Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Genetics

  • 285 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 27
  • 28
  • 29
  • Next →
Pioglitazone-mediated reversal of elevated glucose metabolism in the airway epithelium of mouse lung adenocarcinomas
Donghai Xiong, Jing Pan, Qi Zhang, Eva Szabo, Mark Steven Miller, Ronald A. Lubet, Yian Wang, Ming You
Donghai Xiong, Jing Pan, Qi Zhang, Eva Szabo, Mark Steven Miller, Ronald A. Lubet, Yian Wang, Ming You
View: Text | PDF

Pioglitazone-mediated reversal of elevated glucose metabolism in the airway epithelium of mouse lung adenocarcinomas

  • Text
  • PDF
Abstract

Airway epithelial cells are prone to the damage caused by lung cancer risk factors, such as cigarette smoking. Little is known about surrogate biomarkers in the bronchial airway epithelium that can be used to assess the effect of potential chemoprevention drugs on lung adenocarcinoma formation/progression. Pioglitazone has been suggested as a chemoprevention drug for lung cancer. To study the mechanisms underlying the role of pioglitazone in lung cancer prevention, we performed transcriptome sequencing (RNA-Seq) and found that Kras signaling was repressed by pioglitazone treatment in the airway epithelial cells of mice with lung adenocarcinoma (FDR q = 9.8E-04). It was also found that glucose metabolic pathways were elevated in the airway epithelium of mice with lung adenocarcinomas and inhibited by pioglitazone treatment (FDR q = 0.01). Downregulation of glucose metabolism genes was also observed in lung tumors of mice treated with pioglitazone. The high-risk expression signature of elevated glucose metabolism was associated with poor survival outcome in multiple lung adenocarcinoma patient populations (P values ranging from 1.0E-9 to 5.5E-5). Our results suggest that the role of pioglitazone in preventing lung adenocarcinoma may depend on inhibiting Kras signaling and glucose metabolism, which may serve as biomarkers of agent action in the airway epithelium.

Authors

Donghai Xiong, Jing Pan, Qi Zhang, Eva Szabo, Mark Steven Miller, Ronald A. Lubet, Yian Wang, Ming You

×

Genomic landscape and evolution of metastatic chromophobe renal cell carcinoma
Jozefina Casuscelli, Nils Weinhold, Gunes Gundem, Lu Wang, Emily C. Zabor, Esther Drill, Patricia I. Wang, Gouri J. Nanjangud, Almedina Redzematovic, Amrita M. Nargund, Brandon J. Manley, Maria E. Arcila, Nicholas M. Donin, John C. Cheville, R. Houston Thompson, Allan J. Pantuck, Paul Russo, Emily H. Cheng, William Lee, Satish K. Tickoo, Irina Ostrovnaya, Chad J. Creighton, Elli Papaemmanuil, Venkatraman E. Seshan, A. Ari Hakimi, James J. Hsieh
Jozefina Casuscelli, Nils Weinhold, Gunes Gundem, Lu Wang, Emily C. Zabor, Esther Drill, Patricia I. Wang, Gouri J. Nanjangud, Almedina Redzematovic, Amrita M. Nargund, Brandon J. Manley, Maria E. Arcila, Nicholas M. Donin, John C. Cheville, R. Houston Thompson, Allan J. Pantuck, Paul Russo, Emily H. Cheng, William Lee, Satish K. Tickoo, Irina Ostrovnaya, Chad J. Creighton, Elli Papaemmanuil, Venkatraman E. Seshan, A. Ari Hakimi, James J. Hsieh
View: Text | PDF

Genomic landscape and evolution of metastatic chromophobe renal cell carcinoma

  • Text
  • PDF
Abstract

Chromophobe renal cell carcinoma (chRCC) typically shows ~7 chromosome losses (1, 2, 6, 10, 13, 17, and 21) and ~31 exonic somatic mutations, yet carries ~5%–10% metastatic incidence. Since extensive chromosomal losses can generate proteotoxic stress and compromise cellular proliferation, it is intriguing how chRCC, a tumor with extensive chromosome losses and a low number of somatic mutations, can develop lethal metastases. Genomic features distinguishing metastatic from nonmetastatic chRCC are unknown. An integrated approach, including whole-genome sequencing (WGS), targeted ultradeep cancer gene sequencing, and chromosome analyses (FACETS, OncoScan, and FISH), was performed on 79 chRCC patients including 38 metastatic (M-chRCC) cases. We demonstrate that TP53 mutations (58%), PTEN mutations (24%), and imbalanced chromosome duplication (ICD, duplication of ≥ 3 chromosomes) (25%) were enriched in M-chRCC. Reconstruction of the subclonal composition of paired primary-metastatic chRCC tumors supports the role of TP53, PTEN, and ICD in metastatic evolution. Finally, the presence of these 3 genomic features in primary tumors of both The Cancer Genome Atlas kidney chromophobe (KICH) (n = 64) and M-chRCC (n = 35) cohorts was associated with worse survival. In summary, our study provides genomic insights into the metastatic progression of chRCC and identifies TP53 mutations, PTEN mutations, and ICD as high-risk features.

Authors

Jozefina Casuscelli, Nils Weinhold, Gunes Gundem, Lu Wang, Emily C. Zabor, Esther Drill, Patricia I. Wang, Gouri J. Nanjangud, Almedina Redzematovic, Amrita M. Nargund, Brandon J. Manley, Maria E. Arcila, Nicholas M. Donin, John C. Cheville, R. Houston Thompson, Allan J. Pantuck, Paul Russo, Emily H. Cheng, William Lee, Satish K. Tickoo, Irina Ostrovnaya, Chad J. Creighton, Elli Papaemmanuil, Venkatraman E. Seshan, A. Ari Hakimi, James J. Hsieh

×

A human PSMB11 variant affects thymoproteasome processing and CD8+ T cell production
Izumi Ohigashi, Yuki Ohte, Kazuya Setoh, Hiroshi Nakase, Akiko Maekawa, Hiroshi Kiyonari, Yoko Hamazaki, Miho Sekai, Tetsuo Sudo, Yasuharu Tabara, Hiromi Sawai, Yosuke Omae, Rika Yuliwulandari, Yasuhito Tanaka, Masashi Mizokami, Hiroshi Inoue, Masanori Kasahara, Nagahiro Minato, Katsushi Tokunaga, Keiji Tanaka, Fumihiko Matsuda, Shigeo Murata, Yousuke Takahama
Izumi Ohigashi, Yuki Ohte, Kazuya Setoh, Hiroshi Nakase, Akiko Maekawa, Hiroshi Kiyonari, Yoko Hamazaki, Miho Sekai, Tetsuo Sudo, Yasuharu Tabara, Hiromi Sawai, Yosuke Omae, Rika Yuliwulandari, Yasuhito Tanaka, Masashi Mizokami, Hiroshi Inoue, Masanori Kasahara, Nagahiro Minato, Katsushi Tokunaga, Keiji Tanaka, Fumihiko Matsuda, Shigeo Murata, Yousuke Takahama
View: Text | PDF

A human PSMB11 variant affects thymoproteasome processing and CD8+ T cell production

  • Text
  • PDF
Abstract

The Psmb11-encoded β5t subunit of the thymoproteasome, which is specifically expressed in cortical thymic epithelial cells (cTECs), is essential for the optimal positive selection of functionally competent CD8+ T cells in mice. Here, we report that a human genomic PSMB11 variation, which is detectable at an appreciable allele frequency in human populations, alters the β5t amino acid sequence that affects the processing of catalytically active β5t proteins. The introduction of this variation in the mouse genome revealed that the heterozygotes showed reduced β5t expression in cTECs and the homozygotes further exhibited reduction in the cellularity of CD8+ T cells. No severe health problems were noticed in many heterozygous and 5 homozygous human individuals. Long-term analysis of health status, particularly in the homozygotes, is expected to improve our understanding of the role of the thymoproteasome-dependent positive selection of CD8+ T cells in humans.

Authors

Izumi Ohigashi, Yuki Ohte, Kazuya Setoh, Hiroshi Nakase, Akiko Maekawa, Hiroshi Kiyonari, Yoko Hamazaki, Miho Sekai, Tetsuo Sudo, Yasuharu Tabara, Hiromi Sawai, Yosuke Omae, Rika Yuliwulandari, Yasuhito Tanaka, Masashi Mizokami, Hiroshi Inoue, Masanori Kasahara, Nagahiro Minato, Katsushi Tokunaga, Keiji Tanaka, Fumihiko Matsuda, Shigeo Murata, Yousuke Takahama

×

MPEG1/perforin-2 mutations in human pulmonary nontuberculous mycobacterial infections
Ryan M. McCormack, Eva P. Szymanski, Amy P. Hsu, Elena Perez, Kenneth N. Olivier, Eva Fisher, E. Brook Goodhew, Eckhard R. Podack, Steven M. Holland
Ryan M. McCormack, Eva P. Szymanski, Amy P. Hsu, Elena Perez, Kenneth N. Olivier, Eva Fisher, E. Brook Goodhew, Eckhard R. Podack, Steven M. Holland
View: Text | PDF

MPEG1/perforin-2 mutations in human pulmonary nontuberculous mycobacterial infections

  • Text
  • PDF
Abstract

Perforin-2 is a highly conserved pore-forming protein encoded by macrophage expressed gene 1 (MPEG1). A number of studies have shown that Perforin-2–deficient mice are unable to survive following a bacterial challenge that is nonlethal in WT mice. There is also recent evidence that Mpeg1+/– heterozygous mice display an intermediate killing ability compared with Mpeg1 WT and Mpeg1–/– mice. Despite these in vivo findings, to date, no perforin-2 deficiencies have been associated with human disease. Here, we report four patients with persistent nontuberculous mycobacterial infection who had heterozygous MPEG1 mutations. In vitro, neutrophils, macrophages, and B cells from these patients were unable to kill Mycobacterium avium as efficiently as normal controls. CRISPR mutagenesis validated the deleterious antibacterial activity of these mutations. These data suggest that perforin-2 haploinsufficiency may contribute to human susceptibility to infections with intracellular bacteria.

Authors

Ryan M. McCormack, Eva P. Szymanski, Amy P. Hsu, Elena Perez, Kenneth N. Olivier, Eva Fisher, E. Brook Goodhew, Eckhard R. Podack, Steven M. Holland

×

LRRK2 but not ATG16L1 is associated with Paneth cell defect in Japanese Crohn’s disease patients
Ta-Chiang Liu, Takeo Naito, Zhenqiu Liu, Kelli L. VanDussen, Talin Haritunians, Dalin Li, Katsuya Endo, Yosuke Kawai, Masao Nagasaki, Yoshitaka Kinouchi, Dermot P.B. McGovern, Tooru Shimosegawa, Yoichi Kakuta, Thaddeus S. Stappenbeck
Ta-Chiang Liu, Takeo Naito, Zhenqiu Liu, Kelli L. VanDussen, Talin Haritunians, Dalin Li, Katsuya Endo, Yosuke Kawai, Masao Nagasaki, Yoshitaka Kinouchi, Dermot P.B. McGovern, Tooru Shimosegawa, Yoichi Kakuta, Thaddeus S. Stappenbeck
View: Text | PDF

LRRK2 but not ATG16L1 is associated with Paneth cell defect in Japanese Crohn’s disease patients

  • Text
  • PDF
Abstract

BACKGROUND. Morphological patterns of Paneth cells are a prognostic biomarker in Western Crohn’s disease (CD) patients, and are associated with autophagy-associated ATG16L1 and NOD2 variants. We hypothesized that genetic determinants of Paneth cell phenotype in other ethnic CD cohorts are distinct but also involved in autophagy.

METHODS. We performed a hypothesis-driven analysis of 56 single nucleotide polymorphisms (SNPs) associated with CD susceptibility or known to affect Paneth cell function in 110 Japanese CD patients who underwent ileal resection. We subsequently performed a genome-wide association analysis. Paneth cell phenotype was determined by defensin-5 immunofluorescence. Selected genotype–Paneth cell defect correlations were compared to a Western CD cohort (n = 164).

RESULTS. The average percentage of abnormal Paneth cells in Japanese CD was similar to Western CD (P = 0.87), and abnormal Paneth cell phenotype was also associated with early recurrence (P = 0.013). In contrast to Western CD, ATG16L1 T300A was not associated with Paneth cell defect in Japanese CD (P = 0.20). Among the 56 selected SNPs, only LRRK2 M2397T showed significant association with Paneth cell defect (P = 3.62 × 10–4), whereas in the Western CD cohort it was not (P = 0.76). Pathway analysis of LRRK2 and other candidate genes with P less than 5 × 10–4 showed connections with known CD susceptibility genes and links to autophagy and TNF-α networks.

CONCLUSIONS. We found dichotomous effects of ATG16L1 and LRRK2 on Paneth cell defect between Japanese and Western CD. Genes affecting Paneth cell phenotype in Japanese CD were also associated with autophagy. Paneth cell phenotype also predicted prognosis in Japanese CD.

FUNDING. Helmsley Charitable Trust, Doris Duke Foundation (grant 2014103), Japan Society for the Promotion of Science (KAKENHI grants JP15H04805 and JP15K15284), Crohn’s and Colitis Foundation grant 274415, NIH (grants 1R56DK095820, K01DK109081, and UL1 TR000448).

Authors

Ta-Chiang Liu, Takeo Naito, Zhenqiu Liu, Kelli L. VanDussen, Talin Haritunians, Dalin Li, Katsuya Endo, Yosuke Kawai, Masao Nagasaki, Yoshitaka Kinouchi, Dermot P.B. McGovern, Tooru Shimosegawa, Yoichi Kakuta, Thaddeus S. Stappenbeck

×

Genomic profiling reveals mutational landscape in parathyroid carcinomas
Chetanya Pandya, Andrew V. Uzilov, Justin Bellizzi, Chun Yee Lau, Aye S. Moe, Maya Strahl, Wissam Hamou, Leah C. Newman, Marc Y. Fink, Yevgeniy Antipin, Willie Yu, Mark Stevenson, Branca M. Cavaco, Bin T. Teh, Rajesh V. Thakker, Hans Morreau, Eric E. Schadt, Robert Sebra, Shuyu D. Li, Andrew Arnold, Rong Chen
Chetanya Pandya, Andrew V. Uzilov, Justin Bellizzi, Chun Yee Lau, Aye S. Moe, Maya Strahl, Wissam Hamou, Leah C. Newman, Marc Y. Fink, Yevgeniy Antipin, Willie Yu, Mark Stevenson, Branca M. Cavaco, Bin T. Teh, Rajesh V. Thakker, Hans Morreau, Eric E. Schadt, Robert Sebra, Shuyu D. Li, Andrew Arnold, Rong Chen
View: Text | PDF

Genomic profiling reveals mutational landscape in parathyroid carcinomas

  • Text
  • PDF
Abstract

Parathyroid carcinoma (PC) is an extremely rare malignancy lacking effective therapeutic intervention. We generated and analyzed whole-exome sequencing data from 17 patients to identify somatic and germline genetic alterations. A panel of selected genes was sequenced in a 7-tumor expansion cohort. We show that 47% (8 of 17) of the tumors harbor somatic mutations in the CDC73 tumor suppressor, with germline inactivating variants in 4 of the 8 patients. The PI3K/AKT/mTOR pathway was altered in 21% of the 24 cases, revealing a major oncogenic pathway in PC. We observed CCND1 amplification in 29% of the 17 patients, and a previously unreported recurrent mutation in putative kinase ADCK1. We identified the first sporadic PCs with somatic mutations in the Wnt canonical pathway, complementing previously described epigenetic mechanisms mediating Wnt activation. This is the largest genomic sequencing study of PC, and represents major progress toward a full molecular characterization of this rare malignancy to inform improved and individualized treatments.

