Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Hypercapnia alters stromal-derived Wnt production limiting β-catenin signaling and proliferation in alveolar type 2 cells
Laura A. Dada, … , Cara J. Gottardi, Jacob I. Sznajder
Laura A. Dada, … , Cara J. Gottardi, Jacob I. Sznajder
Published January 10, 2023
Citation Information: JCI Insight. 2023. https://doi.org/10.1172/jci.insight.159331.
View: Text | PDF
Research In-Press Preview Cell biology Pulmonology

Hypercapnia alters stromal-derived Wnt production limiting β-catenin signaling and proliferation in alveolar type 2 cells

  • Text
  • PDF
Abstract

Persistent symptoms and radiographic abnormalities suggestive of failed lung repair are among the most common symptoms in patients with COVID-19 after hospital discharge. In mechanically ventilated patients with ARDS secondary to SARS-CoV-2 pneumonia, low tidal volumes to reduce ventilator-induced lung injury necessarily elevate blood CO2 levels, often leading to hypercapnia. The role of hypercapnia on lung repair after injury is not completely understood. Here, using a mouse model of hypercapnia exposure, cell lineage-tracing, spatial transcriptomics and 3D-cultures, we show that hypercapnia limits β-catenin signaling in AT2 cells, leading to their reduced proliferative capacity. Hypercapnia alters expression of major Wnts in PDGFRα+-fibroblasts from those maintaining AT2 progenitor activity towards those that antagonize β-catenin signaling thereby limiting progenitor function. Constitutive activation of β-catenin signaling in AT2 cells or treatment of organoid cultures with recombinant WNT3A protein bypasses the inhibitory effects of hypercapnia. Inhibition of AT2 proliferation in hypercapnic patients may contribute to impaired lung repair after injury, preventing sealing of the epithelial barrier, increasing lung flooding, ventilator dependency and mortality.

Authors

Laura A. Dada, Lynn C. Welch, Natalia D. Magnani, Ziyou Ren, Hyebin Han, Patricia L. Brazee, Diego Celli, Annette S. Flozak, Anthea Weng, Mariana Maciel Herrerias, Vitalii Kryvenko, István Vadász, Constance E. Runyan, Hiam Abdala-Valencia, Masahiko Shigemura, S. Marina Casalino-Matsuda, Alexander V. Misharin, G.R. Scott Budinger, Cara J. Gottardi, Jacob I. Sznajder

×

Full Text PDF | Download (4.71 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts