BACKGROUND. In type 1 diabetes (T1D), adjuvant treatment with inhibitors of the renin-angiotensin-aldosterone system (RAAS), which dilate the efferent arteriole, is associated with prevention of progressive albuminuria and renal dysfunction. Uncertainty still exists as to why some individuals with long-standing T1D develop diabetic kidney disease (DKD) while others do not (DKD resistors). We hypothesized that those with DKD would be distinguished from DKD resistors by the presence of RAAS activation. METHODS. Renal and systemic hemodynamic function was measured before and after exogenous RAAS stimulation by intravenous infusion of angiotensin II (ANGII) in 75 patients with prolonged T1D durations and in equal numbers of nondiabetic controls. The primary outcome was change in renal vascular resistance (RVR) in response to RAAS stimulation, a measure of endogenous RAAS activation. RESULTS. Those with DKD had less change in RVR following exogenous RAAS stimulation compared with DKD resistors or controls (19%, 29%, 31%, P = 0.008, DKD vs. DKD resistors), reflecting exaggerated endogenous renal RAAS activation. All T1D participants had similar changes in renal efferent arteroilar resistance (9% vs. 13%, P = 0.37) irrespective of DKD status, which reflected less change versus controls (20%, P = 0.03). In contrast, those with DKD exhibited comparatively less change in afferent arteriolar vascular resistance compared with DKD resistors or controls (33%, 48%, 48%, P = 0.031, DKD vs. DKD resistors), indicating higher endogenous RAAS activity. CONCLUSION. In long-standing T1D, the intrarenal RAAS is exaggerated in DKD, which unexpectedly predominates at the afferent rather than the efferent arteriole, stimulating vasoconstriction. FUNDING. JDRF operating grant 17-2013-312.
Julie A. Lovshin, Geneviève Boulet, Yuliya Lytvyn, Leif E. Lovblom, Petter Bjornstad, Mohammed A. Farooqi, Vesta Lai, Leslie Cham, Josephine Tse, Andrej Orszag, Daniel Scarr, Alanna Weisman, Hillary A. Keenan, Michael H. Brent, Narinder Paul, Vera Bril, Bruce A. Perkins, David Z.I. Cherney
Mutations in the ubiquitin ligase scaffold protein Cullin 3 (CUL3) cause the disease familial hyperkalemic hypertension (FHHt). In the kidney, mutant CUL3 (CUL3-Δ9) increases abundance of With-No-Lysine [K] Kinase 4 (WNK4), with excessive activation of the downstream Sterile 20 (STE20)/SPS-1–related proline/alanine-rich kinase (SPAK) increasing phosphorylation of the Na+-Cl– cotransporter (NCC). CUL3-Δ9 promotes its own degradation via autoubiquitination, leading to the hypothesis that Cul3 haploinsufficiency causes FHHt. To directly test this, we generated Cul3 heterozygous mice (CUL3-Het), and Cul3 heterozygotes also expressing CUL3-Δ9 (CUL3-Het/Δ9), using an inducible renal epithelial–specific system. Endogenous CUL3 was reduced to 50% in both models, and consistent with autoubiquitination, CUL3-Δ9 protein was undetectable in CUL3-Het/Δ9 kidneys unless primary renal epithelia cells were cultured. Abundances of WNK4 and phosphorylated NCC did not differ between control and CUL3-Het mice, but they were elevated in CUL3-Het/Δ9 mice, which also displayed higher plasma [K+] and blood pressure. Abundance of phosphorylated Na+-K+-2Cl– cotransporter (NKCC2) was also increased, which may contribute to the severity of CUL3-Δ9–mediated FHHt. WNK4 and SPAK localized to puncta in NCC-positive segments but not in NKCC2-positive segments, suggesting differential effects of CUL3-Δ9. These results indicate that Cul3 haploinsufficiency does not cause FHHt, but dominant effects of CUL3-Δ9 are required.
Mohammed Z. Ferdaus, Lauren N. Miller, Larry N. Agbor, Turgay Saritas, Jeffrey D. Singer, Curt D. Sigmund, James A. McCormick
C5a receptor 1 (C5aR1) is a G protein–coupled receptor for C5a and also an N-linked glycosylated protein. In addition to myeloid cells, C5aR1 is expressed on epithelial cells. In this study, we examined the role of C5aR1 in bacterial adhesion/colonization of renal tubular epithelium and addressed the underlying mechanisms of this role. We show that acute kidney infection was significantly reduced in mice with genetic deletion or through pharmacologic inhibition of C5aR1 following bladder inoculation with uropathogenic E. coli (UPEC). This was associated with reduced expression of terminal α-mannosyl residues (Man; a ligand for type 1 fimbriae of E. coli) on the luminal surface of renal tubular epithelium and reduction of early UPEC colonization in these mice. Confocal microscopy demonstrated that UPEC bind to Man on the luminal surface of renal tubular epithelium. In vitro analyses showed that C5a stimulation enhances Man expression in renal tubular epithelial cells and subsequent bacterial adhesion, which, at least in part, is dependent on TNF-α driven by C5aR1-mediated intracellular signaling. Our findings demonstrate a previously unknown pathogenic role for C5aR1 in acute pyelonephritis, proposing a potentially novel mechanism by which C5a/C5aR1 signaling mediates upregulation of carbohydrate ligands on renal tubules to facilitate UPEC adhesion.
Ke Li, Kun-Yi Wu, Weiju Wu, Na Wang, Ting Zhang, Naheed Choudhry, Yun Song, Conrad A. Farrar, Liang Ma, Lin-lin Wei, Zhao-Yang Duan, Xia Dong, En-Qi Liu, Zong-Fang Li, Steven H. Sacks, Wuding Zhou
ER stress has emerged as a signaling platform underlying the pathogenesis of various kidney diseases. Thus, there is an urgent need to develop ER stress biomarkers in the incipient stages of ER stress–mediated kidney disease, when a kidney biopsy is not yet clinically indicated, for early therapeutic intervention. Cysteine-rich with EGF-like domains 2 (CRELD2) is a newly identified protein that is induced and secreted under ER stress. For the first time to our knowledge, we demonstrate that CRELD2 can serve as a sensitive urinary biomarker for detecting ER stress in podocytes or renal tubular cells in murine models of podocyte ER stress–induced nephrotic syndrome and tunicamycin- or ischemia-reperfusion–induced acute kidney injury (AKI), respectively. Most importantly, urinary CRELD2 elevation occurs in patients with autosomal dominant tubulointerstitial kidney disease caused by UMOD mutations, a prototypical tubular ER stress disease. In addition, in pediatric patients undergoing cardiac surgery, detectable urine levels of CRELD2 within postoperative 6 hours strongly associate with severe AKI after surgery. In conclusion, our study has identified CRELD2 as a potentially novel urinary ER stress biomarker with potential utility in early diagnosis, risk stratification, treatment response monitoring, and directing of ER-targeted therapies in selected patient subgroups in the emerging era of precision nephrology.
Yeawon Kim, Sun-Ji Park, Scott R. Manson, Carlos A.F. Molina, Kendrah Kidd, Heather Thiessen-Philbrook, Rebecca J. Perry, Helen Liapis, Stanislav Kmoch, Chirag R. Parikh, Anthony J. Bleyer, Ying Maggie Chen
BACKGROUND. Systemic inflammation and muscle wasting are highly prevalent and coexist in patients on maintenance hemodialysis (MHD). We aimed to determine the effects of systemic inflammation on skeletal muscle protein metabolism in MHD patients. METHODS. Whole body and skeletal muscle protein turnover were assessed by stable isotope kinetic studies. We incorporated expressions of E1, E214K, E3αI, E3αII, MuRF-1, and atrogin-1 in skeletal muscle tissue from integrin β1 gene KO CKD mice models. RESULTS. Among 129 patients with mean (± SD) age 47 ± 12 years, 74% were African American, 73% were male, and 22% had diabetes mellitus. Median high-sensitivity C-reactive protein (hs-CRP) concentration was 13 (interquartile range 0.8, 33) mg/l. There were statistically significant associations between hs-CRP and forearm skeletal muscle protein synthesis, degradation, and net forearm skeletal muscle protein balance (P < 0.001 for all). The associations remained statistically significant after adjustment for clinical and demographic confounders, as well as in sensitivity analysis, excluding patients with diabetes mellitus. In attempting to identify potential mechanisms involved in this correlation, we show increased expressions of E1, E214K, E3αI, E3αII, MuRF-1, and atrogin-1 in skeletal muscle tissue obtained from an animal model of chronic kidney disease. CONCLUSION. These data suggest that systemic inflammation is a strong and independent determinant of skeletal muscle protein homeostasis in MHD patients, providing rationale for further studies using anticytokine therapies in patients with underlying systemic inflammation. FUNDING. This study was in part supported by NIH grants R01 DK45604 and 1K24 DK62849, the Clinical Translational Science Award UL1-TR000445 from the National Center for Advancing Translational Sciences, the Veterans Administration Merit Award I01 CX000414, the SatelliteHealth Normon Coplon Extramural Grant Program, and the FDA grant 000943.
Serpil M. Deger, Adriana M. Hung, Jorge L. Gamboa, Edward D. Siew, Charles D. Ellis, Cindy Booker, Feng Sha, Haiming Li, Aihua Bian, Thomas G. Stewart, Roy Zent, William E. Mitch, Naji N. Abumrad, T. Alp Ikizler
Environmental exposures pose a significant threat to human health. However, it is often difficult to study toxicological mechanisms in human subjects due to ethical concerns. Plant-derived aristolochic acids are among the most potent nephrotoxins and carcinogens discovered to date, yet the mechanism of bioactivation in humans remains poorly understood. Microphysiological systems (organs-on-chips) provide an approach to examining the complex, species-specific toxicological effects of pharmaceutical and environmental chemicals using human cells. We microfluidically linked a kidney-on-a-chip with a liver-on-a-chip to determine the mechanisms of bioactivation and transport of aristolochic acid I (AA-I), an established nephrotoxin and human carcinogen. We demonstrate that human hepatocyte-specific metabolism of AA-I substantially increases its cytotoxicity toward human kidney proximal tubular epithelial cells, including formation of aristolactam adducts and release of kidney injury biomarkers. Hepatic biotransformation of AA-I to a nephrotoxic metabolite involves nitroreduction, followed by sulfate conjugation. Here, we identify, in a human tissue-based system, that the sulfate conjugate of the hepatic NQO1-generated aristolactam product of AA-I (AL-I-NOSO3) is the nephrotoxic form of AA-I. This conjugate can be transported out of liver via MRP membrane transporters and then actively transported into kidney tissue via one or more organic anionic membrane transporters. This integrated microphysiological system provides an ex vivo approach for investigating organ-organ interactions, whereby the metabolism of a drug or other xenobiotic by one tissue may influence its toxicity toward another, and represents an experimental approach for studying chemical toxicity related to environmental and other toxic exposures.
Shih-Yu Chang, Elijah J. Weber, Viktoriya S. Sidorenko, Alenka Chapron, Catherine K. Yeung, Chunying Gao, Qingcheng Mao, Danny Shen, Joanne Wang, Thomas A. Rosenquist, Kathleen G. Dickman, Thomas Neumann, Arthur P. Grollman, Edward J. Kelly, Jonathan Himmelfarb, David L. Eaton
The efficacy of B cell depletion therapies in diseases such as nephrotic syndrome and rheumatoid arthritis suggests a broader role in B cells in human disease than previously recognized. In some of these diseases, such as the minimal change disease subtype of nephrotic syndrome, pathogenic antibodies and immune complexes are not involved. We hypothesized that B cells, activated in the kidney, might produce cytokines capable of directly inducing cell injury and proteinuria. To directly test our hypothesis, we targeted a model antigen to the kidney glomerulus and showed that transfer of antigen-specific B cells could induce glomerular injury and proteinuria. This effect was mediated by IL-4, as transfer of IL-4–deficient B cells did not induce proteinuria. Overexpression of IL-4 in mice was sufficient to induce kidney injury and proteinuria and could be attenuated by JAK kinase inhibitors. Since IL-4 is a specific activator of STAT6, we analyzed kidney biopsies and demonstrated STAT6 activation in up to 1 of 3 of minimal change disease patients, suggesting IL-4 or IL-13 exposure in these patients. These data suggest that the role of B cells in nephrotic syndrome could be mediated by cytokines.
Alfred H.J. Kim, Jun-Jae Chung, Shreeram Akilesh, Ania Koziell, Sanjay Jain, Jeffrey B. Hodgin, Mark J. Miller, Thaddeus S. Stappenbeck, Jeffrey H. Miner, Andrey S. Shaw
Klotho is a renal protein involved in phosphate homeostasis, which is downregulated in renal disease. It has long been considered an antiaging factor. Two Klotho gene transcripts are thought to encode membrane-bound and secreted Klotho. Indeed, soluble Klotho is detectable in bodily fluids, but the relative contributions of Klotho secretion and of membrane-bound Klotho shedding are unknown. Recent advances in RNA surveillance reveal that premature termination codons, as present in alternative Klotho mRNA (for secreted Klotho), prime mRNAs for degradation by nonsense-mediated mRNA decay (NMD). Disruption of NMD led to accumulation of alternative Klotho mRNA, indicative of normally continuous degradation. RNA IP for NMD core factor UPF1 resulted in enrichment for alternative Klotho mRNA, which was also not associated with polysomes, indicating no active protein translation. Alternative Klotho mRNA transcripts colocalized with some P bodies, where NMD transcripts are degraded. Moreover, we could not detect secreted Klotho in vitro. These results suggest that soluble Klotho is likely cleaved membrane-bound Klotho only. Furthermore, we found that, especially in acute kidney injury, splicing of the 2 mRNA transcripts is dysregulated, which was recapitulated by various noxious stimuli in vitro. This likely constitutes a novel mechanism resulting in the downregulation of membrane-bound Klotho.
Rik Mencke, Geert Harms, Jill Moser, Matijs van Meurs, Arjan Diepstra, Henri G. Leuvenink, Jan-Luuk Hillebrands
It has been suggested that low nephron number contributes to glomerular hypertension and hyperperfusion injury in progressive chronic kidney disease (CKD). The incidence of CKD in Japan is among the highest in the world, but the reasons remain unclear. We estimated total nephron (glomerular) number (NglomTOTAL) as well as numbers of nonsclerosed (NglomNSG) and globally sclerosed glomeruli (NglomGSG), and the mean volume of nonsclerosed glomeruli (VglomNSG) in Japanese normotensive, hypertensive, and CKD subjects and investigated associations between these parameters and estimated glomerular filtration rate (eGFR). Autopsy kidneys from age-matched Japanese men (9 normotensives, 9 hypertensives, 9 CKD) had nephron number and VglomNSG estimated using disector/fractionator stereology. Subject eGFR, single-nephron eGFR (SNeGFR), and the ratio SNeGFR/VglomNSG were calculated. NglomNSG in Japanese with hypertension (392,108 ± 87,605; P < 0.001) and CKD (268,043 ± 106,968; P < 0.001) was less than in normotensives (640,399 ± 160,016). eGFR was directly correlated with NglomNSG (r = 0.70, P < 0.001) and inversely correlated with VglomNSG (r = –0.53, P < 0.01). SNeGFR was higher in hypertensives than normotensives (P = 0.03), but was similar in normotensives and CKD, while the ratio SNeGFR/VglomNSG was similar in normotensives and hypertensives but markedly reduced in CKD. Nephron number in Japanese with hypertension or CKD was low. This results in a higher SNeGFR in hypertensives compared with normotensive and CKD subjects, but lowered SNeGFR/VglomNSG in CKD subjects, suggesting that changes in GFR are accommodated by glomerular hypertrophy rather than glomerular hypertension. These findings suggest glomerular hypertrophy is a dominant factor in maintenance of GFR under conditions of low nephron number.
Go Kanzaki, Victor G. Puelles, Luise A. Cullen-McEwen, Wendy E. Hoy, Yusuke Okabayashi, Nobuo Tsuboi, Akira Shimizu, Kate M. Denton, Michael D. Hughson, Takashi Yokoo, John F. Bertram
Supplementing diets with high potassium helps reduce hypertension in humans. Inwardly rectifying K+ channels Kir4.1 (Kcnj10) and Kir5.1 (Kcnj16) are highly expressed in the basolateral membrane of distal renal tubules and contribute to Na+ reabsorption and K+ secretion through the direct control of transepithelial voltage. To define the importance of Kir5.1 in blood pressure control under conditions of salt-induced hypertension, we generated a Kcnj16 knockout in Dahl salt-sensitive (SS) rats (SSKcnj16–/–). SSKcnj16–/– rats exhibited hypokalemia and reduced blood pressure, and when fed a high-salt diet (4% NaCl), experienced 100% mortality within a few days triggered by salt wasting and severe hypokalemia. Electrophysiological recordings of basolateral K+ channels in the collecting ducts isolated from SSKcnj16–/– rats revealed activity of only homomeric Kir4.1 channels. Kir4.1 expression was upregulated in SSKcnj16–/– rats, but the protein was predominantly localized in the cytosol in SSKcnj16–/– rats. Benzamil, but not hydrochlorothiazide or furosemide, rescued this phenotype from mortality on a high-salt diet. Supplementation of high-salt diet with increased potassium (2% KCl) prevented mortality in SSKcnj16–/– rats and prevented or mitigated hypertension in SSKcnj16–/– or control SS rats, respectively. Our results demonstrate that Kir5.1 channels are key regulators of renal salt handling in SS hypertension.
Oleg Palygin, Vladislav Levchenko, Daria V. Ilatovskaya, Tengis S. Pavlov, Oleh M. Pochynyuk, Howard J. Jacob, Aron M. Geurts, Matthew R. Hodges, Alexander Staruschenko
No posts were found with this tag.