Authors

Chetanya Pandya, Andrew V. Uzilov, Justin Bellizzi, Chun Yee Lau, Aye S. Moe, Maya Strahl, Wissam Hamou, Leah C. Newman, Marc Y. Fink, Yevgeniy Antipin, Willie Yu, Mark Stevenson, Branca M. Cavaco, Bin T. Teh, Rajesh V. Thakker, Hans Morreau, Eric E. Schadt, Robert Sebra, Shuyu D. Li, Andrew Arnold, Rong Chen

×

Elucidation of MRAS-mediated Noonan syndrome with cardiac hypertrophy
Erin M. Higgins, J. Martijn Bos, Heather Mason-Suares, David J. Tester, Jaeger P. Ackerman, Calum A. MacRae, Katia Sol-Church, Karen W. Gripp, Raul Urrutia, Michael J. Ackerman
Erin M. Higgins, J. Martijn Bos, Heather Mason-Suares, David J. Tester, Jaeger P. Ackerman, Calum A. MacRae, Katia Sol-Church, Karen W. Gripp, Raul Urrutia, Michael J. Ackerman
View: Text | PDF

Elucidation of MRAS-mediated Noonan syndrome with cardiac hypertrophy

  • Text
  • PDF
Abstract

Noonan syndrome (NS; MIM 163950) is an autosomal dominant disorder and a member of a family of developmental disorders termed “RASopathies,” which are caused mainly by gain-of-function mutations in genes encoding RAS/MAPK signaling pathway proteins. Whole exome sequencing (WES) and trio-based genomic triangulation of a 15-year-old female with a clinical diagnosis of NS and concomitant cardiac hypertrophy and her unaffected parents identified a de novo variant in MRAS-encoded RAS-related protein 3 as the cause of her disease. Mutation analysis using in silico mutation prediction tools and molecular dynamics simulations predicted the identified variant, p.Gly23Val-MRAS, to be damaging to normal protein function and adversely affect effector interaction regions and the GTP-binding site. Subsequent ectopic expression experiments revealed a 40-fold increase in MRAS activation for p.Gly23Val-MRAS compared with WT-MRAS. Additional biochemical assays demonstrated enhanced activation of both RAS/MAPK pathway signaling and downstream gene expression in cells expressing p.Gly23Val-MRAS. Mutational analysis of MRAS in a cohort of 109 unrelated patients with phenotype-positive/genotype-negative NS and cardiac hypertrophy yielded another patient with a sporadic de novo MRAS variant (p.Thr68Ile, c.203C>T). Herein, we describe the discovery of mutations in MRAS in patients with NS and cardiac hypertrophy, establishing MRAS as the newest NS with cardiac hypertrophy-susceptibility gene.

Authors

Erin M. Higgins, J. Martijn Bos, Heather Mason-Suares, David J. Tester, Jaeger P. Ackerman, Calum A. MacRae, Katia Sol-Church, Karen W. Gripp, Raul Urrutia, Michael J. Ackerman

×

DNA methylation in lung cells is associated with asthma endotypes and genetic risk
Jessie Nicodemus-Johnson, Rachel A. Myers, Noburu J. Sakabe, Debora R. Sobreira, Douglas K. Hogarth, Edward T. Naureckas, Anne I. Sperling, Julian Solway, Steven R. White, Marcelo A. Nobrega, Dan L. Nicolae, Yoav Gilad, Carole Ober
Jessie Nicodemus-Johnson, Rachel A. Myers, Noburu J. Sakabe, Debora R. Sobreira, Douglas K. Hogarth, Edward T. Naureckas, Anne I. Sperling, Julian Solway, Steven R. White, Marcelo A. Nobrega, Dan L. Nicolae, Yoav Gilad, Carole Ober
View: Text | PDF

DNA methylation in lung cells is associated with asthma endotypes and genetic risk

  • Text
  • PDF
Abstract

The epigenome provides a substrate through which environmental exposures can exert their effects on gene expression and disease risk, but the relative importance of epigenetic variation on human disease onset and progression is poorly characterized. Asthma is a heterogeneous disease of the airways, for which both onset and clinical course result from interactions between host genotype and environmental exposures, yet little is known about the molecular mechanisms for these interactions. We assessed genome-wide DNA methylation using the Infinium Human Methylation 450K Bead Chip and characterized the transcriptome by RNA sequencing in primary airway epithelial cells from 74 asthmatic and 41 nonasthmatic adults. Asthma status was based on doctor’s diagnosis and current medication use. Genotyping was performed using various Illumina platforms. Our study revealed a regulatory locus on chromosome 17q12-21 associated with asthma risk and epigenetic signatures of specific asthma endotypes and molecular networks. Overall, these data support a central role for DNA methylation in lung cells, which promotes distinct molecular pathways of asthma pathogenesis and modulates the effects of genetic variation on disease risk and clinical heterogeneity.

Authors

Jessie Nicodemus-Johnson, Rachel A. Myers, Noburu J. Sakabe, Debora R. Sobreira, Douglas K. Hogarth, Edward T. Naureckas, Anne I. Sperling, Julian Solway, Steven R. White, Marcelo A. Nobrega, Dan L. Nicolae, Yoav Gilad, Carole Ober

×

Institutional implementation of clinical tumor profiling on an unselected cancer population
Lynette M. Sholl, Khanh Do, Priyanka Shivdasani, Ethan Cerami, Adrian M. Dubuc, Frank C. Kuo, Elizabeth P. Garcia, Yonghui Jia, Phani Davineni, Ryan P. Abo, Trevor J. Pugh, Paul van Hummelen, Aaron R. Thorner, Matthew Ducar, Alice H. Berger, Mizuki Nishino, Katherine A. Janeway, Alanna Church, Marian Harris, Lauren L. Ritterhouse, Joshua D. Campbell, Vanesa Rojas-Rudilla, Azra H. Ligon, Shakti Ramkissoon, James M. Cleary, Ursula Matulonis, Geoffrey R. Oxnard, Richard Chao, Vanessa Tassell, James Christensen, William C. Hahn, Philip W. Kantoff, David J. Kwiatkowski, Bruce E. Johnson, Matthew Meyerson, Levi A. Garraway, Geoffrey I. Shapiro, Barrett J. Rollins, Neal I. Lindeman, Laura E. MacConaill
Lynette M. Sholl, Khanh Do, Priyanka Shivdasani, Ethan Cerami, Adrian M. Dubuc, Frank C. Kuo, Elizabeth P. Garcia, Yonghui Jia, Phani Davineni, Ryan P. Abo, Trevor J. Pugh, Paul van Hummelen, Aaron R. Thorner, Matthew Ducar, Alice H. Berger, Mizuki Nishino, Katherine A. Janeway, Alanna Church, Marian Harris, Lauren L. Ritterhouse, Joshua D. Campbell, Vanesa Rojas-Rudilla, Azra H. Ligon, Shakti Ramkissoon, James M. Cleary, Ursula Matulonis, Geoffrey R. Oxnard, Richard Chao, Vanessa Tassell, James Christensen, William C. Hahn, Philip W. Kantoff, David J. Kwiatkowski, Bruce E. Johnson, Matthew Meyerson, Levi A. Garraway, Geoffrey I. Shapiro, Barrett J. Rollins, Neal I. Lindeman, Laura E. MacConaill
View: Text | PDF

Institutional implementation of clinical tumor profiling on an unselected cancer population

  • Text
  • PDF
Abstract

BACKGROUND. Comprehensive genomic profiling of a patient’s cancer can be used to diagnose, monitor, and recommend treatment. Clinical implementation of tumor profiling in an enterprise-wide, unselected cancer patient population has yet to be reported.

METHODS. We deployed a hybrid-capture and massively parallel sequencing assay (OncoPanel) for all adult and pediatric patients at our combined cancer centers. Results were categorized by pathologists based on actionability. We report the results for the first 3,727 patients tested.

RESULTS. Our cohort consists of cancer patients unrestricted by disease site or stage. Across all consented patients, half had sufficient and available (>20% tumor) material for profiling; once specimens were received in the laboratory for pathology review, 73% were scored as adequate for genomic testing. When sufficient DNA was obtained, OncoPanel yielded a result in 96% of cases. 73% of patients harbored an actionable or informative alteration; only 19% of these represented a current standard of care for therapeutic stratification. The findings recapitulate those of previous studies of common cancers but also identify alterations, including in AXL and EGFR, associated with response to targeted therapies. In rare cancers, potentially actionable alterations suggest the utility of a “cancer-agnostic” approach in genomic profiling. Retrospective analyses uncovered contextual genomic features that may inform therapeutic response and examples where diagnoses revised by genomic profiling markedly changed clinical management.

CONCLUSIONS. Broad sequencing-based testing deployed across an unselected cancer cohort is feasible. Genomic results may alter management in diverse scenarios; however, additional barriers must be overcome to enable precision cancer medicine on a large scale.

FUNDING. This work was supported by DFCI, BWH, and the National Cancer Institute (5R33CA155554 and 5K23CA157631).

Authors

Lynette M. Sholl, Khanh Do, Priyanka Shivdasani, Ethan Cerami, Adrian M. Dubuc, Frank C. Kuo, Elizabeth P. Garcia, Yonghui Jia, Phani Davineni, Ryan P. Abo, Trevor J. Pugh, Paul van Hummelen, Aaron R. Thorner, Matthew Ducar, Alice H. Berger, Mizuki Nishino, Katherine A. Janeway, Alanna Church, Marian Harris, Lauren L. Ritterhouse, Joshua D. Campbell, Vanesa Rojas-Rudilla, Azra H. Ligon, Shakti Ramkissoon, James M. Cleary, Ursula Matulonis, Geoffrey R. Oxnard, Richard Chao, Vanessa Tassell, James Christensen, William C. Hahn, Philip W. Kantoff, David J. Kwiatkowski, Bruce E. Johnson, Matthew Meyerson, Levi A. Garraway, Geoffrey I. Shapiro, Barrett J. Rollins, Neal I. Lindeman, Laura E. MacConaill

×

Subtyping sub-Saharan esophageal squamous cell carcinoma by comprehensive molecular analysis
Wenjin Liu, Jeff M. Snell, William R. Jeck, Katherine A. Hoadley, Matthew D. Wilkerson, Joel S. Parker, Nirali Patel, Yohannie B. Mlombe, Gift Mulima, N. George Liomba, Lindsey L. Wolf, Carol G. Shores, Satish Gopal, Norman E. Sharpless
Wenjin Liu, Jeff M. Snell, William R. Jeck, Katherine A. Hoadley, Matthew D. Wilkerson, Joel S. Parker, Nirali Patel, Yohannie B. Mlombe, Gift Mulima, N. George Liomba, Lindsey L. Wolf, Carol G. Shores, Satish Gopal, Norman E. Sharpless
View: Text | PDF | Addendum

Subtyping sub-Saharan esophageal squamous cell carcinoma by comprehensive molecular analysis

  • Text
  • PDF
Abstract

Esophageal squamous cell carcinoma (ESCC) is endemic in regions of sub-Saharan Africa (SSA), where it is the third most common cancer. Here, we describe whole-exome tumor/normal sequencing and RNA transcriptomic analysis of 59 patients with ESCC in Malawi. We observed similar genetic aberrations as reported in Asian and North American cohorts, including mutations of TP53, CDKN2A, NFE2L2, CHEK2, NOTCH1, FAT1, and FBXW7. Analyses for nonhuman sequences did not reveal evidence for infection with HPV or other occult pathogens. Mutational signature analysis revealed common signatures associated with aging, cytidine deaminase activity (APOBEC), and a third signature of unknown origin, but signatures of inhaled tobacco use, aflatoxin and mismatch repair were notably absent. Based on RNA expression analysis, ESCC could be divided into 3 distinct subtypes, which were distinguished by their expression of cell cycle and neural transcripts. This study demonstrates discrete subtypes of ESCC in SSA, and suggests that the endemic nature of this disease reflects exposure to a carcinogen other than tobacco and oncogenic viruses.

Authors

Wenjin Liu, Jeff M. Snell, William R. Jeck, Katherine A. Hoadley, Matthew D. Wilkerson, Joel S. Parker, Nirali Patel, Yohannie B. Mlombe, Gift Mulima, N. George Liomba, Lindsey L. Wolf, Carol G. Shores, Satish Gopal, Norman E. Sharpless

×
  • ← Previous
  • 1
  • 2
  • …
  • 27
  • 28
  • 29
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts