In this issue of JCI Insight, Plog et al. utilize transcranial macroscopic imaging to non-invasively evaluate in vivo delivery of CSF fluorescent tracers and therapeutic antibodies. The cover image shows a three-dimensional reconstruction of anti-Aβ antibody engaging the surface of an Aβ plaque in a murine model.
Our understanding of the molecular pathogenesis of childhood cancers has advanced substantially, but their fundamental causes remain poorly understood. Recently, multiple mechanisms of DNA damage and repair have been associated with mutations observed in human cancers. Here, we review the physiologic functions and oncogenic activities of transposable genetic elements. In particular, we focus on the recent studies implicating DNA transposases RAG1/2 and PGBD5 as oncogenic mutators that promote genomic rearrangements in childhood leukemias and solid tumors. We outline future studies that will be needed to define the contributions of transposons to mutational processes that become dysregulated in cancer cells. In addition, we discuss translational approaches, including synthetic lethal strategies, for identifying and developing improved clinical therapies to target oncogenic transposons and transposases.
Anton G. Henssen, Alex Kentsis
Despite the initial promise of immunotherapy for CNS disease, multiple recent clinical trials have failed. This may be due in part to characteristically low penetration of antibodies to cerebrospinal fluid (CSF) and brain parenchyma, resulting in poor target engagement. We here utilized transcranial macroscopic imaging to noninvasively evaluate in vivo delivery pathways of CSF fluorescent tracers. Tracers in CSF proved to be distributed through a brain-wide network of periarterial spaces, previously denoted as the glymphatic system. CSF tracer entry was enhanced approximately 3-fold by increasing plasma osmolality without disruption of the blood-brain barrier. Further, plasma hyperosmolality overrode the inhibition of glymphatic transport that characterizes the awake state and reversed glymphatic suppression in a mouse model of Alzheimer’s disease. Plasma hyperosmolality enhanced the delivery of an amyloid-β (Aβ) antibody, obtaining a 5-fold increase in antibody binding to Aβ plaques. Thus, manipulation of glymphatic activity may represent a novel strategy for improving penetration of therapeutic antibodies to the CNS.
Benjamin A. Plog, Humberto Mestre, Genaro E. Olveda, Amanda M. Sweeney, H. Mark Kenney, Alexander Cove, Kosha Y. Dholakia, Jeffrey Tithof, Thomas D. Nevins, Iben Lundgaard, Ting Du, Douglas H. Kelley, Maiken Nedergaard
Patients with diabetes are at significantly higher risk of developing heart failure. Increases in advanced glycation end products are a proposed pathophysiological link, but their impact and mechanism remain incompletely understood. Methylglyoxal (MG) is a glycolysis byproduct, elevated in diabetes, and modifies arginine and lysine residues. We show that left ventricular myofilament from patients with diabetes and heart failure (dbHF) exhibited increased MG modifications compared with nonfailing controls (NF) or heart failure patients without diabetes. In skinned NF human and mouse cardiomyocytes, acute MG treatment depressed both calcium sensitivity and maximal calcium-activated force in a dose-dependent manner. Importantly, dbHF myocytes were resistant to myofilament functional changes from MG treatment, indicating that myofilaments from dbHF patients already had depressed function arising from MG modifications. In human dbHF and MG-treated mice, mass spectrometry identified increased MG modifications on actin and myosin. Cosedimentation and in vitro motility assays indicate that MG modifications on actin and myosin independently depress calcium sensitivity, and mechanistically, the functional consequence requires actin/myosin interaction with thin-filament regulatory proteins. MG modification of the myofilament may represent a critical mechanism by which diabetes induces heart failure, as well as a therapeutic target to avoid the development of or ameliorate heart failure in these patients.
Maria Papadaki, Ronald J. Holewinski, Samantha Beck Previs, Thomas G. Martin, Marisa J. Stachowski, Amy Li, Cheavar A. Blair, Christine S. Moravec, Jennifer E. Van Eyk, Kenneth S. Campbell, David M. Warshaw, Jonathan A. Kirk
Intestinal epithelial barrier repair is vital for remission in inflammatory bowel disease (IBD). Extracellular adenosine signaling has been implicated in promoting restoration of epithelial barrier function. Currently, no clinically approved agents target this pathway. Adenosine signaling is terminated by uptake from the extracellular space via equilibrative nucleoside transporters (ENTs). We hypothesized that ENT inhibition could dampen intestinal inflammation. Initial studies demonstrated transcriptional repression of ENT1 and ENT2 in IBD biopsies or in murine IBD models. Subsequent studies in mice with global Ent1 or Ent2 deletion revealed selective protection of Ent2–/– mice. Elevated intestinal adenosine levels in conjunction with abolished protection following pharmacologic blockade of A2B adenosine receptors implicate adenosine signaling as the mechanism of gut protection in Ent2–/– mice. Additional studies in mice with tissue-specific deletion of Ent2 uncovered epithelial Ent2 as the target. Moreover, intestinal protection provided by a selective Ent2 inhibitor was abolished in mice with epithelium-specific deletion of Ent2 or the A2B adenosine receptor. Taken together, these findings indicate that increased mucosal A2B signaling following repression or deletion of epithelial Ent2 coordinates the resolution of intestinal inflammation. This study suggests the presence of a targetable purinergic network within the intestinal epithelium designed to limit tissue inflammation.
