Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Insulin-like growth factor I reduces coronary atherosclerosis in pigs with familial hypercholesterolemia
Sergiy Sukhanov, … , David Lefer, Patrice Delafontaine
Sergiy Sukhanov, … , David Lefer, Patrice Delafontaine
Published January 5, 2023
Citation Information: JCI Insight. 2023. https://doi.org/10.1172/jci.insight.165713.
View: Text | PDF
Research In-Press Preview Cardiology Vascular biology

Insulin-like growth factor I reduces coronary atherosclerosis in pigs with familial hypercholesterolemia

  • Text
  • PDF
Abstract

Although murine models of coronary atherosclerotic disease have been used extensively to determine mechanisms, limited new therapeutic options have emerged. Pigs with familial hypercholesterolemia (FH pigs) develop complex coronary atheromas that are almost identical to human lesions. We reported previously that insulin-like growth factor 1 (IGF-1) reduced aortic atherosclerosis and promoted features of stable plaque in a murine model. We administered human recombinant IGF-1 or saline (control) in atherosclerotic FH pigs for 6 months. IGF-1 decreased relative coronary atheroma in vivo (intravascular ultrasound) and reduced lesion cross-sectional area (postmortem histology). IGF-1 increased plaque’s fibrous cap thickness, and reduced necrotic core, macrophage content, and cell apoptosis consistent with promotion of a stable plaque phenotype. IGF-1 reduced circulating triglycerides, markers of systemic oxidative stress and CXCL12 chemokine levels. We used spatial transcriptomics (ST) to identify global transcriptome changes in advanced plaque compartments and to obtain mechanistic insights into IGF-1 effects. ST analysis shows that IGF-1 suppressed FOS/FOSB factors and gene expression of MMP9 and CXCL14 in plaque macrophages, suggesting possible involvement of these molecules in IGF-1’s effect on atherosclerosis. Thus, IGF-1 reduced coronary plaque burden and promoted features of stable plaque in a pig model, providing support for consideration of clinical trials.

Authors

Sergiy Sukhanov, Yusuke Higashi, Tadashi Yoshida, Svitlana Danchuk, Mitzi Alfortish, Traci Goodchild, Amy Scarborough, Thomas E. Sharp III, James S. Jenkins, Daniel Garcia, Jan Ivey, Darla L. Tharp, Jeffrey D. Schumacher, Zach Rozenbaum, Jay K Kolls, Douglas K. Bowles, David Lefer, Patrice Delafontaine

×

Full Text PDF | Download (3.65 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts