Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Transplantations

  • 117 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 10
  • 11
  • 12
  • Next →
Induced regulatory T cells in allograft tolerance via transient mixed chimerism
Kiyohiko Hotta, … , A. Benedict Cosimi, Tatsuo Kawai
Kiyohiko Hotta, … , A. Benedict Cosimi, Tatsuo Kawai
Published July 7, 2016
Citation Information: JCI Insight. 2016;1(10):e86419. https://doi.org/10.1172/jci.insight.86419.
View: Text | PDF

Induced regulatory T cells in allograft tolerance via transient mixed chimerism

  • Text
  • PDF
Abstract

Successful induction of allograft tolerance has been achieved in nonhuman primates (NHPs) and humans via induction of transient hematopoietic chimerism. Since allograft tolerance was achieved in these recipients without durable chimerism, peripheral mechanisms are postulated to play a major role. Here, we report our studies of T cell immunity in NHP recipients that achieved long-term tolerance versus those that rejected the allograft (AR). All kidney, heart, and lung transplant recipients underwent simultaneous or delayed donor bone marrow transplantation (DBMT) following conditioning with a nonmyeloablative regimen. After DBMT, mixed lymphocyte culture with CFSE consistently revealed donor-specific loss of CD8+ T cell responses in tolerant (TOL) recipients, while marked CD4+ T cell proliferation in response to donor antigens was found to persist. Interestingly, a significant proportion of the proliferated CD4+ cells were FOXP3+ in TOL recipients, but not in AR or naive NHPs. In TOL recipients, CD4+FOXP3+ cell proliferation against donor antigens was greater than that observed against third-party antigens. Finally, the expanded Tregs appeared to be induced Tregs (iTregs) that were converted from non-Tregs. These data provide support for the hypothesis that specific induction of iTregs by donor antigens is key to long-term allograft tolerance induced by transient mixed chimerism.

Authors

Kiyohiko Hotta, Akihiro Aoyama, Tetsu Oura, Yohei Yamada, Makoto Tonsho, Kyu Ha Huh, Kento Kawai, David Schoenfeld, James S. Allan, Joren C. Madsen, Gilles Benichou, Rex-Neal Smith, Robert B. Colvin, David H. Sachs, A. Benedict Cosimi, Tatsuo Kawai

×

Cyclosporine A immunosuppression drives catastrophic squamous cell carcinoma through IL-22
Melody Abikhair, … , Diane Felsen, John A. Carucci
Melody Abikhair, … , Diane Felsen, John A. Carucci
Published June 2, 2016
Citation Information: JCI Insight. 2016;1(8):e86434. https://doi.org/10.1172/jci.insight.86434.
View: Text | PDF

Cyclosporine A immunosuppression drives catastrophic squamous cell carcinoma through IL-22

  • Text
  • PDF
Abstract

Immune-suppressed organ transplant recipients (OTRs) can develop catastrophic squamous cell carcinoma (SCC), characterized by multiple primary tumors, extensive body surface area involvement, or metastases. There are currently no curative systemic therapies available. We previously showed that IL-22 enhances SCC proliferation. Herein, we examined links between cyclosporine (CSA), IL-22, and SCC in patients, cell lines, and mice with UV light–induced SCC. Eighteen of 114 OTRs developed catastrophic SCC, which was strongly associated with CSA treatment. We found that CSA drives T cell polarization toward IL-22–producing T22 cells, and CSA treatment increased IL-22 receptor in SCC cells. SCC tissue from OTRs showed increased expression of IL-22RA1. CSA potentiated rescue by IL-22 of serum-starved SCC cells; treatment of SCC cells with IL-22 and CSA increased both their migratory and invasive capacity. In a UV-induced model of SCC in SKH-1 immunocompetent mice, treatment with anti–IL-22 antibody reduced tumor number and tumor burden. We found that catastrophic SCC in OTRs is associated with CSA use, which may be acting by favoring T22 polarization. Since anti–IL-22 antibody administration decreased tumor number and tumor burden in vivo, blockade of the IL-22 axis may be developed as a viable therapeutic option for catastrophic SCC.