Carol M. Aherne, Colm B. Collins, Caroline R. Rapp, Kristine E. Olli, Loni Perrenoud, Paul Jedlicka, Jessica L. Bowser, Tingting W. Mills, Harry Karmouty-Quintana, Michael R. Blackburn, Holger K. Eltzschig
Posttransplant cyclophosphamide (PTCy) has been found to be effective in ameliorating acute graft-versus-host disease (GVHD) in patients following allogeneic hematopoietic stem cell transplantation (aHSCT). Adoptive transfer of high numbers of donor Tregs in experimental aHSCT has shown promise as a therapeutic modality for GVHD regulation. We recently described a strategy for in vivo Treg expansion targeting two receptors: TNFRSF25 and CD25. To date, there have been no direct comparisons between the use of PTCy and Tregs regarding outcome and immune reconstitution within identical groups of transplanted mice. Here, we assessed these two strategies and found both decreased clinical GVHD and improved survival long term. However, recipients transplanted with Treg-expanded donor cells (TrED) exhibited less weight loss early after HSCT. Additionally, TrED recipients demonstrated less thymic damage, significantly more recent thymic emigrants, and more rapid lymphoid engraftment. Three months after HSCT, PTCy-treated and TrED recipients showed tolerance to F1 skin allografts and comparable immune function. Overall, TrED was found superior to PTCy with regard to weight loss early after transplant and initial lymphoid engraftment. Based on these findings, we speculate that morbidity and mortality after transplant could be diminished following TrED transplant into aHSCT recipients, and, therefore, that TrED could provide a promising clinical strategy for GVHD prophylaxis.
Dietlinde Wolf, Cameron S. Bader, Henry Barreras, Sabrina Copsel, Brent J. Pfeiffer, Casey O. Lightbourn, Norman H. Altman, Krishna V. Komanduri, Robert B. Levy
Connexin 43 (Cx43), a product of the GJA1 gene, is a gap junction protein facilitating intercellular communication between cardiomyocytes. Cx43 protects the heart from ischemic injury by mechanisms that are not well understood. GJA1 mRNA can undergo alternative translation, generating smaller isoforms in the heart, with GJA1-20k being the most abundant. Here, we report that ischemic and ischemia/reperfusion (I/R) injuries upregulate endogenous GJA1-20k protein in the heart, which targets to cardiac mitochondria and associates with the outer mitochondrial membrane. Exploring the functional consequence of increased GJA1-20k, we found that AAV9-mediated gene transfer of GJA1-20k in mouse hearts increases mitochondrial biogenesis while reducing mitochondrial membrane potential, respiration, and ROS production. By doing so, GJA1-20k promotes a protective mitochondrial phenotype, as seen with ischemic preconditioning (IPC), which also increases endogenous GJA1-20k in heart lysates and mitochondrial fractions. As a result, AAV9-GJA1-20k pretreatment reduces myocardial infarct size in mouse hearts subjected to in vivo ischemic injury or ex vivo I/R injury, similar to an IPC-induced cardioprotective effect. In conclusion, GJA1-20k is an endogenous stress response protein that induces mitochondrial biogenesis and metabolic hibernation, preconditioning the heart against I/R insults. Introduction of exogenous GJA1-20k is a putative therapeutic strategy for patients undergoing anticipated ischemic injury.
Wassim A. Basheer, Ying Fu, Daisuke Shimura, Shaohua Xiao, Sosse Agvanian, Diana M. Hernandez, Tara C. Hitzeman, TingTing Hong, Robin M. Shaw
BACKGROUND. Resting brain connectivity is a crucial component of human behavior demonstrated by disruptions in psychosexual and emotional disorders. Kisspeptin, a recently identified critical reproductive hormone, can alter activity in certain brain structures but its effects on resting brain connectivity and networks in humans remain elusive. METHODS. We determined the effects of kisspeptin on resting brain connectivity (using functional neuroimaging) and behavior (using psychometric analyses) in healthy men, in a randomized double-blinded 2-way placebo-controlled study. RESULTS. Kisspeptin’s modulation of the default mode network (DMN) correlated with increased limbic activity in response to sexual stimuli (globus pallidus r = 0.500, P = 0.005; cingulate r = 0.475, P = 0.009). Furthermore, kisspeptin’s DMN modulation was greater in men with less reward drive (r = –0.489, P = 0.008) and predicted reduced sexual aversion (r = –0.499, P = 0.006), providing key functional significance. Kisspeptin also enhanced key mood connections including between the amygdala-cingulate, hippocampus-cingulate, and hippocampus–globus pallidus (all P < 0.05). Consistent with this, kisspeptin’s enhancement of hippocampus–globus pallidus connectivity predicted increased responses to negative stimuli in limbic structures (including the thalamus and cingulate [all P < 0.01]). CONCLUSION. Taken together, our data demonstrate a previously unknown role for kisspeptin in the modulation of functional brain connectivity and networks, integrating these with reproductive hormones and behaviors. Our findings that kisspeptin modulates resting brain connectivity to enhance sexual and emotional processing and decrease sexual aversion, provide foundation for kisspeptin-based therapies for associated disorders of body and mind. FUNDING. NIHR, MRC, and Wellcome Trust.
Alexander N. Comninos, Lysia Demetriou, Matthew B. Wall, Amar J. Shah, Sophie A. Clarke, Shakunthala Narayanaswamy, Alexander Nesbitt, Chioma Izzi-Engbeaya, Julia K. Prague, Ali Abbara, Risheka Ratnasabapathy, Lisa Yang, Victoria Salem, Gurjinder M. Nijher, Channa N. Jayasena, Mark Tanner, Paul Bassett, Amrish Mehta, John McGonigle, Eugenii A. Rabiner, Stephen R. Bloom, Waljit S. Dhillo
BACKGROUND. The clearance of hepatitis B surface antigen (HBsAg) loss, defined as functional cure, is a clinical target in patients with chronic hepatitis B (CH). To understand the immune responses underlying functional cure, we evaluated cytokine and chemokine expression profiles from patients with resolving and nonresolving acute hepatitis B (AH). METHODS. We cross-sectionally evaluated 41 chemokines and cytokines at the peak of hepatitis in the sera from 41 self-limited AH patients who achieved HBsAg seroconversion, 8 AH patients who failed to clear HBsAg within 1 year after the diagnosis, 8 CH patients with hepatic flare, and 14 healthy volunteers. We longitudinally examined 41 chemokines and cytokines in the sera from 4 self-limited AH patients, 3 chimpanzees inoculated with hepatitis B virus (HBV), and 2 CH patients treated with nucleotide analogs and PEG–IFN-α, one resulting in functional cure. RESULTS. In AH patients and HBV-inoculated chimpanzees with HBsAg loss, CXCL9, CXCL10, CXCL11, CXCL13, and IL-21 were elevated at hepatitis with subsequent decline of HBsAg. Interestingly, IL-21 elevation was observed only in resolving AH patients but not in nonresolvers. CXCL13 and IL-21 elevation was not observed in CH patients who failed to attain HBsAg loss, even at hepatic flare. A concomitant increase of CXCL13 and IL-21 was significant in CH patients who attained HBsAg seroconversion with a sequential therapy. CONCLUSION. Elevation of serum CXCL9, CXCL10, CXCL11, CXCL13, and IL-21 might be a hallmark of functional cure of AH or CH patients.
Sachiyo Yoshio, Yohei Mano, Hiroyoshi Doi, Hirotaka Shoji, Tomonari Shimagaki, Yuzuru Sakamoto, Hironari Kawai, Michitaka Matsuda, Taizo Mori, Yosuke Osawa, Masaaki Korenaga, Masaya Sugiyama, Masashi Mizokami, Eiji Mita, Keiko Katayama, Junko Tanaka, Tatsuya Kanto
Molecular mechanisms underlying the cancer stroma in metastasis need further exploration. Here, we discovered that cancer-associated fibroblasts (CAFs) produced high levels of IL-33 that acted on tumor-associated macrophages (TAMs), causing them to undergo the M1 to M2 transition. Genomic profiling of metastasis-related genes in the IL-33–stimulated TAMs showed a >200-fold increase of MMP9. Signaling analysis demonstrated the IL-33-ST2-NF-κB-MMP9-laminin pathway that governed tumor stroma–mediated metastasis. In mouse and human fibroblast-rich pancreatic cancers, genetic deletion of IL-33, ST2, or MMP9 markedly blocked metastasis. Pharmacological inhibition of NF-κB and MMP9 also blocked cancer metastasis. Deletion of IL-33, ST2, or MMP9 restored laminin, a key basement membrane component associated with tumor microvessels. Together, our data provide mechanistic insights on the IL-33-NF-κB-MMP9-laminin axis that mediates the CAF-TAM–committed cancer metastasis. Thus, targeting the CAF-TAM-vessel axis provides an outstanding therapeutic opportunity for cancer treatment.
Patrik Andersson, Yunlong Yang, Kayoko Hosaka, Yin Zhang, Carina Fischer, Harald Braun, Shuzhen Liu, Guohua Yu, Shihai Liu, Rudi Beyaert, Mayland Chang, Qi Li, Yihai Cao
Aortic dissection (AD) is a life-threatening vascular disease with limited treatment strategies. Here, we show that loss of the GWAS-identified SH2B3 gene, encoding lymphocyte adaptor protein LNK, markedly increases susceptibility to acute AD and rupture in response to angiotensin (Ang) II infusion. As early as day 3 following Ang II infusion, prior to the development of AD, Lnk–/– aortas display altered mechanical properties, increased elastin breaks, collagen thinning, enhanced neutrophil accumulation, and increased MMP-9 activity compared with WT mice. Adoptive transfer of Lnk–/– leukocytes into Rag1–/– mice induces AD and rupture in response to Ang II, demonstrating that LNK deficiency in hematopoietic cells plays a key role in this disease. Interestingly, treatment with doxycycline prevents the early accumulation of aortic neutrophils and significantly reduces the incidence of AD and rupture. PrediXcan analysis in a biobank of more than 23,000 individuals reveals that decreased expression of SH2B3 is significantly associated with increased frequency of AD-related phenotypes (odds ratio 0.81). Thus, we identified a role for LNK in the pathology of AD in experimental animals and humans and describe a new model that can be used to inform both inherited and acquired forms of this disease.
Fanny Laroumanie, Arina Korneva, Matthew R. Bersi, Matthew R. Alexander, Liang Xiao, Xue Zhong, Justin P. Van Beusecum, Yuhan Chen, Mohamed A. Saleh, William G. McMaster, Kyle A. Gavulic, Bethany L. Dale, Shilin Zhao, Yan Guo, Yu Shyr, Daniel S. Perrien, Nancy J. Cox, John A. Curci, Jay D. Humphrey, Meena S. Madhur
TGF-β is a promising immunotherapeutic target. It is expressed ubiquitously in a latent form that must be activated to function. Determination of where and how latent TGF-β (L-TGF-β) is activated in the tumor microenvironment could facilitate cell- and mechanism-specific approaches to immunotherapeutically target TGF-β. Binding of L-TGF-β to integrin αvβ8 results in activation of TGF-β. We engineered and used αvβ8 antibodies optimized for blocking or detection, which — respectively — inhibit tumor growth in syngeneic tumor models or sensitively and specifically detect β8 in human tumors. Inhibition of αvβ8 potentiates cytotoxic T cell responses and recruitment of immune cells to tumor centers — effects that are independent of PD-1/PD-L1. β8 is expressed on the cell surface at high levels by tumor cells, not immune cells, while the reverse is true of L-TGF-β, suggesting that tumor cell αvβ8 serves as a platform for activating cell-surface L-TGF-β presented by immune cells. Transcriptome analysis of tumor-associated lymphoid cells reveals macrophages as a key cell type responsive to β8 inhibition with major increases in chemokine and tumor-eliminating genes. High β8 expression in tumor cells is seen in 20%–80% of various cancers, which rarely coincides with high PD-L1 expression. These data suggest tumor cell αvβ8 is a PD-1/PD-L1–independent immunotherapeutic target.
Naoki Takasaka, Robert I. Seed, Anthony Cormier, Andrew J. Bondesson, Jianlong Lou, Ahmed Elattma, Saburo Ito, Haruhiko Yanagisawa, Mitsuo Hashimoto, Royce Ma, Michelle D. Levine, Jean Publicover, Rashaun Potts, Jillian M. Jespersen, Melody G. Campbell, Fraser Conrad, James D. Marks, Yifan Cheng, Jody L. Baron, Stephen L. Nishimura
Recent studies in cancer research have focused intensely on the antineoplastic effects of immune checkpoint inhibitors. While the development of these inhibitors has progressed successfully, strategies to further improve their efficacy and reduce their toxicity are still needed. We hypothesized that the delivery of anti–PD-1 antibody encapsulated in PLGA nanoparticles (anti–PD-1 NPs) to the spleen would improve the antitumor effect of this agent. Unexpectedly, we found that mice treated with a high dose of anti–PD-1 NPs exhibited significantly higher mortality compared with those treated with free anti–PD-1 antibody, due to the overactivation of T cells. Administration of anti–PD-1 NPs to splenectomized LT-α–/– mice, which lack both lymph nodes and spleen, resulted in a complete reversal of this increased mortality and revealed the importance of secondary lymphoid tissues in mediating anti–PD-1–associated toxicity. Attenuation of the anti–PD-1 NPs dosage prevented toxicity and significantly improved its antitumor effect in the B16-F10 murine melanoma model. Furthermore, we found that anti–PD-1 NPs undergo internalization by DCs in the spleen, leading to their maturation and the subsequent activation of T cells. Our findings provide important clues that can lead to the development of strategies to enhance the efficacy of immune checkpoint inhibitors.
Farideh Ordikhani, Mayuko Uehara, Vivek Kasinath, Li Dai, Siawosh K. Eskandari, Baharak Bahmani, Merve Yonar, Jamil R. Azzi, Yousef Haik, Peter T. Sage, George F. Murphy, Nasim Annabi, Tobias Schatton, Indira Guleria, Reza Abdi
Tumor neoantigens arising from somatic mutations in the cancer genome are less likely to be subject to central immune tolerance and are therefore attractive targets for vaccine immunotherapy. We utilized whole-exome sequencing, RNA sequencing (RNASeq), and an in silico immunogenicity prediction algorithm, NetMHC, to generate a neoantigen-targeted vaccine, PancVAX, which was administered together with the STING adjuvant ADU-V16 to mice bearing pancreatic adenocarcinoma (Panc02) cells. PancVAX activated a neoepitope-specific T cell repertoire within the tumor and caused transient tumor regression. When given in combination with two checkpoint modulators, namely anti–PD-1 and agonist OX40 antibodies, PancVAX resulted in enhanced and more durable tumor regression and a survival benefit. The addition of OX40 to vaccine reduced the coexpression of T cell exhaustion markers, Lag3 and PD-1, and resulted in rejection of tumors upon contralateral rechallenge, suggesting the induction of T cell memory. Together, these data provide the framework for testing personalized neoantigen-based combinatorial vaccine strategies in patients with pancreatic and other nonimmunogenic cancers.
Heather L. Kinkead, Alexander Hopkins, Eric Lutz, Annie A. Wu, Mark Yarchoan, Kayla Cruz, Skylar Woolman, Teena Vithayathil, Laura H. Glickman, Chudi O. Ndubaku, Sarah M. McWhirter, Thomas W. Dubensky Jr., Todd D. Armstrong, Elizabeth M. Jaffee, Neeha Zaidi
BACKGROUND. In inflammatory blood vessel diseases, macrophages represent a key component of the vascular infiltrates and are responsible for tissue injury and wall remodeling. METHODS. To examine whether inflammatory macrophages in the vessel wall display a single distinctive effector program, we compared functional profiles in patients with either coronary artery disease (CAD) or giant cell arteritis (GCA). RESULTS. Unexpectedly, monocyte-derived macrophages from the 2 patient cohorts displayed disease-specific signatures and differed fundamentally in metabolic fitness. Macrophages from CAD patients were high producers for T cell chemoattractants (CXCL9, CXCL10), the cytokines IL-1β and IL-6, and the immunoinhibitory ligand PD-L1. In contrast, macrophages from GCA patients upregulated production of T cell chemoattractants (CXCL9, CXCL10) but not IL-1β and IL-6, and were distinctly low for PD-L1 expression. Notably, disease-specific effector profiles were already identifiable in circulating monocytes. The chemokinehicytokinehiPD-L1hi signature in CAD macrophages was sustained by excess uptake and breakdown of glucose, placing metabolic control upstream of inflammatory function. CONCLUSIONS. We conclude that monocytes and macrophages contribute to vascular inflammation in a disease-specific and discernible pattern, have choices to commit to different functional trajectories, are dependent on glucose availability in their immediate microenvironment, and possess memory in their lineage commitment. FUNDING. Supported by the NIH (R01 AR042527, R01 HL117913, R01 AI108906, P01 HL129941, R01 AI108891, R01 AG045779 U19 AI057266, R01 AI129191), I01 BX001669, and the Cahill Discovery Fund.
Ryu Watanabe, Marc Hilhorst, Hui Zhang, Markus Zeisbrich, Gerald J. Berry, Barbara B. Wallis, David G. Harrison, John C. Giacomini, Jörg J. Goronzy, Cornelia M. Weyand
HIV eradication studies have focused on developing latency-reversing agents (LRAs). However, it is not understood how the rate of latent reservoir reduction is affected by different steps in the process of latency reversal. Furthermore, as current LRAs are host-directed, LRA treatment is likely to be intermittent to avoid host toxicities. Few careful studies of the serial effects of pulsatile LRA treatment have yet been done. This lack of clarity makes it difficult to evaluate the efficacy of candidate LRAs or predict long-term treatment outcomes. We constructed a mathematical model that describes the dynamics of latently infected cells under LRA treatment. Model analysis showed that, in addition to increasing the immune recognition and clearance of infected cells, the duration of HIV antigen expression (i.e., the period of vulnerability) plays an important role in determining the efficacy of LRAs, especially if effective clearance is achieved. Patients may benefit from pulsatile LRA exposures compared with continuous LRA exposures if the period of vulnerability is long and the clearance rate is high, both in the presence and absence of an LRA. Overall, the model framework serves as a useful tool to evaluate the efficacy and the rational design of LRAs and combination strategies.
Ruian Ke, Jessica M. Conway, David M. Margolis, Alan S. Perelson
It is not understood how the human T cell leukemia virus human T-lymphotropic virus-1 (HTLV-1), a retrovirus, regulates the in vivo balance between transcriptional latency and reactivation. The HTLV-1 proviral plus-strand is typically transcriptionally silent in freshly isolated peripheral blood mononuclear cells from infected individuals, but after short-term ex vivo culture, there is a strong, spontaneous burst of proviral plus-strand transcription. Here, we demonstrate that proviral reactivation in freshly isolated, naturally infected primary CD4+ T cells has 3 key attributes characteristic of an immediate-early gene. Plus-strand transcription is p38-MAPK dependent and is not inhibited by protein synthesis inhibitors. Ubiquitylation of histone H2A (H2AK119ub1), a signature of polycomb repressive complex-1 (PRC1), is enriched at the latent HTLV-1 provirus, and immediate-early proviral reactivation is associated with rapid deubiquitylation of H2A at the provirus. Inhibition of deubiquitylation by the deubiquitinase (DUB) inhibitor PR619 reverses H2AK119ub1 depletion and strongly inhibits plus-strand transcription. We conclude that the HTLV-1 proviral plus-strand is regulated with characteristics of a cellular immediate-early gene, with a PRC1-dependent bivalent promoter sensitive to p38-MAPK signaling. Finally, we compare the epigenetic signatures of p38-MAPK inhibition, DUB inhibition, and glucose deprivation at the HTLV-1 provirus, and we show that these pathways act as independent checkpoints regulating proviral reactivation from latency.
Anurag Kulkarni, Graham P. Taylor, Robert J. Klose, Christopher J. Schofield, Charles R.M. Bangham
Sensitization to Aspergillus species is associated with allergic respiratory diseases. Allergen immunotherapy with nonstandardized Aspergillus extracts is commonly used as therapy in these patients. Unfortunately, no method exists to measure the relevant allergen protein content in diagnostic and therapeutic extracts. Thus, there is a critical need for Aspergillus extract standardization. We hypothesized that development of Aspergillus-specific human IgE mAbs would allow for the characterization of the relevant human allergenic epitopes among currently available commercial Aspergillus fumigatus extracts. Patients with allergic bronchopulmonary mycosis were recruited from Vanderbilt University Medical Center. IgE antibody–secreting B cells were grown and immortalized using human hybridoma techniques first described here. Twenty-six human Aspergillus-reactive IgE mAbs were used as capture and detection reagents to characterize the Aspergillus allergen content of commercial extracts. We found extreme variability in the specificity and quantity of their protein targets. Just 4 mAbs reacted with all available extracts, and only 1 of 4 extracts contained the major allergen Asp f 1. This degree of variability will almost certainly affect the efficacy of these reagents when used in diagnosis and treatment. Human IgE mAbs represent an innovative tool for the evaluation of relevant human allergenic epitopes, which may assist in future development and long-term standardization of mold extracts.
Mark A. Wurth, Azadeh Hadadianpour, Dennis J. Horvath, Jacob Daniel, Olivia Bogdan, Kasia Goleniewska, Anna Pomés, Robert G. Hamilton, R. Stokes Peebles Jr., Scott A. Smith
Severe influenza (IAV) infection can develop into bronchopneumonia and edema, leading to acquired respiratory distress syndrome (ARDS) and pathophysiology. Underlying causes for pulmonary edema and aberrant fluid regulation largely remain unknown, particularly regarding the role of viral-mediated mechanisms. Herein, we show that distinct IAV strains reduced the functions of the epithelial sodium channel (ENaC) and the cystic fibrosis transmembrane regulator (CFTR) in murine respiratory and alveolar epithelia in vivo, as assessed by measurements of nasal potential differences and single-cell electrophysiology. Reduced ion channel activity was distinctly limited to virally infected cells in vivo and not bystander uninfected lung epithelium. Multiple lines of evidence indicated ENaC and CFTR dysfunction during the acute infection period; however, only CFTR dysfunction persisted beyond the infection period. ENaC, CFTR, and Na,K-ATPase activities and protein levels were also reduced in virally infected human airway epithelial cells. Reduced ENaC and CFTR led to changes in airway surface liquid morphology of human tracheobronchial cultures and airways of IAV-infected mice. Pharmacologic correction of CFTR function ameliorated IAV-induced physiologic changes. These changes are consistent with mucous stasis and pulmonary edema; furthermore, they indicate that repurposing therapeutic interventions correcting CFTR dysfunction may be efficacious for treatment of IAV lung pathophysiology.
Jeffrey D. Brand, Ahmed Lazrak, John E. Trombley, Ren-Jay Shei, A. Timothy Adewale, Jennifer L. Tipper, Zhihong Yu, Amit R. Ashtekar, Steven M. Rowe, Sadis Matalon, Kevin S. Harrod
Proton secretion mediated by ATP12A protein on the surface of the airway epithelium may contribute to cystic fibrosis (CF) lung disease by favoring bacterial infection and airway obstruction. We studied ATP12A in fresh bronchial samples and in cultured epithelial cells. In vivo, ATP12A expression was found almost exclusively at the apical side of nonciliated cells of airway epithelium and in submucosal glands, with much higher expression in CF samples. This could be due to bacterial infection and inflammation, since treating cultured cells with bacterial supernatants or with IL-4 (a cytokine that induces goblet cell hyperplasia) increased the expression of ATP12A in nonciliated cells. This observation was associated with upregulation and translocation of ATP1B1 protein from the basal to apical epithelial side, where it colocalizes with ATP12A. ATP12A function was evaluated by measuring the pH of the apical fluid in cultured epithelia. Under resting conditions, CF epithelia showed more acidic values. This abnormality was minimized by inhibiting ATP12A with ouabain. Following treatment with IL-4, ATP12A function was markedly increased, as indicated by strong acidification occurring under bicarbonate-free conditions. Our study reveals potentially novel aspects of ATP12A and remarks its importance as a possible therapeutic target in CF and other respiratory diseases.
Paolo Scudieri, Ilaria Musante, Emanuela Caci, Arianna Venturini, Patrizia Morelli, Christine Walter, Davide Tosi, Alessandro Palleschi, Pablo Martin-Vasallo, Isabelle Sermet-Gaudelus, Gabrielle Planelles, Gilles Crambert, Luis J.V. Galietta
BACKGROUND. Because injury is universal in organ transplantation, heart transplant endomyocardial biopsies present an opportunity to explore response to injury in heart parenchyma. Histology has limited ability to assess injury, potentially confusing it with rejection, whereas molecular changes have potential to distinguish injury from rejection. Building on previous studies of transcripts associated with T cell–mediated rejection (TCMR) and antibody-mediated rejection (ABMR), we explored transcripts reflecting injury. METHODS. Microarray data from 889 prospectively collected endomyocardial biopsies from 454 transplant recipients at 14 centers were subjected to unsupervised principal component analysis and archetypal analysis to detect variation not explained by rejection. The resulting principal component and archetype scores were then examined for their transcript, transcript set, and pathway associations and compared to the histology diagnoses and left ventricular function. RESULTS. Rejection was reflected by principal components PC1 and PC2, and by archetype scores S2TCMR, and S3ABMR, with S1normal indicating normalness. PC3 and a new archetype score, S4injury, identified unexplained variation correlating with expression of transcripts inducible in injury models, many expressed in macrophages and associated with inflammation in pathway analysis. S4injury scores were high in recent transplants, reflecting donation-implantation injury, and both S4injury and S2TCMR were associated with reduced left ventricular ejection fraction. CONCLUSION. Assessment of injury is necessary for accurate estimates of rejection and for understanding heart transplant phenotypes. Biopsies with molecular injury but no molecular rejection were often misdiagnosed rejection by histology. TRAIL REGISTRATION. ClinicalTrials.gov NCT02670408 FUNDING. Roche Organ Transplant Research Foundation, the University of Alberta Hospital Foundation, and Alberta Health Services.
Philip F. Halloran, Jeff Reeve, Arezu Z. Aliabadi, Martin Cadeiras, Marisa G. Crespo-Leiro, Mario Deng, Eugene C. Depasquale, Johannes Goekler, Xavier Jouven, Daniel H. Kim, Jon Kobashigawa, Alexandre Loupy, Peter Macdonald, Luciano Potena, Andreas Zuckermann, Michael D. Parkes
Cancer results from the accumulation of genetic mutations in a susceptible cell of origin. We and others have also shown that injury promotes sarcoma development, but how injury cooperates with genetic mutations at the earliest stages of tumor formation is not known. Here, we utilized dual recombinase technology to dissect the complex interplay of the timing of KrasG12D activation, p53 deletion, and muscle injury in sarcomagenesis using a primary mouse model of soft tissue sarcoma. When mutations in oncogenic Kras and p53 are separated by 3 weeks, few sarcomas develop without injury. However, the transformation potential of these tumor-initiating cells can be unmasked by muscle injury. In the absence of Kras mutations, injury of the muscle with global deletion of p53 results in sarcomas with amplification of chromosomal regions encompassing the Met or Yap1 gene. These findings demonstrate a complex interplay between the timing of genetic mutations and perturbations in the tumor microenvironment, which provides insight into the earliest stages of sarcoma development.
David Van Mater, Eric Xu, Anupama Reddy, Leonor Añó, Mohit Sachdeva, Wesley Huang, Nerissa Williams, Yan Ma, Cassandra Love, Lanie Happ, Sandeep Dave, David G. Kirsch
BACKGROUND. Lymphedema is a common condition affecting millions around the world that still lacks approved medical therapy. Because ketoprofen, an NSAID, has been therapeutic in experimental lymphedema, we evaluated its efficacy in humans. METHODS. We first performed an exploratory open-label trial. Patients with either primary or secondary lymphedema received ketoprofen 75 mg by mouth 3 times daily for 4 months. Subjects were evaluated for changes in histopathology, with skin thickness, limb volume, and tissue bioimpedance changes serving as secondary endpoints. Based on our encouraging findings, we next conducted a placebo-controlled trial, with the primary outcome defined as a change in skin thickness, as measured by skin calipers. Secondary endpoints for this second study included histopathology, limb volume, bioimpedance, and systemic inflammatory mediators. RESULTS. We enrolled 21 lymphedema patients in the open-label trial, from November 2010 to July 2011. Histopathology and skin thickness were significantly improved at 4 months compared with baseline. In the follow-up, double-blind, placebo-controlled trial, we enrolled 34 patients from August 2011 to October 2015, with 16 ketoprofen recipients and 18 placebo-treated subjects. No serious adverse events occurred. The ketoprofen recipients demonstrated reduced skin thickness, as well as improved composite measures of histopathology and decreased plasma granulocyte CSF (G-CSF) expression. CONCLUSION. These 2 exploratory studies together support the utility of targeted antiinflammatory therapy with ketoprofen in patients with lymphedema. Our results highlight the promise of such approaches to help restore a failing lymphatic circulation. TRIAL REGISTRATION. ClinicalTrials.gov NCT02257970.
Stanley G. Rockson, Wen Tian, Xinguo Jiang, Tatiana Kuznetsova, Francois Haddad, Jamie Zampell, Babak Mehrara, Joshua P. Sampson, Leslie Roche, Jinah Kim, Mark R. Nicolls
Fibrosis is characterized by persistent deposition of extracellular matrix (ECM) by fibroblasts. Fibroblast mechanosensing of a stiffened ECM is hypothesized to drive the fibrotic program; however, the spatial distribution of ECM mechanics and their derangements in progressive fibrosis are poorly characterized. Importantly, fibrosis presents with significant histopathological heterogeneity at the microscale. Here, we report that fibroblastic foci (FF), the regions of active fibrogenesis in idiopathic pulmonary fibrosis (IPF), are surprisingly of similar modulus as normal lung parenchyma and are nonlinearly elastic. In vitro, provisional ECMs with mechanical properties similar to those of FF activate both normal and IPF patient–derived fibroblasts, whereas type I collagen ECMs with similar mechanical properties do not. This is mediated, in part, by αvβ3 integrin engagement and is augmented by loss of expression of Thy-1, which regulates αvβ3 integrin avidity for ECM. Thy-1 loss potentiates cell contractility-driven strain stiffening of provisional ECM in vitro and causes elevated αvβ3 integrin activation, increased fibrosis, and greater mortality following fibrotic lung injury in vivo. These data suggest a central role for αvβ3 integrin and provisional ECM in overriding mechanical cues that normally impose quiescent phenotypes, driving progressive fibrosis through physical stiffening of the fibrotic niche.
Vincent F. Fiore, Simon S. Wong, Coleen Tran, Chunting Tan, Wenwei Xu, Todd Sulchek, Eric S. White, James S. Hagood, Thomas H. Barker
Gut microbiota–derived metabolites play important roles in health and disease. D–amino acids and their L-forms are metabolites of gut microbiota with distinct functions. In this study, we show the pathophysiologic role of D–amino acids in association with gut microbiota in humans and mice with acute kidney injury (AKI). In a mouse kidney ischemia/reperfusion model, the gut microbiota protected against tubular injury. AKI-induced gut dysbiosis contributed to the altered metabolism of D–amino acids. Among the D–amino acids, only D-serine was detectable in the kidney. In injured kidneys, the activity of D–amino acid oxidase was decreased. Conversely, the activity of serine racemase was increased. The oral administration of D-serine mitigated the kidney injury in B6 mice and D-serine–depleted mice. D-serine suppressed hypoxia-induced tubular damage and promoted posthypoxic tubular cell proliferation. Finally, the D-serine levels in circulation were significantly correlated with the decrease in kidney function in AKI patients. These results demonstrate the renoprotective effects of gut-derived D-serine in AKI, shed light on the interactions between the gut microbiota and the kidney in both health and AKI, and highlight D-serine as a potential new therapeutic target and biomarker for AKI.
Yusuke Nakade, Yasunori Iwata, Kengo Furuichi, Masashi Mita, Kenji Hamase, Ryuichi Konno, Taito Miyake, Norihiko Sakai, Shinji Kitajima, Tadashi Toyama, Yasuyuki Shinozaki, Akihiro Sagara, Taro Miyagawa, Akinori Hara, Miho Shimizu, Yasutaka Kamikawa, Kouichi Sato, Megumi Oshima, Shiori Yoneda-Nakagawa, Yuta Yamamura, Shuichi Kaneko, Tetsuya Miyamoto, Masumi Katane, Hiroshi Homma, Hidetoshi Morita, Wataru Suda, Masahira Hattori, Takashi Wada
Defects in genes mediating thyroid hormone biosynthesis result in dyshormonogenic congenital hypothyroidism (CH). Here, we report homozygous truncating mutations in SLC26A7 in 6 unrelated families with goitrous CH and show that goitrous hypothyroidism also occurs in Slc26a7-null mice. In both species, the gene is expressed predominantly in the thyroid gland, and loss of function is associated with impaired availability of iodine for thyroid hormone synthesis, partially corrected in mice by iodine supplementation. SLC26A7 is a member of the same transporter family as SLC26A4 (pendrin), an anion exchanger with affinity for iodide and chloride (among others), whose gene mutations cause congenital deafness and dyshormonogenic goiter. However, in contrast to pendrin, SLC26A7 does not mediate cellular iodide efflux and hearing in affected individuals is normal. We delineate a hitherto unrecognized role for SLC26A7 in thyroid hormone biosynthesis, for which the mechanism remains unclear.
Hakan Cangul, Xiao-Hui Liao, Erik Schoenmakers, Jukka Kero, Sharon Barone, Panudda Srichomkwun, Hideyuki Iwayama, Eva G. Serra, Halil Saglam, Erdal Eren, Omer Tarim, Adeline K. Nicholas, Ilona Zvetkova, Carl A. Anderson, Fiona E. Karet Frankl, Kristien Boelaert, Marja Ojaniemi, Jarmo Jääskeläinen, Konrad Patyra, Christoffer Löf, E. Dillwyn Williams, UK10K Consortium, Manoocher Soleimani, Timothy Barrett, Eamonn R. Maher, V. Krishna Chatterjee, Samuel Refetoff, Nadia Schoenmakers
Molecular mechanisms that control leukocyte migration across the vascular endothelium (transendothelial migration; TEndoM) have been extensively characterized in vivo, but details of leukocyte transepithelial migration (TEpM) and its dysregulation (a pathologic feature of many mucosal diseases) are missing due to the lack of suitable animal models. Here, we describe a murine model that utilizes a vascularized proximal colonic segment (pcLoop) and enables quantitative studies of leukocyte trafficking across colonic epithelium. Consistent with previous in vitro studies, intraluminal injection of antibodies against integrin CD11b/CD18 reduced recruitment of polymorphonuclear neutrophils (PMN) into the lumen of pcLoops, and it increased subepithelial accumulation of PMN. We extended studies using the pcLoop to determine contributions of Junctional Adhesion Molecule-A (JAM-A, or F11R) in PMN TEpM and confirmed that mice with total loss of JAM-A or mice with intestinal epithelial selective loss of JAM-A had increased colonic permeability. Furthermore, there was reduced PMN migration into the colonic lumen that paralleled subepithelial accumulation of PMN in global-KO mice, as well as in intestinal epithelial-targeted JAM-A–deficient mice. These findings highlight a potentially novel role for JAM-A in regulating PMN TEpM in vivo and demonstrate utility of this model for identifying receptors that may be targeted in vivo to reduce pathologic intestinal inflammation.
Sven Flemming, Anny-Claude Luissint, Asma Nusrat, Charles A. Parkos