Neuromyelitis optica spectrum disorders (NMOSD) are inflammatory autoimmune disorders of the CNS. IgG autoantibodies targeting the aquaporin-4 water channel (AQP4-IgGs) are the pathogenic effector of NMOSD. Dysregulated T follicular helper (Tfh) cells have been implicated in loss of B cell tolerance in autoimmune diseases. The contribution of Tfh cells to disease activity and therapeutic potential of targeting these cells in NMOSD remain unclear. Here, we established an autoimmune model of NMOSD by immunizing mice against AQP4 via in vivo electroporation. After AQP4 immunization, mice displayed AQP4 autoantibodies in blood circulation, blood-brain barrier disruption, and IgG infiltration in spinal cord parenchyma. Moreover, AQP4 immunization induced motor impairments and NMOSD-like pathologies, including astrocytopathy, demyelination, axonal loss, and microglia activation. These were associated with increased splenic Tfh, Th1, and Th17 cells; memory B cells; and plasma cells. Aqp4-deficient mice did not display motor impairments and NMOSD-like pathologies after AQP4 immunization. Importantly, abrogating ICOS/ICOS-L signaling using anti–ICOS-L antibody depleted Tfh cells and suppressed the response of Th1 and Th17 cells, memory B cells, and plasma cells in AQP4-immunized mice. These findings were associated with ameliorated motor impairments and spinal cord pathologies. This study suggests a role of Tfh cells in the pathophysiology of NMOSD in a mouse model with AQP4 autoimmunity and provides an animal model for investigating the immunological mechanisms underlying AQP4 autoimmunity and developing therapeutic interventions targeting autoimmune reactions in NMOSD.
Leung-Wah Yick, Oscar Ka-Fai Ma, Ethel Yin-Ying Chan, Krystal Xiwing Yau, Jason Shing-Cheong Kwan, Koon-Ho Chan
Activin receptor-like kinase 7 (ALK7) is a type I receptor in the TGF-β superfamily preferentially expressed in adipose tissue and associated with lipid metabolism. Inactivation of ALK7 signaling in mice results in increased lipolysis and resistance to both genetic and diet-induced obesity. Human genetic studies have recently revealed an association between ALK7 variants and both reduced waist to hip ratios and resistance to development of diabetes. In the present study, treatment with a neutralizing mAb against ALK7 caused a substantial loss of adipose mass and improved glucose intolerance and insulin resistance in both genetic and diet-induced mouse obesity models. The enhanced lipolysis increased fatty acid supply from adipocytes to promote fatty acid oxidation in muscle and oxygen consumption at the whole-body level. The treatment temporarily increased hepatic triglyceride levels, which resolved with long-term Ab treatment. Blocking of ALK7 signals also decreased production of its ligand, growth differentiation factor 3, by downregulating S100A8/A9 release from adipocytes and, subsequently, IL-1β release from adipose tissue macrophages. These findings support the feasibility of potential therapeutics targeting ALK7 as a treatment for obesity and diabetes.
Min Zhao, Katsuhide Okunishi, Yun Bu, Osamu Kikuchi, Hao Wang, Tadahiro Kitamura, Tetsuro Izumi
A GWAS of patients with anti-neutrophil cytoplasmic antibodies (ANCAs) found an association between proteinase-3 ANCA (PR3-ANCA) and a single nucleotide polymorphism (rs62132293) upstream of PRTN3, encoding PR3. The variant (G allele) was shown to be an expression quantitative trait locus in healthy controls, but the clinical impact remains unknown. Longitudinally followed patients with ANCA and healthy controls were genotyped. Gene expression was quantified by real-time quantitative PCR from leukocyte RNA. Plasma PR3 was quantified by ELISA. Among patients, variant carriers had elevated leukocyte PRTN3 expression compared with noncarriers (C/G vs. C/C and G/G vs. C/C). Healthy controls had low PRTN3 regardless of genotype. Myeloperoxidase (MPO) expression did not differ by genotype. PRTN3 expression correlated with circulating PR3, and variant carriers had higher plasma PR3 compared with noncarriers. Among variant carriers, there was an increased risk of relapse in patients with PR3-ANCA versus MPO-ANCA. The risk allele marked by rs62132293 is clinically significant as it is associated with increased autoantigen and may, in part, explain increased relapse in PR3-ANCA. Our results underscore the role of autoantigen availability in ANCA vasculitis.
Dhruti P. Chen, Claudia P. Aiello, DeMoris McCoy, Taylor Stamey, Jiajin Yang, Susan L. Hogan, Yichun Hu, Vimal K. Derebail, Eveline Y. Wu, J. Charles Jennette, Ronald J. Falk, Dominic J. Ciavatta
Although murine models of coronary atherosclerotic disease have been used extensively to determine mechanisms, limited new therapeutic options have emerged. Pigs with familial hypercholesterolemia (FH pigs) develop complex coronary atheromas that are almost identical to human lesions. We reported previously that insulin-like growth factor 1 (IGF-1) reduced aortic atherosclerosis and promoted features of stable plaque in a murine model. We administered human recombinant IGF-1 or saline (control) in atherosclerotic FH pigs for 6 months. IGF-1 decreased relative coronary atheroma in vivo (intravascular ultrasound) and reduced lesion cross-sectional area (postmortem histology). IGF-1 increased plaque’s fibrous cap thickness, and reduced necrotic core, macrophage content, and cell apoptosis, consistent with promotion of a stable plaque phenotype. IGF-1 reduced circulating triglycerides, markers of systemic oxidative stress, and CXCL12 chemokine levels. We used spatial transcriptomics (ST) to identify global transcriptome changes in advanced plaque compartments and to obtain mechanistic insights into IGF-1 effects. ST analysis showed that IGF-1 suppressed FOS/FOSB factors and gene expression of MMP9 and CXCL14 in plaque macrophages, suggesting possible involvement of these molecules in IGF-1’s effect on atherosclerosis. Thus, IGF-1 reduced coronary plaque burden and promoted features of stable plaque in a pig model, providing support for consideration of clinical trials.
Sergiy Sukhanov, Yusuke Higashi, Tadashi Yoshida, Svitlana Danchuk, Mitzi Alfortish, Traci Goodchild, Amy Scarborough, Thomas Sharp, James S. Jenkins, Daniel Garcia, Jan Ivey, Darla L. Tharp, Jeffrey Schumacher, Zach Rozenbaum, Jay K. Kolls, Douglas Bowles, David Lefer, Patrice Delafontaine
Rosacea is a common chronic inflammatory skin disease with a fluctuating course of excessive inflammation and apparent neovascularization. Microbial dysbiosis with a high density of Bacillus oleronius and increased activity of kallikrein 5, which cleaves cathelicidin antimicrobial peptide, are key pathogenic triggers in rosacea. However, how these events are linked to the disease remains unknown. Here, we show that type I IFNs produced by plasmacytoid DCs represent the pivotal link between dysbiosis, the aberrant immune response, and neovascularization. Compared with other commensal bacteria, B. oleronius is highly susceptible and preferentially killed by cathelicidin antimicrobial peptides, leading to enhanced generation of complexes with bacterial DNA. These bacterial DNA complexes but not DNA complexes derived from host cells are required for cathelicidin-induced activation of plasmacytoid DCs and type I IFN production. Moreover, kallikrein 5 cleaves cathelicidin into peptides with heightened DNA binding and type I IFN–inducing capacities. In turn, excessive type I IFN expression drives neoangiogenesis via IL-22 induction and upregulation of the IL-22 receptor on endothelial cells. These findings unravel a potentially novel pathomechanism that directly links hallmarks of rosacea to the killing of dysbiotic commensal bacteria with induction of a pathogenic type I IFN–driven and IL-22–mediated angiogenesis.
Alessio Mylonas, Heike C. Hawerkamp, Yichen Wang, Jiaqi Chen, Francesco Messina, Olivier Demaria, Stephan Meller, Bernhard Homey, Jeremy Di Domizio, Lucia Mazzolai, Alain Hovnanian, Michel Gilliet, Curdin Conrad
Persistent symptoms and radiographic abnormalities suggestive of failed lung repair are among the most common symptoms in patients with COVID-19 after hospital discharge. In mechanically ventilated patients with acute respiratory distress syndrome (ARDS) secondary to SARS-CoV-2 pneumonia, low tidal volumes to reduce ventilator-induced lung injury necessarily elevate blood CO2 levels, often leading to hypercapnia. The role of hypercapnia on lung repair after injury is not completely understood. Here — using a mouse model of hypercapnia exposure, cell lineage tracing, spatial transcriptomics, and 3D cultures — we show that hypercapnia limits β-catenin signaling in alveolar type II (AT2) cells, leading to their reduced proliferative capacity. Hypercapnia alters expression of major Wnts in PDGFRα+ fibroblasts from those maintaining AT2 progenitor activity toward those that antagonize β-catenin signaling, thereby limiting progenitor function. Constitutive activation of β-catenin signaling in AT2 cells or treatment of organoid cultures with recombinant WNT3A protein bypasses the inhibitory effects of hypercapnia. Inhibition of AT2 proliferation in patients with hypercapnia may contribute to impaired lung repair after injury, preventing sealing of the epithelial barrier and increasing lung flooding, ventilator dependency, and mortality.
Laura A. Dada, Lynn C. Welch, Natalia D. Magnani, Ziyou Ren, Hyebin Han, Patricia L. Brazee, Diego Celli, Annette S. Flozak, Anthea Weng, Mariana Maciel Herrerias, Vitalii Kryvenko, István Vadász, Constance E. Runyan, Hiam Abdala-Valencia, Masahiko Shigemura, S. Marina Casalino-Matsuda, Alexander V. Misharin, G.R. Scott Budinger, Cara J. Gottardi, Jacob I. Sznajder
Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal disease. Recent findings have shown a marked metabolic reprogramming associated with changes in mitochondrial homeostasis and autophagy during pulmonary fibrosis. The microRNA-33 (miR-33) family of microRNAs (miRNAs) encoded within the introns of sterol regulatory element binding protein (SREBP) genes are master regulators of sterol and fatty acid (FA) metabolism. miR-33 controls macrophage immunometabolic response and enhances mitochondrial biogenesis, FA oxidation, and cholesterol efflux. Here, we show that miR-33 levels are increased in bronchoalveolar lavage (BAL) cells isolated from patients with IPF compared with healthy controls. We demonstrate that specific genetic ablation of miR-33 in macrophages protects against bleomycin-induced pulmonary fibrosis. The absence of miR-33 in macrophages improves mitochondrial homeostasis and increases autophagy while decreasing inflammatory response after bleomycin injury. Notably, pharmacological inhibition of miR-33 in macrophages via administration of anti–miR-33 peptide nucleic acids (PNA-33) attenuates fibrosis in different in vivo and ex vivo mice and human models of pulmonary fibrosis. These studies elucidate a major role of miR-33 in macrophages in the regulation of pulmonary fibrosis and uncover a potentially novel therapeutic approach to treat this disease.
Farida Ahangari, Nathan L. Price, Shipra Malik, Maurizio Chioccioli, Thomas Bärnthaler, Taylor S. Adams, Jooyoung Kim, Sai Pallavi Pradeep, Shuizi Ding, Carlos Cosmos Jr., Kadi-Ann S. Rose, John E. McDonough, Nachelle R. Aurelien, Gabriel Ibarra, Norihito Omote, Jonas C. Schupp, Giuseppe DeIuliis, Julian A. Villalba Nunez, Lokesh Sharma, Changwan Ryu, Charles S. Dela Cruz, Xinran Liu, Antje Prasse, Ivan Rosas, Raman Bahal, Carlos Fernández-Hernando, Naftali Kaminski
Macrophages intimately interact with intestinal epithelial cells, but the consequences of defective macrophage–epithelial cell interactions for protection against enteric pathogens are poorly understood. Here, we show that in mice with a deletion in protein tyrosine phosphatase nonreceptor type 2 (PTPN2) in macrophages, infection with Citrobacter rodentium, a model of enteropathogenic and enterohemorrhagic E. coli infection in humans, promoted a strong type 1/IL-22–driven immune response, culminating in accelerated disease but also faster clearance of the pathogen. In contrast, deletion of PTPN2 specifically in epithelial cells rendered the epithelium unable to upregulate antimicrobial peptides and consequently resulted in a failure to eliminate the infection. The ability of PTPN2-deficient macrophages to induce faster recovery from C. rodentium was dependent on macrophage-intrinsic IL-22 production, which was highly increased in macrophages deficient in PTPN2. Our findings demonstrate the importance of macrophage-mediated factors, and especially macrophage-derived IL-22, for the induction of protective immune responses in the intestinal epithelium, and show that normal PTPN2 expression in the epithelium is crucial to allow for protection against enterohemorrhagic E. coli and other intestinal pathogens.
Marianne R. Spalinger, Vinicius Canale, Anica Becerra, Ali Shawki, Meli’sa Crawford, Alina N. Santos, Pritha Chatterjee, Jiang Li, Meera G. Nair, Declan F. McCole
Helicobacter pylori colonization of the gastric niche can persist for years in asymptomatic individuals. To deeply characterize the host–microbiota environment in H. pylori–infected (HPI) stomachs, we collected human gastric tissues and performed metagenomic sequencing, single-cell RNA-Seq (scRNA-Seq), flow cytometry, and fluorescent microscopy. HPI asymptomatic individuals had dramatic changes in the composition of gastric microbiome and immune cells compared with noninfected individuals. Metagenomic analysis uncovered pathway alterations related to metabolism and immune response. scRNA-Seq and flow cytometry data revealed that, in contrast to murine stomachs, ILC2s are virtually absent in the human gastric mucosa, whereas ILC3s are the dominant population. Specifically, proportion of NKp44+ ILC3s out of total ILCs were highly increased in the gastric mucosa of asymptomatic HPI individuals, and correlated with the abundance of selected microbial taxa. In addition, CD11c+ myeloid cells and activated CD4+ T cells and B cells were expanded in HPI individuals. B cells of HPI individuals acquired an activated phenotype and progressed into a highly proliferating germinal-center stage and plasmablast maturation, which correlated with the presence of tertiary lymphoid structures within the gastric lamina propria. Our study provides a comprehensive atlas of the gastric mucosa–associated microbiome and immune cell landscape when comparing asymptomatic HPI and uninfected individuals.
Chiara Sorini, Kumar P. Tripathi, Shengru Wu, Shawn M. Higdon, Jing Wang, Liqin Cheng, Sanghita Banerjee, Annika Reinhardt, Taras Kreslavsky, Anders Thorell, Lars Engstrand, Juan Du, Eduardo J. Villablanca
Targeted biologic therapies can elicit an undesirable host immune response characterized by the development of antidrug antibodies (ADA), an important cause of treatment failure. The most widely used biologic across immune-mediated diseases is adalimumab, a tumor necrosis factor inhibitor. This study aimed to identify genetic variants that contribute to the development of ADA against adalimumab, thereby influencing treatment failure. In patients with psoriasis on their first course of adalimumab, in whom serum ADA had been evaluated 6–36 months after starting treatment, we observed a genome-wide association with ADA against adalimumab within the major histocompatibility complex (MHC). The association signal mapped to the presence of tryptophan at position 9 and lysine at position 71 of the HLA-DR peptide-binding groove, with both residues conferring protection against ADA. Underscoring their clinical relevance, these residues were also protective against treatment failure. Our findings highlight antigenic peptide presentation via MHC class II as a critical mechanism in the development of ADA against biologic therapies and downstream treatment response.
Teresa Tsakok, Jake Saklatvala, Theo Rispens, Floris C. Loeff, Annick de Vries, Michael H. Allen, Ines A. Barbosa, David Baudry, Tejus Dasandi, Michael Duckworth, Freya Meynell, Alice Russell, Anna Chapman, Sandy McBride, Kevin McKenna, Gayathri Perera, Helen Ramsay, Raakhee Ramesh, Kathleen Sands, Alexa Shipman, the Biomarkers of Systemic Treatment Outcomes in Psoriasis (BSTOP) Study Group, A. David Burden, Christopher E.M. Griffiths, Nick J. Reynolds, Richard B. Warren, Satveer Mahil, Jonathan Barker, Nick Dand, Catherine Smith, Michael A. Simpson
No posts were found with this tag.