Authors

Melody Abikhair, Hiroshi Mitsui, Valerie Yanofsky, Nazanin Roudiani, Channa Ovits, Teddy Bryan, Tatiana M. Oberyszyn, Kathleen L. Tober, Juana Gonzalez, James G. Krueger, Diane Felsen, John A. Carucci

×

Effect of tolerance versus chronic immunosuppression protocols on the quality of life of kidney transplant recipients
Maria Lucia L. Madariaga, … , David H. Sachs, Tatsuo Kawai
Maria Lucia L. Madariaga, … , David H. Sachs, Tatsuo Kawai
Published June 2, 2016
Citation Information: JCI Insight. 2016;1(8):e87019. https://doi.org/10.1172/jci.insight.87019.
View: Text | PDF

Effect of tolerance versus chronic immunosuppression protocols on the quality of life of kidney transplant recipients

  • Text
  • PDF
Abstract

Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA.

BACKGROUND. Kidney transplant patients on tolerance protocols avoid the morbidity associated with the use of conventional chronic immunosuppressive regimens. However, the impact of tolerance versus conventional regimens on the quality of life (QOL) of kidney transplant patients is unknown.

METHODS. Five patients who achieved long-term immunosuppression-free renal allograft survival after combined kidney and bone marrow transplantation (tolerant group) were compared with thirty-two comparable kidney transplant recipients on conventional immunosuppression (conventional group). QOL was compared with 16 conventional recipients using the Kidney Disease Quality of Life Short Form 36 (KDQOL SF-36) and the Modified Transplant Symptom Occurrence and Symptom Distress Scale (MTSOSD-59R).

RESULTS. Patients in the tolerant group required significantly less treatment after transplant for hypertension and no medications for diabetes (P < 0.01). There was no incidence of diabetes, dyslipidemia, or malignancies in the tolerant group, while these were observed in 12.5%, 40.6%, and 11.8% of the conventional group, respectively. Tolerant patients experienced better overall health (P < 0.01) and scored higher on kidney transplant-targeted scales and healthy survey scales than patients in the conventional group according to the KDQOL SF-36 (P < 0.05). Tolerant patients were less likely to experience depression, dyspnea, excessive appetite/thirst, flatulence, hearing loss, itching, joint pain, lack of energy, muscle cramps, and lack of libido than conventional patients according to the MTSOSD-59R (P < 0.05).

CONCLUSION. Kidney transplant recipients who achieved tolerance experience significantly fewer incidences of complications, improved QOL, and fewer comorbid symptoms compared with patients on conventional immunosuppression. These results support the expanded use of tolerance protocols in kidney transplantation.

Authors

Maria Lucia L. Madariaga, Philip J. Spencer, Kumaran Shanmugarajah, Kerry A. Crisalli, David C. Chang, James F. Markmann, Nahel Elias, A. Benedict Cosimi, David H. Sachs, Tatsuo Kawai

×

Effects of cellular origin on differentiation of human induced pluripotent stem cell–derived endothelial cells
Shijun Hu, … , Michael P. Snyder, Joseph C. Wu
Shijun Hu, … , Michael P. Snyder, Joseph C. Wu
Published June 2, 2016
Citation Information: JCI Insight. 2016;1(8):e85558. https://doi.org/10.1172/jci.insight.85558.
View: Text | PDF

Effects of cellular origin on differentiation of human induced pluripotent stem cell–derived endothelial cells

  • Text
  • PDF
Abstract

Human induced pluripotent stem cells (iPSCs) can be derived from various types of somatic cells by transient overexpression of 4 Yamanaka factors (OCT4, SOX2, C-MYC, and KLF4). Patient-specific iPSC derivatives (e.g., neuronal, cardiac, hepatic, muscular, and endothelial cells [ECs]) hold great promise in drug discovery and regenerative medicine. In this study, we aimed to evaluate whether the cellular origin can affect the differentiation, in vivo behavior, and single-cell gene expression signatures of human iPSC–derived ECs. We derived human iPSCs from 3 types of somatic cells of the same individuals: fibroblasts (FB-iPSCs), ECs (EC-iPSCs), and cardiac progenitor cells (CPC-iPSCs). We then differentiated them into ECs by sequential administration of Activin, BMP4, bFGF, and VEGF. EC-iPSCs at early passage (10 < P < 20) showed higher EC differentiation propensity and gene expression of EC-specific markers (PECAM1 and NOS3) than FB-iPSCs and CPC-iPSCs. In vivo transplanted EC-iPSC–ECs were recovered with a higher percentage of CD31+ population and expressed higher EC-specific gene expression markers (PECAM1, KDR, and ICAM) as revealed by microfluidic single-cell quantitative PCR (qPCR). In vitro EC-iPSC–ECs maintained a higher CD31+ population than FB-iPSC–ECs and CPC-iPSC–ECs with long-term culturing and passaging. These results indicate that cellular origin may influence lineage differentiation propensity of human iPSCs; hence, the somatic memory carried by early passage iPSCs should be carefully considered before clinical translation.

Authors

Shijun Hu, Ming-Tao Zhao, Fereshteh Jahanbani, Ning-Yi Shao, Won Hee Lee, Haodong Chen, Michael P. Snyder, Joseph C. Wu

×

Incomplete clonal deletion as prerequisite for tissue-specific minor antigen tolerization
Nina Pilat, … , Fritz Wrba, Thomas Wekerle
Nina Pilat, … , Fritz Wrba, Thomas Wekerle
Published May 19, 2016
Citation Information: JCI Insight. 2016;1(7):e85911. https://doi.org/10.1172/jci.insight.85911.
View: Text | PDF

Incomplete clonal deletion as prerequisite for tissue-specific minor antigen tolerization

  • Text
  • PDF
Abstract

Central clonal deletion has been considered the critical factor responsible for the robust state of tolerance achieved by chimerism-based experimental protocols, but split-tolerance models and the clinical experience are calling this assumption into question. Although clone-size reduction through deletion has been shown to be universally required for achieving allotolerance, it remains undetermined whether it is sufficient by itself. Therapeutic Treg treatment induces chimerism and tolerance in a stringent murine BM transplantation model devoid of myelosuppressive recipient treatment. In contrast to irradiation chimeras, chronic rejection (CR) of skin and heart allografts in Treg chimeras was permanently prevented, even in the absence of complete clonal deletion of donor MHC-reactive T cells. We show that minor histocompatibility antigen mismatches account for CR in irradiation chimeras without global T cell depletion. Furthermore, we show that Treg therapy–induced tolerance prevents CR in a linked suppression–like fashion, which is maintained by active regulatory mechanisms involving recruitment of thymus-derived Tregs to the graft. These data suggest that highly efficient intrathymic and peripheral deletion of donor-reactive T cells for specificities expressed on hematopoietic cells preclude the expansion of donor-specific Tregs and, hence, do not allow for spreading of tolerance to minor specificities that are not expressed by donor BM.

Authors

Nina Pilat, Benedikt Mahr, Lukas Unger, Karin Hock, Christoph Schwarz, Andreas M. Farkas, Ulrike Baranyi, Fritz Wrba, Thomas Wekerle

×

Proteomics analysis reveals a Th17-prone cell population in presymptomatic graft-versus-host disease
Wei Li, … , Samir Hanash, Sophie Paczesny
Wei Li, … , Samir Hanash, Sophie Paczesny
Published May 5, 2016
Citation Information: JCI Insight. 2016;1(6):e86660. https://doi.org/10.1172/jci.insight.86660.
View: Text | PDF

Proteomics analysis reveals a Th17-prone cell population in presymptomatic graft-versus-host disease

  • Text
  • PDF
Abstract

Gastrointestinal graft-versus-host-disease (GI-GVHD) is a life-threatening complication occurring after allogeneic hematopoietic cell transplantation (HCT), and a blood biomarker that permits stratification of HCT patients according to their risk of developing GI-GVHD would greatly aid treatment planning. Through in-depth, large-scale proteomic profiling of presymptomatic samples, we identified a T cell population expressing both CD146, a cell adhesion molecule, and CCR5, a chemokine receptor that is upregulated as early as 14 days after transplantation in patients who develop GI-GVHD. The CD4+CD146+CCR5+ T cell population is Th17 prone and increased by ICOS stimulation. shRNA knockdown of CD146 in T cells reduced their transmigration through endothelial cells, and maraviroc, a CCR5 inhibitor, reduced chemotaxis of the CD4+CD146+CCR5+ T cell population toward CCL14. Mice that received CD146 shRNA–transduced human T cells did not lose weight, showed better survival, and had fewer CD4+CD146+CCR5+ T cells and less pathogenic Th17 infiltration in the intestine, even compared with mice receiving maraviroc with control shRNA–transduced human T cells. Furthermore, the frequency of CD4+CD146+CCR5+ Tregs was increased in GI-GVHD patients, and these cells showed increased plasticity toward Th17 upon ICOS stimulation. Our findings can be applied to early risk stratification, as well as specific preventative therapeutic strategies following HCT.

Authors

Wei Li, Liangyi Liu, Aurelie Gomez, Jilu Zhang, Abdulraouf Ramadan, Qing Zhang, Sung W. Choi, Peng Zhang, Joel K. Greenson, Chen Liu, Di Jiang, Elizabeth Virts, Stephanie L. Kelich, Hong Wei Chu, Ryan Flynn, Bruce R. Blazar, Helmut Hanenberg, Samir Hanash, Sophie Paczesny

×

Blocking MHC class II on human endothelium mitigates acute rejection
Parwiz Abrahimi, … , W. Mark Saltzman, Jordan S. Pober
Parwiz Abrahimi, … , W. Mark Saltzman, Jordan S. Pober
Published January 21, 2016
Citation Information: JCI Insight. 2016;1(1):e85293. https://doi.org/10.1172/jci.insight.85293.
View: Text | PDF

Blocking MHC class II on human endothelium mitigates acute rejection

  • Text
  • PDF
Abstract

Acute allograft rejection is mediated by host CD8+ cytotoxic T lymphocytes (CTL) targeting graft class I major histocompatibility complex (MHC) molecules. In experimental rodent models, rejection requires differentiation of naive CD8+ T cells into alloreactive CTL within secondary lymphoid organs, whereas in humans, CTL may alternatively develop within the graft from circulating CD8+ effector memory T cells (TEM) that recognize class I MHC molecules on graft endothelial cells (EC). This latter pathway is poorly understood. Here, we show that host CD4+ TEM, activated by EC class II MHC molecules, provide critical help for this process. First, blocking HLA-DR on EC lining human artery grafts in immunodeficient mice reduces CD8+ CTL development within and acute rejection of the artery by adoptively transferred allogeneic human lymphocytes. Second, siRNA knockdown or CRISPR/Cas9 ablation of class II MHC molecules on EC prevents CD4+ TEM from helping CD8+ TEM to develop into CTL in vitro. Finally, implanted synthetic microvessels, formed from CRISPR/Cas9-modified EC lacking class II MHC molecules, are significantly protected from CD8+ T cell–mediated destruction in vivo. We conclude that human CD8+ TEM–mediated rejection targeting graft EC class I MHC molecules requires help from CD4+ TEM cells activated by recognition of class II MHC molecules.

Authors

Parwiz Abrahimi, Lingfeng Qin, William G. Chang, Alfred L.M. Bothwell, George Tellides, W. Mark Saltzman, Jordan S. Pober

×
  • ← Previous
  • 1
  • 2
  • …
  • 10
  • 11
  • 12
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts