Duchenne muscular dystrophy (DMD) is a devastating genetic muscle disease resulting in progressive muscle degeneration and wasting. Glucocorticoids, specifically prednisone/prednisolone and deflazacort, are commonly used by DMD patients. Emerging DMD therapeutics include those targeting the muscle wasting factor, myostatin (Mstn). The aim of this study was to investigate how chronic glucocorticoid treatment impacts the efficacy of Mstn inhibition in the D2.mdx mouse model of DMD. We report that chronic treatment of dystrophic mice with prednisolone (Pred) causes significant muscle wasting, entailing both activation of the ubiquitin-proteasome degradation pathway and inhibition of muscle protein synthesis. Combining Pred with Mstn inhibition, using a modified Mstn propeptide (dnMstn), completely abrogates the muscle hypertrophic effects of Mstn inhibition independent of Mstn expression or SMAD3 activation. Transcriptomic analysis identified that combining Pred with dnMstn treatment affects gene expression profiles associated with inflammation, metabolism, and fibrosis. Additionally, we demonstrate that Pred-induced muscle atrophy is not prevented by Mstn ablation. Therefore, glucocorticoids interfere with potential muscle mass benefits associated with targeting Mstn, and the ramifications of glucocorticoid use should be a consideration during clinical trial design for DMD therapeutics. These results have significant implications for past and future Mstn inhibition trials in DMD.
David W. Hammers, Cora C. Hart, Andreas Patsalos, Michael K. Matheny, Lillian A. Wright, Laszlo Nagy, H. Lee Sweeney
Effective treatments and animal models for the most prevalent neurodegenerative form of blindness in the elderly, called age-related macular degeneration (AMD), are lacking. Genome-wide association studies have identified lipid metabolism and inflammation as AMD-associated pathogenic pathways. Given liver x receptors, encoded by NR1H3 and NR1H2, are master regulators of these pathways, herein we investigated the role of LXR in human and mouse eyes as a function of age and disease, and tested the therapeutic potential of targeting LXR. We identified immunopositive LXR fragments in human extracellular early dry AMD lesions and a decrease in LXR expression within the retinal pigment epithelium (RPE) as a function of age. Aged mice, lacking LXR presented with isoform dependent ocular pathologies. Specifically, loss of the Nr1h3 isoform results in pathobiologies aligned with AMD, supported by compromised visual function, accumulation of native and oxidized lipids in the outer retina, and upregulation of ocular inflammatory cytokines, while absence of Nr1h2 is associated with ocular lipoidal degeneration. Therapeutically, LXR activation, ameliorated lipid accumulation and oxidant-induced injury in RPE cells in vitro, and decreased ocular inflammatory markers and lipid deposition in a mouse model, in vivo, providing translational support for pursuing LXR-active pharmaceuticals as potential therapies for dry AMD.
Mayur Choudhary, Ebraheim N. Ismail, Pei-Li Yao, Faryan Tayyari, Roxana A. Radu, Steven Nusinowitz, Michael E. Boulton, Rajendra S. Apte, Jeffrey W. Ruberti, James T. Handa, Peter Tontonoz, Goldis Malek
While gene transfer using recombinant adeno-associated viral (rAAV) vectors has shown success in some clinical trials, there remain many tissues that are not well transduced. Because of the recent success in reprogramming islet-derived cells into functional β cells in animal models, we constructed 2 highly complex barcoded replication competent capsid shuffled libraries and selected for high-transducing variants on primary human islets. We describe the generation of a chimeric AAV capsid (AAV-KP1) that facilitates transduction of primary human islet cells and human embryonic stem cell–derived β cells with up to 10-fold higher efficiency compared with previously studied best-in-class AAV vectors. Remarkably, this chimeric capsid also enabled transduction of both mouse and human hepatocytes at very high levels in a humanized chimeric mouse model, thus providing a versatile vector that has the potential to be used in both preclinical testing and human clinical trials for liver-based diseases and diabetes.
Katja Pekrun, Gustavo De Alencastro, Qing-Jun Luo, Jun Liu, Youngjin Kim, Sean Nygaard, Feorillo Galivo, Feijie Zhang, Ren Song, Matthew R. Tiffany, Jianpeng Xu, Matthias Hebrok, Markus Grompe, Mark A. Kay
Although oxidative stress plays central roles in postischemic renal injury, region-specific alterations in energy and redox metabolism caused by short-duration ischemia remain unknown. Imaging mass spectrometry enabled us to reveal spatial heterogeneity of energy and redox metabolites in the postischemic murine kidney. After 10-minute ischemia and 24-hour reperfusion (10mIR), in the cortex and outer stripes of the outer medulla, ATP substantially decreased, but not in the inner stripes of the outer medulla and inner medulla. 10mIR caused renal injury with elevation of fractional excretion of sodium, although histological damage by oxidative stress was limited. Ischemia-induced NADH elevation in the cortex indicated prolonged production of reactive oxygen species by xanthine oxidase (XOD). However, consumption of reduced glutathione after reperfusion suggested the amelioration of oxidative stress. An XOD inhibitor, febuxostat, which blocks the degradation pathway of adenine nucleotides, promoted ATP recovery and exerted renoprotective effects in the postischemic kidney. Because effects of febuxostat were canceled by silencing of the hypoxanthine phosphoribosyl transferase 1 gene in cultured tubular cells, mechanisms for the renoprotective effects appear to involve the purine salvage pathway, which uses hypoxanthine to resynthesize adenine nucleotides, including ATP. These findings suggest a novel therapeutic approach for acute ischemia/reperfusion renal injury with febuxostat through salvaging high-energy adenine nucleotides.
Kentaro Fujii, Akiko Kubo, Kazutoshi Miyashita, Masaaki Sato, Aika Hagiwara, Hiroyuki Inoue, Masaki Ryuzaki, Masanori Tamaki, Takako Hishiki, Noriyo Hayakawa, Yasuaki Kabe, Hiroshi Itoh, Makoto Suematsu
The adult mammalian heart regenerates poorly after injury and, as a result, ischemic heart diseases are among the leading causes of death worldwide. The recovery of the injured heart is dependent on orchestrated repair processes including inflammation, fibrosis, cardiomyocyte survival, proliferation, and contraction properties that could be modulated in patients. In this work we designed an automated high-throughput screening system for small molecules that induce cardiomyocyte proliferation in vitro and identified the small molecule Chicago Sky Blue 6B (CSB). Following induced myocardial infarction, CSB treatment reduced scar size and improved heart function of adult mice. Mechanistically, we show that although initially identified using in vitro screening for cardiomyocyte proliferation, in the adult mouse CSB promotes heart repair through (i) inhibition of CaMKII signaling, which improves cardiomyocyte contractility; and (ii) inhibition of neutrophil and macrophage activation, which attenuates the acute inflammatory response, thereby contributing to reduced scarring. In summary, we identified CSB as a potential therapeutic agent that enhances cardiac repair and function by suppressing postinjury detrimental processes, with no evidence for cardiomyocyte renewal.
Oren Yifa, Karen Weisinger, Elad Bassat, Hanjun Li, David Kain, Haim Barr, Noga Kozer, Alexander Genzelinakh, Dana Rajchman, Tamar Eigler, Kfir Baruch Umansky, Daria Lendengolts, Ori Brener, Nenad Bursac, Eldad Tzahor
The ciliopathies are a group of phenotypically overlapping disorders caused by structural or functional defects in the primary cilium. Although disruption of numerous signaling pathways and cellular trafficking events have been implicated in ciliary pathology, treatment options for affected individuals remain limited. Here, we performed a genome-wide RNAi (RNA interference) screen to identify genetic suppressors of BBS4, one of the genes mutated in Bardet-Biedl syndrome (BBS). We discovered 10 genes that, when silenced, ameliorate BBS4-dependent pathology. One of these encodes USP35, a negative regulator of the ubiquitin proteasome system, suggesting that inhibition of a deubiquitinase, and subsequent facilitation of the clearance of signaling components, might ameliorate BBS-relevant phenotypes. Testing of this hypothesis in transient and stable zebrafish genetic models showed this posit to be true; suppression or ablation of usp35 ameliorated hallmark ciliopathy defects including impaired convergent extension (CE), renal tubule convolution, and retinal degeneration with concomitant clearance of effectors such as β-catenin and rhodopsin. Together, our findings reinforce a direct link between proteasome-dependent degradation and ciliopathies and suggest that augmentation of this system might offer a rational path to novel therapeutic modalities.
I-Chun Tsai, Kevin A. Adams, Joyce A. Tzeng, Omar Shennib, Perciliz L. Tan, Nicholas Katsanis
Conventional treatments for inflammatory bowel disease (IBD) have multiple potential side effects. Therefore, alternative treatments are desperately needed. This work demonstrated that systemic administration of exosomes from human bone marrow-derived mesenchymal stromal cells (MSC-Exos) significantly mitigated colitis in various models of IBD. MSC-Exos treatment downregulated inflammatory responses, maintained intestinal barrier integrity and polarized M2b macrophages, but did not favor intestinal fibrosis. Mechanistically, infused MSC-Exos mainly acted on colonic macrophages and macrophages from colitic colons acquired obvious resistance to inflammatory re-stimulation when prepared from mice treated with MSC-Exos versus untreated mice. The beneficial effect of MSC-Exos was blocked by macrophage depletion. Besides, the induction of IL-10 production from macrophages was partially involved in the beneficial effect of MSC-Exos. MSC-Exos were enriched in proteins involved in regulating multiple biological processes associated with the anti-colitic benefit of MSC-Exos. Particularly, metallothionein-2 in MSC-Exos was required for the suppression of inflammatory responses. Taken together, MSC-Exos are critical regulators of inflammatory responses and may be promising candidates for IBD treatment.
Huashan Liu, Zhenxing Liang, Fengwei wang, Chi Zhou, Xiaobin Zheng, Tuo Hu, Xiaowen He, Xianrui Wu, Ping Lan
Gonorrhea is a sexually transmitted infection with 87 million new cases per year globally. Increasing antibiotic resistance has severely limited treatment options. A mechanism that Neisseria gonorrhoeae uses to evade complement attack is binding of the complement inhibitor C4b-binding protein (C4BP). We screened 107 PorB1a and 83 PorB1b clinical isolates randomly selected from a Swedish strain collection over the last 10 years and noted that 96/107 (89.7%) PorB1a and 16/83 (19.3%) PorB1b bound C4BP; C4BP binding significantly correlated with the ability to evade complement-dependent killing (r = 0.78; p<0.0001). We designed two chimeric proteins that fused C4BP domains to the backbone of immunoglobulins IgG or IgM (C4BP-IgG; C4BP-IgM) with the aim of enhancing complement activation and killing of gonococci. Both proteins bound gonococci (Kd C4BP-IgM = 2.4 nM; Kd C4BP-IgG 981 nM), but only hexameric C4BP-IgM efficiently out-competed heptameric C4BP from bacterial surface resulting in enhanced complement deposition and bacterial killing. Furthermore, C4BP-IgM significantly attenuated the duration and burden of colonization of two C4BP-binding gonococcal isolates, but not a C4BP non-binding strain in the mouse vaginal colonization model using human factor H/C4BP transgenic mice. Our pre-clinical data present C4BP-IgM as an adjunctive to conventional antimicrobials for the treatment of gonorrhea.
Serena Bettoni, Jutamas Shaughnessy, Karolina Maziarz, David Ermert, Sunita Gulati, Bo Zheng, Matthias Mörgelin, Susanne Jacobsson, Kristian Riesbeck, Magnus Unemo, Sanjay Ram, Anna M. Blom
Diabetic foot ulcers (DFUs) are a life-threatening disease that often result in lower limb amputations and a shortened lifespan. Current treatment options are limited and often not efficacious, raising the need for new therapies. To investigate the therapeutic potential of topical statins to restore healing in patients with DFUs, we performed next generation sequencing on mevastatin-treated primary human keratinocytes. We found that mevastatin activated and modulated the EGF signaling to trigger an anti-proliferative and pro-migratory phenotype, suggesting that statins may shift DFUs from a hyper-proliferative phenotype to a pro-migratory phenotype in order to stimulate healing. Furthermore, mevastatin induced a migratory phenotype in primary human keratinocytes through EGF-mediated activation of Rac1, resulting in actin cytoskeletal reorganization and lamellipodia formation. Interestingly, the EGF receptor is downregulated in tissue biopsies from patients with DFUs. Mevastatin restored EGF signaling in DFUs through disruption of caveolae to promote keratinocyte migration, which was confirmed by caveolin-1 (Cav1) overexpression studies. We conclude that topical statins may have considerable therapeutic potential as a treatment option for patients with DFUs and offer an effective treatment for chronic wounds that can be rapidly translated to clinical use.
Andrew P. Sawaya, Ivan Jozic, Rivka C. Stone, Irena Pastar, Andjela N. Egger, Olivera Stojadinovic, George D. Glinos, Robert S. Kirsner, Marjana Tomic-Canic
Targeted therapies and immunotherapy have shown promise in patients with non-small cell lung cancer (NSCLC). However, the majority of patients fail or become resistant to treatment, emphasizing the need for novel treatments. In this study, we confirm the prognostic value of AXL levels in NSCLC and demonstrate potent anti-tumor activity of the AXL-targeting antibody-drug conjugate enapotamab vedotin across different NSCLC subtypes in a mouse clinical trial of human NSCLC. Tumor regression or stasis was observed in 17/61 (28%) of the PDX models, and was associated with AXL mRNA expression levels. Significant single agent activity of enapotamab vedotin was validated in vivo in 9 of 10 AXL-expressing NSCLC xenograft models. In a panel of EGFR-mutant NSCLC cell lines rendered resistant to EGFR inhibitors (EGFRi) in vitro, we observed de novo or increased AXL protein expression concomitant with enapotamab vedotin-mediated cytotoxicity. Enapotamab vedotin also showed anti-tumor activity in vivo in 3 EGFR-mutant, EGFRi-resistant PDX models, including an osimertinib-resistant NSCLC PDX model. In summary, enapotamab vedotin has promising therapeutic potential in NSCLC. The safety and preliminary efficacy of enapotamab vedotin are currently being evaluated in the clinic across multiple solid tumor types, including NSCLC.
Louise A. Koopman, Mikkel G. Terp, Gijs G. Zom, Maarten L. Janmaat, Kirstine Jacobsen, Elke Gresnigt - Van den Heuvel, Marcel Brandhorst, Ulf Forssmann, Frederik M. de Bree, Nora Pencheva, Andreas Lingnau, Maria A. Zipeto, Paul W.H.I. Parren, Esther C.W. Breij, Henrik J. Ditzel
No posts were found with this tag.