Barbie, Michael Y. Tolstorukov, Pasi A. Jänne
View: Text | PDF

EGFR-mutant transformed small cell lung cancer harbors intratumoral heterogeneity targetable with MEK inhibitor combination therapy

  • Text
  • PDF
Abstract

Small cell lung cancer (SCLC) transformation is an incompletely characterized mechanism of resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) in EGFR-mutant cancers, limiting development of optimal treatment approaches. Through single-cell RNA sequencing of malignant pleural effusions from patients who underwent SCLC transformation, we identified heterogeneity and diversity, including distinct neuroendocrine (NE) and mesenchymal non-NE cancer cell subsets, which were maintained in patient-derived cell lines. We demonstrate that EZH2 regulates EGFR expression in NE cells where EGFR expression is silenced at baseline. Although neither epigenetic derepression nor exogenous overexpression of mutant EGFR sensitized the cells to EGFR inhibition, non-NE cells exhibited selective sensitivity to MEK inhibitors. Combined MEK inhibitor and chemotherapy effectively inhibited growth of both NE and non-NE cells in vitro and in vivo. Our findings demonstrate that EGFR-mutant SCLC is composed of mixed cell states with distinct therapeutic vulnerabilities and offer a therapeutic strategy to target tumor heterogeneity in highly plastic and treatment-resistant malignancies such as transformed SCLC.

Authors

Atsuko Ogino, Amir Vajdi, Xinmeng Jasmine Mu, Navin R. Mahadevan, Kenneth Ngo, Matthew A. Booker, Paloma Cejas, Jeffrey J. Okoro, Man Xu, Benjamin F. Springer, Benjamin K. Eschle, Cameron M. Messier, Stephen Wang, Sudeepa Syamala, Rubii M. Tamen, Anika E. Adeni, Emily S. Chambers, Israel Canadas, Tran Thai, Camilla L. Christensen, Chunxiao Xu, Patrick H. Lizotte, Geoffrey R. Oxnard, Hideo Watanabe, Henry W. Long, Prafulla C. Gokhale, Cloud P. Paweletz, Lynette M. Sholl, Matthew G. Oser, David A. Barbie, Michael Y. Tolstorukov, Pasi A. Jänne

×

CD73 restrains mutant β-catenin oncogenic activity in endometrial carcinomas
Rebecca M. Hirsch, Gaith Droby, Sunthoshini Premsankar, Molly L. Parrish, Katherine C. Kurnit, Lilly F. Chiou, Emily M. Rabjohns, Hannah N. Lee, Russell R. Broaddus, Cyrus Vaziri, Jessica L. Bowser
Rebecca M. Hirsch, Gaith Droby, Sunthoshini Premsankar, Molly L. Parrish, Katherine C. Kurnit, Lilly F. Chiou, Emily M. Rabjohns, Hannah N. Lee, Russell R. Broaddus, Cyrus Vaziri, Jessica L. Bowser
View: Text | PDF

CD73 restrains mutant β-catenin oncogenic activity in endometrial carcinomas

  • Text
  • PDF
Abstract

Approximately 30% of patients with endometrial carcinomas (ECs) with exon 3 CTNNB1 (β-catenin) mutations experience disease recurrence, whereas others with the same mutations remain recurrence-free. The molecular factors driving mutant β-catenin’s oncogenic and clinical variability are unknown. Here we show that CD73 restrains the oncogenic activity of exon 3 β-catenin mutants, and CD73 loss is associated with recurrence. Using 7 patient-specific β-catenin mutants, together with genetic deletion or ectopic expression of CD73, we demonstrate that CD73 loss increases β-catenin–TCF/LEF transcriptional activity. In CD73-deficient cells, membrane levels of mutant β-catenin decreased, which corresponded with increased levels of nuclear and chromatin-bound mutant β-catenin. These results suggest that CD73 sequesters mutant β-catenin to the membrane to limit its oncogenic activity. Adenosine A1 receptor deletion phenocopied the effects of CD73 loss, implicating adenosine receptor signaling in this regulation. Ectopic CD73 expression suppressed the invasiveness and stemness capacity of β-catenin–mutant EC cells. TCGA analyses, GeoMx digital spatial profiling, and functional analyses showed that CD73 loss drives distinct Wnt–TCF/LEF–dependent gene expression programs linked to cancer cell stemness. These findings identify CD73 as a key regulator of mutant β-catenin, providing mechanistic insight into the variability of recurrence in CTNNB1-mutant EC.

Authors

Rebecca M. Hirsch, Gaith Droby, Sunthoshini Premsankar, Molly L. Parrish, Katherine C. Kurnit, Lilly F. Chiou, Emily M. Rabjohns, Hannah N. Lee, Russell R. Broaddus, Cyrus Vaziri, Jessica L. Bowser

×

Mitochondrial retrograde signal through GCN5L1 transition–mediated PPARγ stabilization promotes MASLD development
Jiaqi Zhang, Danni Wang, Qiqi Tang, Yaoshu Yue, Xin Lu, Xiuya Hu, Yitong Han, Jiarun Chen, Zihan Wang, Xue Bai, Kai Zhang, Yongsheng Chang, Longhao Sun, Lu Zhu, Lingdi Wang
Jiaqi Zhang, Danni Wang, Qiqi Tang, Yaoshu Yue, Xin Lu, Xiuya Hu, Yitong Han, Jiarun Chen, Zihan Wang, Xue Bai, Kai Zhang, Yongsheng Chang, Longhao Sun, Lu Zhu, Lingdi Wang
View: Text | PDF

Mitochondrial retrograde signal through GCN5L1 transition–mediated PPARγ stabilization promotes MASLD development

  • Text
  • PDF
Abstract

Mitochondrial retrograde signaling plays crucial roles in maintaining metabolic homeostasis via regulating genome modification and oxidative responsive gene expression. In this study, we identified GCN5L1, a protein localized in both mitochondria and cytoplasm, and demonstrated its specific translocation from mitochondria to cytoplasm during lipid overload and high-fat diet feeding. Using transcriptome and proteome analyses, we identified that cytoplasmic GCN5L1 binds to and promotes the acetylation of PPARγ at lysine 289 (K289). This acetylation protected PPARγ from ubiquitination-mediated degradation by proteasome. GCN5L1 translocation enhanced protein stability of PPARγ and subsequently promoted lipid accumulation in both cultured cells and murine models. Our study further reveals that PPARγ-K289 mutation reduces the ubiquitination of PPARγ and exacerbates liver steatosis in mice. These findings unveil a mitochondrial retrograde signaling during lipid overload, which regulates the crucial lipogenic transcriptional factor. This discovery elucidates an unrecognized mitochondrial function and mechanism underlying hepatic lipid synthesis.

Authors

Jiaqi Zhang, Danni Wang, Qiqi Tang, Yaoshu Yue, Xin Lu, Xiuya Hu, Yitong Han, Jiarun Chen, Zihan Wang, Xue Bai, Kai Zhang, Yongsheng Chang, Longhao Sun, Lu Zhu, Lingdi Wang

×

Small molecule inhibition rescues the skeletal dysplasia phenotype of Trpv4 mutant mice
Lisette Nevarez, Taylor K. Ismaili, Jennifer Zieba, Jorge Martin, Davis Wachtell, Derick Diaz, Jocelyn A. Ramirez, Valeria Aceves, Joshua Ito, Ryan S. Gray, David Goldstein, Sunil Sahdeo, Deborah Krakow, Daniel H. Cohn
Lisette Nevarez, Taylor K. Ismaili, Jennifer Zieba, Jorge Martin, Davis Wachtell, Derick Diaz, Jocelyn A. Ramirez, Valeria Aceves, Joshua Ito, Ryan S. Gray, David Goldstein, Sunil Sahdeo, Deborah Krakow, Daniel H. Cohn
View: Text | PDF

Small molecule inhibition rescues the skeletal dysplasia phenotype of Trpv4 mutant mice

  • Text
  • PDF
Abstract

The TRPV4 skeletal dysplasias are characterized by short stature, short limbs with prominent large joints, and progressive scoliosis. They result from dominant missense mutations that activate the TRPV4 calcium permeable ion channel. As a platform to understand the mechanism of disease and to test the hypothesis that channel inhibition could treat these disorders, we developed a knock-in mouse that conditionally expresses the p.R594H Trpv4 mutation. Embryonic, chondrocyte-specific induction of the mutation using Col2a1-Cre resulted in a skeletal dysplasia affecting the long bones, spine, and craniofacial skeletal elements, consistent with the human skeletal dysplasia phenotypes produced by TRPV4 mutations. Cartilage growth plate histological abnormalities included disorganized proliferating chondrocyte columns and reduced hypertrophic chondrocyte development, reflecting abnormal endochondral ossification. In vivo treatment with the TRPV4-specific inhibitor GSK2798745 markedly improved the radiographic skeletal phenotype and rescued the growth plate histological abnormalities. ScRNA-Seq of chondrocyte transcripts from affected mice identified calcium-mediated effects on multiple signaling pathways as potential mechanisms underlying the defects in linear and cartilage appositional growth observed in both mutant mice and patients. These results provide preclinical evidence demonstrating TRPV4 inhibition as a rational, mechanism-based therapeutic strategy to ameliorate disease progression and severity in the TRPV4 skeletal dysplasias.

Authors

Lisette Nevarez, Taylor K. Ismaili, Jennifer Zieba, Jorge Martin, Davis Wachtell, Derick Diaz, Jocelyn A. Ramirez, Valeria Aceves, Joshua Ito, Ryan S. Gray, David Goldstein, Sunil Sahdeo, Deborah Krakow, Daniel H. Cohn

×

The RNA binding protein Arid5a is an activator of TNF signaling in rheumatoid arthritis
Yang Li, Ipsita Dey, Shachi P. Vyas, Alzbeta Synackova, Decheng Li, Erik Lubberts, Dana P. Ascherman, Peter Draber, Sarah L. Gaffen
Yang Li, Ipsita Dey, Shachi P. Vyas, Alzbeta Synackova, Decheng Li, Erik Lubberts, Dana P. Ascherman, Peter Draber, Sarah L. Gaffen
View: Text | PDF

The RNA binding protein Arid5a is an activator of TNF signaling in rheumatoid arthritis

  • Text
  • PDF
Abstract

Rheumatoid arthritis (RA) is characterized by joint inflammation and bone erosion. Understanding cytokine pathways, particularly those targeting TNF, is crucial for understanding pathology and advancing treatment development. Arid5a is a noncanonical RNA binding protein (RBP) that augments inflammation through stabilizing proinflammatory mRNAs and enhancing protein translation. We examined published datasets for ARID5A in human RA blood, T cells, and synovial tissues. A stromal cell line, epithelial cells, and primary synovial fibroblasts were used to assess the effect of TNF on Arid5a expression, localization, and function. To determine how TNF induces Arid5a, WT or Traf2–/– stromal cells were treated with NIK or IKK inhibitors. To evaluate the necessity of Arid5a in arthritis progression, Arid5a–/– mice were subjected to collagen-induced arthritis. ARID5A was elevated in patients with RA and reduced by anti-TNF therapy. TNF upregulated Arid5a through the NF-κB1/TRAF2 pathway, causing cytoplasmic relocalization. Arid5a stabilized proinflammatory transcripts and enhanced expression of chemokines that drive RA. Arid5a–/– mice were resistant to collagen-induced arthritis correlating with reduced Th17 cells in synovial tissue. Thus, Arid5a serves as a newly recognized signaling intermediate downstream of TNF that is elevated in human RA and drives pathology in murine CIA, potentially positioning this RBP as a possible therapeutic target.

Authors

Yang Li, Ipsita Dey, Shachi P. Vyas, Alzbeta Synackova, Decheng Li, Erik Lubberts, Dana P. Ascherman, Peter Draber, Sarah L. Gaffen

×

Single-cell mapping of human endometrium and decidua reveals epithelial and stromal contributions to fertility
Gregory W. Burns, Emmanuel N. Paul, Manisha Persaud, Qingshi Zhao, Rong Li, Kristin Blackledge, Jessica Garcia de Paredes, Pratibha Shukla, Ripla Arora, Anat Chemerinski, Nataki C. Douglas
Gregory W. Burns, Emmanuel N. Paul, Manisha Persaud, Qingshi Zhao, Rong Li, Kristin Blackledge, Jessica Garcia de Paredes, Pratibha Shukla, Ripla Arora, Anat Chemerinski, Nataki C. Douglas
View: Text | PDF

Single-cell mapping of human endometrium and decidua reveals epithelial and stromal contributions to fertility

  • Text
  • PDF
Abstract

The human endometrium undergoes dynamic changes across the menstrual cycle to establish a receptive state for embryo implantation. Using bulk and single-cell RNA-Seq, we characterized gene expression dynamics in the cycling endometrium and the decidua from early pregnancy. We demonstrated that during the mid-secretory phase — the period encompassing the window of implantation — secretory glandular epithelial cells undergo notable transcriptional changes and alterations in cell-cell communication. Through comprehensive analyses, we identified the glandular epithelium receptivity module (GERM) signature, comprising 556 genes associated with endometrial receptivity. This GERM signature was consistently perturbed across datasets of endometrial samples from women with impaired fertility, validating its relevance as a marker of receptivity. In addition to epithelial changes, we observed shifts in stromal cell populations, notably involving decidual and senescent subsets, which also play key roles in modulating implantation. Together, these findings provide a high-resolution transcriptomic atlas of the receptive and early pregnant endometrium and shed light on key molecular pathways underlying successful implantation.

Authors

Gregory W. Burns, Emmanuel N. Paul, Manisha Persaud, Qingshi Zhao, Rong Li, Kristin Blackledge, Jessica Garcia de Paredes, Pratibha Shukla, Ripla Arora, Anat Chemerinski, Nataki C. Douglas

×

The critical role of GRP78/BiP MARylation in ER stress of KRAS-mutant colorectal cancer
Shuxian Zhang, Xiaodan Chen, Qian Gong, Jing Huang, Yi Tang, Ming Xiao, Ming Li, Qingshu Li, Yalan Wang
Shuxian Zhang, Xiaodan Chen, Qian Gong, Jing Huang, Yi Tang, Ming Xiao, Ming Li, Qingshu Li, Yalan Wang
View: Text | PDF

The critical role of GRP78/BiP MARylation in ER stress of KRAS-mutant colorectal cancer

  • Text
  • PDF
Abstract

Nearly 50% of patients with KRAS-mutant colorectal cancer (CRC) currently lack effective targeted therapy. The accumulation of KRAS-mutant proteins can trigger a sustained high level of endoplasmic reticulum (ER) stress, and the UPR-based long-term protective regulatory pathway inhibits the aggregation of unfolded proteins, thereby maintaining the stability of the ER and enabling the continued survival of KRAS-mutant tumors. However, the critical factors that affect the regulation of ER homeostasis in KRAS-mutant CRC are still unclear. Mono-ADP ribosylation (MARylation) catalyzed by ART1 is the most important modification of GRP78/BiP and stabilizes the internal environment of the ER. In this study, KRAS mutation increased the levels of ART1, ER stress, and MARylated GRP78/BiP in CRC cells. Inhibiting MARylated GRP78/BiP can impede the downstream IRE1α/XBP1/TFAF2/JNK and PERK/eIF2α/ATF4 cascades by affecting the binding and dissociation of GRP78/BiP with receptors to hinder the growth of KRAS-mutant CRC cells and accelerate their apoptosis. We propose that KRAS-mutant CRC cells are more sensitive to intervention with MARylated GRP78/BiP because more modifications are needed to maintain ER stability. We also conducted a preliminary study on the specific site of function. Clarifying this molecular mechanism can provide a experimental basis for identifying effective targets for the intervention of KRAS-mutant CRC.

Authors

Shuxian Zhang, Xiaodan Chen, Qian Gong, Jing Huang, Yi Tang, Ming Xiao, Ming Li, Qingshu Li, Yalan Wang

×

Anti-CD3 mAb treatment reshapes infiltrating T and β cells in the islets in autoimmune diabetes
Ying Wu, Maxwell Spurrell, Ana Lledó-Delgado, Songyan Deng, Dejiang Wang, Yang Liu, Mahsa Nouri Barkestani, Ana Luisa Perdigoto, Kevan C. Herold
Ying Wu, Maxwell Spurrell, Ana Lledó-Delgado, Songyan Deng, Dejiang Wang, Yang Liu, Mahsa Nouri Barkestani, Ana Luisa Perdigoto, Kevan C. Herold
View: Text | PDF

Anti-CD3 mAb treatment reshapes infiltrating T and β cells in the islets in autoimmune diabetes

  • Text
  • PDF
Abstract

Treatment with anti-CD3 monoclonal antibody (mAb) can delay or prevent type 1 diabetes in mice and humans by modulating the immune-mediated destruction of β cells. A single course of treatment may have lasting efficacy, but the mechanisms that account for these prolonged effects, i.e., “operational tolerance,” are not clear. Here, we used paired single-cell RNA and T cell receptor sequencing to characterize islet-infiltrating T cells and their counterpart in paired pancreatic lymph nodes from anti-CD3 mAb–treated nonobese diabetic (NOD) mice in remission. We found that after anti-CD3 mAb treatment, T cells that infiltrate the islets are more heterogeneous and have hybrid features including characteristics of T stem cell–like memory and reduced effector function compared with those from untreated prediabetic NOD mice. Autoantigen-reactive CD8+ T cells persist after treatment, but they also show features of stemness and reduced pathogenicity. Our findings describe the reshaping of islet-infiltrating and autoreactive T cells and β cells that lead to operational, but tenuous, tolerance to autoimmune diabetes following anti-CD3 mAb treatment.

Authors

Ying Wu, Maxwell Spurrell, Ana Lledó-Delgado, Songyan Deng, Dejiang Wang, Yang Liu, Mahsa Nouri Barkestani, Ana Luisa Perdigoto, Kevan C. Herold

×
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • …
  • 418
  • 419
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts