Pulmonary hypertension (PH) is a multifaceted vascular disease where development and severity are determined by both genetic and environmental factors. Over the past decade, there has been an acceleration of the discovery of molecular effectors that mediate PH pathogenesis, including large numbers of microRNA molecules that are expressed in pulmonary vascular cell types and exert system-wide regulatory functions in all aspects of vascular health and disease. Due to the inherent pleiotropy, overlap, and redundancy of these molecules, it has been challenging to define their integrated effects on overall disease manifestation. In this review, we summarize our current understanding of the roles of microRNAs in PH with an emphasis on potential methods to discern the hierarchical motifs governing their multifunctional and interconnected activities. Deciphering this higher order of regulatory structure will be crucial for overcoming the challenges of developing these molecules as biomarkers or therapeutic targets, in isolation or combination.
Vinny Negi, Stephen Y. Chan
Despite the rising incidence of autoimmunity, therapeutic options for patients with autoimmune disease still rely on decades-old immunosuppressive strategies that risk severe and potentially fatal complications. Thus, novel therapeutic approaches for autoimmune diseases are greatly needed in order to minimize treatment-related toxicity. Such strategies would ideally target only the autoreactive immune components to preserve beneficial immunity. Here, we review how several decades of basic, translational, and clinical research on the immunology of pemphigus vulgaris (PV), an autoantibody-mediated skin disease, have enabled the development of targeted immunotherapeutic strategies. We discuss research to elucidate the pathophysiology of PV and how the knowledge afforded by these studies has led to the preclinical and clinical testing of targeted approaches to neutralize autoantibodies, to induce antigen-specific tolerance, and to specifically eliminate autoreactive B cells in PV.
Christoph T. Ellebrecht, Aimee S. Payne
Biliary atresia is an obstructive cholangiopathy of infancy that progresses to end-stage cirrhosis. Although the pathogenesis of the disease is not completely understood, previous reports link TNFα to apoptosis of the bile duct epithelium in the presence of IFNγ. Here, we investigate if TNFα signaling regulates pathogenic mechanisms of biliary atresia. First, we quantified the expression of
Pranavkumar Shivakumar, Tatsuki Mizuochi, Reena Mourya, Sridevi Gutta, Li Yang, Zhenhua Luo, Jorge A. Bezerra
Neuroinflammation is a pathological hallmark of ALS in both transgenic rodent models and patients, and is characterized by proinflammatory T lymphocytes and activated macrophages/microglia. In ALS mouse models, decreased regulatory T lymphocytes (Tregs) exacerbate the neuroinflammatory process, leading to accelerated motoneuron death and shortened survival; passive transfer of Tregs suppresses the neuroinflammation and prolongs survival. Treg numbers and FOXP3 expression are also decreased in rapidly progressing ALS patients. A key question is whether the marked neuroinflammation in ALS can be attributed to the impaired suppressive function of ALS Tregs in addition to their decreased numbers. To address this question, T lymphocyte proliferation assays were performed. Compared with control Tregs, ALS Tregs were less effective in suppressing responder T lymphocyte proliferation. Although both slowly and rapidly progressing ALS patients had dysfunctional Tregs, the greater the clinically assessed disease burden or the more rapidly progressing the patient, the greater the Treg dysfunction. Epigenetically, the percentage methylation of the Treg-specific demethylated region was greater in ALS Tregs. After in vitro expansion, ALS Tregs regained suppressive abilities to the levels of control Tregs, suggesting that autologous passive transfer of expanded Tregs might offer a novel cellular therapy to slow disease progression.
David R. Beers, Weihua Zhao, Jinghong Wang, Xiujun Zhang, Shixiang Wen, Dan Neal, Jason R. Thonhoff, Abdullah S. Alsuliman, Elizabeth J. Shpall, Katy Rezvani, Stanley H. Appel
Spinal muscular atrophy (SMA) is a leading genetic cause of infantile death and is caused by the loss of survival motor neuron-1 (
Kevin A. Kaifer, Eric Villalón, Erkan Y. Osman, Jacqueline J. Glascock, Laura L. Arnold, D.D.W. Cornelison, Christian L. Lorson
Immaturity of the immune system of human fetuses and neonates is often invoked to explain their increased susceptibility to infection; however, the development of the fetal innate immune system in early life remains incompletely explored. We now show that the most mature NK cells found in adult (or postnatal) human circulation (CD94–CD16+) are absent during ontogeny. Human fetal NK cells were found to express the 2 signature T-box transcription factors essential for the development of all murine NK and NK-like cells, eomesodermin (Eomes) and T-bet. The single-cell pattern of Eomes and T-bet expression during ontogeny, however, revealed a stereotyped pattern of reciprocal dominance, with immature NK cells expressing higher amounts of Eomes and more mature NK cells marked by greater abundance of T-bet. We also observed a stereotyped pattern of tissue-specific NK cell maturation during human ontogeny, with fetal liver being more restrictive to NK cell maturity than fetal bone barrow, spleen, or lung. These results support the hypothesis that maturation of human NK cells has a discrete restriction until postnatal life, and provide a framework to better understand the increased susceptibility of fetuses and newborns to infection.
Amélie Collins, Nyanza Rothman, Kang Liu, Steven L. Reiner
The potential of costimulation blockade to serve as a novel transplant immunosuppression strategy has been explored for over 20 years, culminating in the recent clinical approval of belatacept for renal transplant patients. Despite improving long-term graft function and survival compared with calcineurin inhibitors, clinical acceptance of belatacept has been hindered by elevated rates of acute rejection. We examined the signaling pathways required to activate costimulation blockade–resistant alloreactive T cells and identified the OX40/OX40L secondary costimulatory pathway as a promising target. We next sought to improve the clinical efficacy of traditional costimulation blockade using belatacept by coupling it with anti-OX40L. Using a murine transplant model, we demonstrate that combined blockade enhances the suppression of alloreactive T cell proliferation and effector functions including both cytokine release and cytotoxic degranulation. We also show that anti-OX40L may be particularly useful in targeting alloreactive memory T cell responses that are relatively unaffected by traditional costimulation blockade regimens. Finally, we translated this therapy to a clinically relevant nonhuman primate renal transplant model, validating the efficacy of this regimen in a potentially novel steroid- and calcineurin inhibitor–free immunosuppression regimen.
William H. Kitchens, Ying Dong, David V. Mathews, Cynthia P. Breeden, Elizabeth Strobert, Maria E. Fuentes, Christian P. Larsen, Mandy L. Ford, Andrew B. Adams
Quantification of stable isotope tracers has revealed the dynamic state of living tissues. A new form of imaging mass spectrometry quantifies isotope ratios in domains much smaller than a cubic micron, enabling measurement of cell turnover and metabolism with stable isotope tracers at the single-cell level with a methodology we refer to as multi-isotope imaging mass spectrometry. In a first-in-human study, we utilize stable isotope tracers of DNA synthesis and de novo lipogenesis to prospectively measure cell birth and adipocyte lipid turnover. In a study of healthy adults, we elucidate an age-dependent decline in new adipocyte generation and adipocyte lipid turnover. A linear regression model suggests that the aging effect could be mediated by a decline in insulin-like growth factor-1 (IGF-1). This study therefore establishes a method for measurement of cell turnover and metabolism in humans with subcellular resolution while implicating the growth hormone/IGF-1 axis in adipose tissue aging.
Christelle Guillermier, Pouneh K. Fazeli, Soomin Kim, Mingyue Lun, Jonah P. Zuflacht, Jessica Milian, Hang Lee, Hugues Francois-Saint-Cyr, Francois Horreard, David Larson, Evan D. Rosen, Richard T. Lee, Claude P. Lechene, Matthew L. Steinhauser
Loss of LKB1 activity is prevalent in
Melissa Gilbert-Ross, Jessica Konen, Junghui Koo, John Shupe, Brian S. Robinson, Walter Guy Wiles IV, Chunzi Huang, W. David Martin, Madhusmita Behera, Geoffrey H. Smith, Charles E. Hill, Michael R. Rossi, Gabriel L. Sica, Manali Rupji, Zhengjia Chen, Jeanne Kowalski, Andrea L. Kasinski, Suresh S. Ramalingam, Haian Fu, Fadlo R. Khuri, Wei Zhou, Adam I. Marcus
The leucine rich repeat containing protein 8A (LRRC8A), or SWELL1, is an essential component of the volume-regulated anion channel (VRAC) that is activated by cell swelling and ionic strength. We report here for the first time to our knowledge its expression in a primary cell culture of nodose ganglia neurons and its localization in the soma, neurites, and neuronal membrane. We show that this neuronal VRAC/SWELL1 senses low external pH (pHo) in addition to hypoosmolarity. A robust sustained chloride current is seen in 77% of isolated nodose neurons following brief exposures to extracellular acid pH. Its activation involves proton efflux, intracellular alkalinity, and an increase in NOX-derived H2O2. The molecular identity of both the hypoosmolarity-induced and acid pHo–conditioned VRAC as LRRC8A (SWELL1) was confirmed by Cre-flox–mediated KO, shRNA-mediated knockdown, and CRISPR/Cas9-mediated LRRC8A deletion in HEK cells and in primary nodose neuronal cultures. Activation of VRAC by low pHo reduces neuronal injury during simulated ischemia and N-methyl-D-aspartate–induced (NMDA-induced) apoptosis. These results identify the VRAC (LRRC8A) as a dual sensor of hypoosmolarity and low pHo in vagal afferent neurons and define the mechanisms of its activation and its neuroprotective potential.
Runping Wang, Yongjun Lu, Susheel Gunasekar, Yanhui Zhang, Christopher J. Benson, Mark W. Chapleau, Rajan Sah, François M. Abboud
Metastasis suppressors are key regulators of tumor growth, invasion, and metastases. Loss of metastasis suppressors has been associated with aggressive tumor behaviors and metastatic progression. We previously showed that regulator of calcineurin 1, isoform 4 (RCAN1-4) was upregulated by the KiSS1 metastatic suppression pathway and could inhibit cell motility when overexpressed in cancer cells. To test the effects of endogenous RCAN1-4 loss on thyroid cancer in vivo, we developed RCAN1-4 knockdown stable cells. Subcutaneous xenograft models demonstrated that RCAN1-4 knockdown promotes tumor growth. Intravenous metastasis models demonstrated that RCAN1-4 loss promotes tumor metastases to the lungs and their subsequent growth. Finally, stable induction of RCAN1-4 expression reduced thyroid cancer cell growth and invasion. Microarray analysis predicted that nuclear factor, erythroid 2-like 3 (NFE2L3) was a pivotal downstream effector of RCAN1-4. NFE2L3 overexpression was shown to be necessary for RCAN1-4–mediated enhanced growth and invasiveness and NEF2L3 overexpression independently increased cell invasion. In human samples, NFE2L3 was overexpressed in TCGA thyroid cancer samples versus normal tissues and NFE2L3 overexpression was demonstrated in distant metastasis samples from thyroid cancer patients. In conclusion, we provide the first evidence to our knowledge that RCAN1-4 is a growth and metastasis suppressor in vivo and that it functions in part through NFE2L3.
Chaojie Wang, Motoyasu Saji, Steven E. Justiniano, Adlina Mohd Yusof, Xiaoli Zhang, Lianbo Yu, Soledad Fernández, Paul Wakely Jr., Krista La Perle, Hiroshi Nakanishi, Neal Pohlman, Matthew D. Ringel
Adoptive immunotherapy for solid tumors relies on infusing large numbers of T cells to mediate successful antitumor responses in patients. While long-term rapid-expansion protocols (REPs) produce sufficient numbers of CD8+ T cells for treatment, they also cause decline in the cell’s therapeutic fitness. In contrast, we discovered that IL-17–producing CD4+ T cells (Th17 cells) do not require REPs to expand 5,000-fold over 3 weeks. Also, unlike Th1 cells, Th17 cells do not exhibit hallmarks of senescence or apoptosis, retaining robust antitumor efficacy in vivo. Three-week-expanded Th17 cells eliminated melanoma as effectively as Th17 cells expanded for 1 week when infused in equal numbers into mice. However, treating mice with large recalcitrant tumors required the infusion of all cells generated after 2 or 3 weeks of expansion, while the cell yield obtained after 1-week expansion was insufficient. Long-term-expanded Th17 cells also protected mice from tumor rechallenge including lung metastasis. Importantly, 2-week-expanded human chimeric antigen receptor–positive (CAR+) Th17 cells also retained their ability to regress human mesothelioma, while CAR+ Th1 cells did not. Our results indicate that tumor-reactive Th17 cells are an effective cell therapy for cancer, remaining uncompromised when expanded for a long duration owing to their resistance to senescence.
Jacob S. Bowers, Michelle H. Nelson, Kinga Majchrzak, Stefanie R. Bailey, Baerbel Rohrer, Andrew D.M. Kaiser, Carl Atkinson, Luca Gattinoni, Chrystal M. Paulos
Mechanisms of bile acid–induced (BA-induced) liver injury in cholestasis are controversial, limiting development of new therapies. We examined how BAs initiate liver injury using isolated liver cells from humans and mice and in-vivo mouse models. At pathophysiologic concentrations, BAs induced proinflammatory cytokine expression in mouse and human hepatocytes, but not in nonparenchymal cells or cholangiocytes. These hepatocyte-specific cytokines stimulated neutrophil chemotaxis. Inflammatory injury was mitigated in
Shi-Ying Cai, Xinshou Ouyang, Yonglin Chen, Carol J. Soroka, Juxian Wang, Albert Mennone, Yucheng Wang, Wajahat Z. Mehal, Dhanpat Jain, James L. Boyer
Occurrence of transient ischemic attacks (TIA) and cerebral strokes is a recognized risk associated with cocaine abuse. Here, we use a rodent model along with optical imaging to study cocaine-induced TIA and the associated dynamic changes in cerebral blood flow velocity (CBFv) and cerebrovasculature. We show that chronic cocaine exposure in mice resulted in marked cortical hypoperfusion, in significant arterial and venous vasoconstriction, and in a sensitized vascular response to an acute cocaine injection. Starting after 10 days of exposure, an acute cocaine challenge to these mice resulted in a TIA, which presented as hemiparalysis and was associated with an abrupt exacerbation of CBFv. The severity of the TIA correlated with the decreases in cortical CBFv such that the greater the decreases in flow, the longer the TIA duration. The severity of TIA peaked around 17–22 days of cocaine exposure and decreased thereafter in parallel to a reorganization of CBFv from superficial to deep cortical layers, along with an increase in vessel density into these layers. Here, we document for the first time to our knowledge evidence of a TIA in an animal model of chronic cocaine exposure that was associated with profound decreases in CBFv, and we revealed that while the severity of the TIA initially increased with repeated exposures, it subsequently improved in parallel to an increase in the vessel density. This suggests that strategies to accelerate cerebrovascular recovery might be therapeutically beneficial in cocaine abusers.
Jiang You, Nora D. Volkow, Kicheon Park, Qiujia Zhang, Kevin Clare, Congwu Du, Yingtian Pan
Mice and humans lacking the caveolae component polymerase I transcription release factor (PTRF, also known as cavin-1) exhibit lipo- and muscular dystrophy. Here we describe the molecular features underlying the muscle phenotype for PTRF/cavin-1 null mice. These animals had a decreased ability to exercise, and exhibited muscle hypertrophy with increased muscle fiber size and muscle mass due, in part, to constitutive activation of the Akt pathway. Their muscles were fibrotic and exhibited impaired membrane integrity accompanied by an apparent compensatory activation of the dystrophin-glycoprotein complex along with elevated expression of proteins involved in muscle repair function.
Shi-Ying Ding, Libin Liu, Paul F. Pilch
Retinoic-acid-orphan-receptor-C (RORC) is a master regulator of Th17 cells, which are pathogenic in several autoimmune diseases. Genetic Rorc deficiency in mice, while preventing autoimmunity, causes early lethality due to metastatic thymic T cell lymphomas. We sought to determine whether pharmacological RORC inhibition could be an effective and safe therapy for autoimmune diseases by evaluating its effects on Th17 cell functions and intrathymic T cell development. RORC inhibitors effectively inhibited Th17 differentiation and IL-17A production, and delayed-type hypersensitivity reactions. In vitro, RORC inhibitors induced apoptosis, as well as Bcl2l1 and BCL2L1 mRNA downregulation, in mouse and nonhuman primate thymocytes, respectively. Chronic, 13-week RORC inhibitor treatment in rats caused progressive thymic alterations in all analyzed rats similar to those in Rorc-deficient mice prior to T cell lymphoma development. One rat developed thymic cortical hyperplasia with preneoplastic features, including increased mitosis and reduced IKAROS expression, albeit without skewed T cell clonality. In summary, pharmacological inhibition of RORC not only blocks Th17 cell development and related cytokine production, but also recapitulates thymic aberrations seen in Rorc-deficient mice. While RORC inhibition may offer an effective therapeutic principle for Th17-mediated diseases, T cell lymphoma with chronic therapy remains an apparent risk.
Christine Guntermann, Alessandro Piaia, Marie-Laure Hamel, Diethilde Theil, Tina Rubic-Schneider, Alberto del Rio-Espinola, Linda Dong, Andreas Billich, Klemens Kaupmann, Janet Dawson, Klemens Hoegenauer, David Orain, Samuel Hintermann, Rowan Stringer, Dhavalkumar D. Patel, Arno Doelemeyer, Mark Deurinck, Jens Schümann
Noonan syndrome (NS; MIM 163950) is an autosomal dominant disorder and a member of a family of developmental disorders termed “RASopathies,” which are caused mainly by gain-of-function mutations in genes encoding RAS/MAPK signaling pathway proteins. Whole exome sequencing (WES) and trio-based genomic triangulation of a 15-year-old female with a clinical diagnosis of NS and concomitant cardiac hypertrophy and her unaffected parents identified a de novo variant in
Erin M. Higgins, J. Martijn Bos, Heather Mason-Suares, David J. Tester, Jaeger P. Ackerman, Calum A. MacRae, Katia Sol-Church, Karen W. Gripp, Raul Urrutia, Michael J. Ackerman
Preterm birth (PTB) is a leading worldwide cause of morbidity and mortality in infants. Maternal inflammation induced by microbial infection is a critical predisposing factor for PTB. However, biological processes associated with competency of pathogens, including viruses, to induce PTB or sensitize for secondary bacterial infection–driven PTB are unknown. We show that pathogen/pathogen-associated molecular pattern–driven activation of type I IFN/IFN receptor (IFNAR) was sufficient to prime for systemic and uterine proinflammatory chemokine and cytokine production and induction of PTB. Similarly, treatment with recombinant type I IFNs recapitulated such effects by exacerbating proinflammatory cytokine production and reducing the dose of secondary inflammatory challenge required for induction of PTB. Inflammatory challenge–driven induction of PTB was eliminated by defects in type I IFN, TLR, or IL-6 responsiveness, whereas the sequence of type I IFN sensing by IFNAR on hematopoietic cells was essential for regulation of proinflammatory cytokine production. Importantly, we also show that type I IFN priming effects are conserved from mice to nonhuman primates and humans, and expression of both type I IFNs and proinflammatory cytokines is upregulated in human PTB. Thus, activation of the type I IFN/IFNAR axis in pregnancy primes for inflammation-driven PTB and provides an actionable biomarker and therapeutic target for mitigating PTB risk.
Monica Cappelletti, Pietro Presicce, Matthew J. Lawson, Vandana Chaturvedi, Traci E. Stankiewicz, Simone Vanoni, Isaac T.W. Harley, Jaclyn W. McAlees, Daniel A. Giles, Maria E. Moreno-Fernandez, Cesar M. Rueda, Paranth Senthamaraikannan, Xiaofei Sun, Rebekah Karns, Kasper Hoebe, Edith M. Janssen, Christopher L. Karp, David A. Hildeman, Simon P. Hogan, Suhas G. Kallapur, Claire A. Chougnet, Sing Sing Way, Senad Divanovic
Accumulating evidence suggests that altered cellular metabolism is systemic in pulmonary hypertension (PH) and central to disease pathogenesis. However, bioenergetic changes in PH patients and their association with disease severity remain unclear. Here, we hypothesize that alteration in bioenergetic function is present in platelets from PH patients and correlates with clinical parameters of PH. Platelets isolated from controls and PH patients (
Quyen L. Nguyen, Catherine Corey, Pamela White, Annie Watson, Mark T. Gladwin, Marc A. Simon, Sruti Shiva
Ciliary motion defects cause defective mucociliary transport (MCT) in primary ciliary dyskinesia (PCD). Current diagnostic tests do not assess how MCT is affected by perturbation of ciliary motion. In this study, we sought to use micro-optical coherence tomography (μOCT) to delineate the mechanistic basis of cilia motion defects of PCD genes by functional categorization of cilia motion. Tracheae from three PCD mouse models were analyzed using μOCT to characterize ciliary motion and measure MCT. We developed multiple measures of ciliary activity, integrated these measures, and quantified dyskinesia by the angular range of the cilia effective stroke (ARC).
George M. Solomon, Richard Francis, Kengyeh K. Chu, Susan E. Birket, George Gabriel, John E. Trombley, Kristi L. Lemke, Nikolai Klena, Brett Turner, Guillermo J. Tearney, Cecilia W. Lo, Steven M. Rowe