The use of genetically engineered tools, including combinations of Cre-LoxP and Flp-FRT systems, enables the interrogation of complex biology. Steroidogenic factor-1 (SF-1) is expressed in the ventromedial hypothalamic nucleus (VMH). Development of genetic tools, such as mice expressing Flp recombinase (Flp) in SF-1 neurons (Sf-1-Flp), will be useful for future studies that unravel the complex physiology regulated by the VMH. Here, we developed and characterized Sf-1-Flp mice and demonstrated their utility. The Flp sequence was inserted into the Sf-1 locus with P2A. This insertion did not affect Sf-1 mRNA expression levels and Sf-1-Flp mice do not have any visible phenotypes. They are fertile and metabolically comparable to wild-type littermate mice. Optogenetic stimulation using adeno-associated virus (AAV) carrying Flp-dependent channelrhodopsin-2 (ChR2) increased blood glucose and skeletal muscle PGC-1α in Sf-1-Flp mice. This was similar to SF-1 neuronal activation using Sf-1-BAC-Cre and AAV carrying Cre-dependent ChR2. Finally, we generated Sf-1-Flp mice that lack β2-adrenergic receptors (Adrb2) only in skeletal muscle with a combination of Cre/LoxP technology (Sf-1-Flp:SKMΔAdrb2). Optogenetic stimulation of SF-1 neurons failed to increase skeletal muscle PGC-1α in Sf-1-Flp:SKMΔAdrb2 mice, suggesting that Adrb2 in skeletal muscle is required for augmented skeletal muscle PGC-1α by SF-1 neuronal activation. Our data demonstrate that Sf-1-Flp mice are useful for interrogating complex physiology.
Marco Galvan, Mina Fujitani, Samuel R. Heaselgrave, Shreya Thomas, Bandy Chen, Jenny J. Lee, Steven C. Wyler, Joel K. Elmquist, Teppei Fujikawa