Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Type I interferons link skin-associated dysbiotic commensal bacteria to pathogenic inflammation and angiogenesis in rosacea
Alessio A. Mylonas, … , Michel Gilliet, Curdin Conrad
Alessio A. Mylonas, … , Michel Gilliet, Curdin Conrad
Published January 12, 2023
Citation Information: JCI Insight. 2023. https://doi.org/10.1172/jci.insight.151846.
View: Text | PDF
Research In-Press Preview Dermatology Inflammation

Type I interferons link skin-associated dysbiotic commensal bacteria to pathogenic inflammation and angiogenesis in rosacea

  • Text
  • PDF
Abstract

Rosacea is a common chronic inflammatory skin disease with a fluctuating course of excessive inflammation and apparent neovascularization. Microbial dysbiosis with high density of B. oleronius and increased activity of kallikrein 5, which cleaves cathelicidin antimicrobial peptide, are key pathogenic triggers in rosacea. However, how these events are linked to the disease remains unknown. Here, we show that type I interferons produced by plasmacytoid dendritic cells represent the pivotal link between dysbiosis, the aberrant immune response, and neovascularization. Compared to other commensal bacteria, B. oleronius is highly susceptible and preferentially killed by cathelicidin antimicrobial peptides leading to enhanced generation of complexes with bacterial DNA. These bacterial DNA-complexes but not DNA-complexes derived from host cells are required for cathelicidin-induced activation of plasmacytoid dendritic cells and type I interferon production. Moreover, kallikrein 5 cleaves cathelicidin into peptides with heightened DNA-binding and type I interferon-inducing capacities. In turn, excessive type I interferon expression drives neoangiogenesis via IL22 induction and upregulation of the IL22 receptor on endothelial cells. These findings unravel a novel pathomechanism, which directly links hallmarks of rosacea to the killing of dysbiotic commensal bacteria with induction of a pathogenic type I interferon-driven and IL22-mediated angiogenesis.

Authors

Alessio A. Mylonas, Heike C. Hawerkamp, Yichen Wang, Jiaqi Chen, Francesco Messina, Olivier Demaria, Stephan Meller, Bernhard Homey, Jeremy Di Domizio, Lucia Mazzolai, Alain Hovnanian, Michel Gilliet, Curdin Conrad

×

Full Text PDF | Download (2.64 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts