Go to The Journal of Clinical Investigation
Insight white on transparent.20160208
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All...
  • Videos
  • Collections
    • Recently published
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

Insight white on transparent small

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Transfers
  • Current issue
  • Past issues
  • By specialty
  • Contact
  • Recently published
  • Technical Advances
  • Clinical Medicine
  • Editorials
  • Top read articles

Cell biology

  • 81 Articles
  • 0 Posts
  • ←
  • 1
  • 2
  • …
  • 5
  • 6
  • 7
  • 8
  • 9
  • →
Integrin-Kindlin3 requirements for microglial motility in vivo are distinct from those for macrophages
Julia Meller, … , Bruce D. Trapp, Tatiana V. Byzova
Julia Meller, … , Bruce D. Trapp, Tatiana V. Byzova
Published June 2, 2017
Citation Information: JCI Insight. 2017;2(11):e93002. https://doi.org/10.1172/jci.insight.93002.
View: Text | PDF

Integrin-Kindlin3 requirements for microglial motility in vivo are distinct from those for macrophages

  • Text
  • PDF
Abstract

Microglia play a critical role in the development and homeostasis of the CNS. While mobilization of microglia is critical for a number of pathologies, understanding of the mechanisms of their migration in vivo is limited and often based on similarities to macrophages. Kindlin3 deficiency as well as Kindlin3 mutations of integrin-binding sites abolish both integrin inside-out and outside-in signaling in microglia, thereby resulting in severe deficiencies in cell adhesion, polarization, and migration in vitro, which are similar to the defects observed in macrophages. In contrast, while Kindlin3 mutations impaired macrophage mobilization in vivo, they had no effect either on the population of microglia in the CNS during development or on mobilization of microglia and subsequent microgliosis in a model of multiple sclerosis. At the same time, acute microglial response to laser-induced injury was impaired by the lack of Kindlin3-integrin interactions. Based on 2-photon imaging of microglia in the brain, Kindlin3 is required for elongation of microglial processes toward the injury site and formation of phagosomes in response to brain injury. Thus, while Kindlin3 deficiency in human subjects is not expected to diminish the presence of microglia within CNS, it might delay the recovery process after injury, thereby exacerbating its complications.

Authors

Julia Meller, Zhihong Chen, Tejasvi Dudiki, Rebecca M. Cull, Rakhilya Murtazina, Saswat K. Bal, Elzbieta Pluskota, Samantha Stefl, Edward F. Plow, Bruce D. Trapp, Tatiana V. Byzova

×

Epithelial Gpr116 regulates pulmonary alveolar homeostasis via Gq/11 signaling
Kari Brown, … , Jeffrey A. Whitsett, James P. Bridges
Kari Brown, … , Jeffrey A. Whitsett, James P. Bridges
Published June 2, 2017
Citation Information: JCI Insight. 2017;2(11):e93700. https://doi.org/10.1172/jci.insight.93700.
View: Text | PDF

Epithelial Gpr116 regulates pulmonary alveolar homeostasis via Gq/11 signaling

  • Text
  • PDF
Abstract

Pulmonary function is dependent upon the precise regulation of alveolar surfactant. Alterations in pulmonary surfactant concentrations or function impair ventilation and cause tissue injury. Identification of the molecular pathways that sense and regulate endogenous alveolar surfactant concentrations, coupled with the ability to pharmacologically modulate them both positively and negatively, would be a major therapeutic advance for patients with acute and chronic lung diseases caused by disruption of surfactant homeostasis. The orphan adhesion GPCR GPR116 (also known as Adgrf5) is a critical regulator of alveolar surfactant concentrations. Here, we show that human and mouse GPR116 control surfactant secretion and reuptake in alveolar type II (AT2) cells by regulating guanine nucleotide–binding domain α q and 11 (Gq/11) signaling. Synthetic peptides derived from the ectodomain of GPR116 activated Gq/11-dependent inositol phosphate conversion, calcium mobilization, and cortical F-actin stabilization to inhibit surfactant secretion. AT2 cell–specific deletion of Gnaq and Gna11 phenocopied the accumulation of surfactant observed in Gpr116–/– mice. These data provide proof of concept that GPR116 is a plausible therapeutic target to modulate endogenous alveolar surfactant pools to treat pulmonary diseases associated with surfactant dysfunction.

Authors

Kari Brown, Alyssa Filuta, Marie-Gabrielle Ludwig, Klaus Seuwen, Julian Jaros, Solange Vidal, Kavisha Arora, Anjaparavanda P. Naren, Kathirvel Kandasamy, Kaushik Parthasarathi, Stefan Offermanns, Robert J. Mason, William E. Miller, Jeffrey A. Whitsett, James P. Bridges

×

Role of adenylyl cyclase 6 in the development of lithium-induced nephrogenic diabetes insipidus
Søren Brandt Poulsen, … , Timo Rieg, Robert A. Fenton
Søren Brandt Poulsen, … , Timo Rieg, Robert A. Fenton
Published April 6, 2017
Citation Information: JCI Insight. 2017;2(7):e91042. https://doi.org/10.1172/jci.insight.91042.
View: Text | PDF

Role of adenylyl cyclase 6 in the development of lithium-induced nephrogenic diabetes insipidus

  • Text
  • PDF
Abstract

Psychiatric patients treated with lithium (Li+) may develop nephrogenic diabetes insipidus (NDI). Although the etiology of Li+-induced NDI (Li-NDI) is poorly understood, it occurs partially due to reduced aquaporin-2 (AQP2) expression in the kidney collecting ducts. A mechanism postulated for this is that Li+ inhibits adenylyl cyclase (AC) activity, leading to decreased cAMP, reduced AQP2 abundance, and less membrane targeting. We hypothesized that Li-NDI would not develop in mice lacking AC6. Whole-body AC6 knockout (AC6–/–) mice and potentially novel connecting tubule/principal cell–specific AC6 knockout (AC6loxloxCre) mice had approximately 50% lower urine osmolality and doubled water intake under baseline conditions compared with controls. Dietary Li+ administration increased water intake and reduced urine osmolality in control, AC6–/–, and AC6loxloxCre mice. Consistent with AC6–/– mice, medullary AQP2 and pS256-AQP2 abundances were lower in AC6loxloxCre mice compared with controls under standard conditions, and levels were further reduced after Li+ administration. AC6loxloxCre and control mice had a similar increase in the numbers of proliferating cell nuclear antigen–positive cells in response to Li+. However, AC6loxloxCre mice had a higher number of H+-ATPase B1 subunit–positive cells under standard conditions and after Li+ administration. Collectively, AC6 has a minor role in Li-NDI development but may be important for determining the intercalated cell–to–principal cell ratio.

Authors

Søren Brandt Poulsen, Tina Bøgelund Kristensen, Heddwen L. Brooks, Donald E. Kohan, Timo Rieg, Robert A. Fenton

×

Store-operated Ca2+ entry controls ameloblast cell function and enamel development
Miriam Eckstein, … , Stefan Feske, Rodrigo S. Lacruz
Miriam Eckstein, … , Stefan Feske, Rodrigo S. Lacruz
Published March 23, 2017
Citation Information: JCI Insight. 2017;2(6):e91166. https://doi.org/10.1172/jci.insight.91166.
View: Text | PDF

Store-operated Ca2+ entry controls ameloblast cell function and enamel development

  • Text
  • PDF
Abstract

Loss-of-function mutations in stromal interaction molecule 1 (STIM1) impair the activation of Ca2+ release–activated Ca2+ (CRAC) channels and store-operated Ca2+ entry (SOCE), resulting in a disease syndrome called CRAC channelopathy that is characterized by severe dental enamel defects. The cause of these enamel defects has remained unclear given a lack of animal models. We generated Stim1/2K14cre mice to delete STIM1 and its homolog STIM2 in enamel cells. These mice showed impaired SOCE in enamel cells. Enamel in Stim1/2K14cre mice was hypomineralized with decreased Ca content, mechanically weak, and thinner. The morphology of SOCE-deficient ameloblasts was altered, showing loss of the typical ruffled border, resulting in mislocalized mitochondria. Global gene expression analysis of SOCE-deficient ameloblasts revealed strong dysregulation of several pathways. ER stress genes associated with the unfolded protein response were increased in Stim1/2-deficient cells, whereas the expression of components of the glutathione system were decreased. Consistent with increased oxidative stress, we found increased ROS production, decreased mitochondrial function, and abnormal mitochondrial morphology in ameloblasts of Stim1/2K14cre mice. Collectively, these data show that loss of SOCE in enamel cells has substantial detrimental effects on gene expression, cell function, and the mineralization of dental enamel.

Authors

Miriam Eckstein, Martin Vaeth, Cinzia Fornai, Manikandan Vinu, Timothy G. Bromage, Meerim K. Nurbaeva, Jessica L. Sorge, Paulo G. Coelho, Youssef Idaghdour, Stefan Feske, Rodrigo S. Lacruz

×

Targeting adhesion signaling in KRAS, LKB1 mutant lung adenocarcinoma
Melissa Gilbert-Ross, … , Wei Zhou, Adam I. Marcus
Melissa Gilbert-Ross, … , Wei Zhou, Adam I. Marcus
Published March 9, 2017
Citation Information: JCI Insight. 2017;2(5):e90487. https://doi.org/10.1172/jci.insight.90487.
View: Text | PDF

Targeting adhesion signaling in KRAS, LKB1 mutant lung adenocarcinoma

  • Text
  • PDF
Abstract

Loss of LKB1 activity is prevalent in KRAS mutant lung adenocarcinoma and promotes aggressive and treatment-resistant tumors. Previous studies have shown that LKB1 is a negative regulator of the focal adhesion kinase (FAK), but in vivo studies testing the efficacy of FAK inhibition in LKB1 mutant cancers are lacking. Here, we took a pharmacologic approach to show that FAK inhibition is an effective early-treatment strategy for this high-risk molecular subtype. We established a lenti-Cre–induced Kras and Lkb1 mutant genetically engineered mouse model (KLLenti) that develops 100% lung adenocarcinoma and showed that high spatiotemporal FAK activation occurs in collective invasive cells that are surrounded by high levels of collagen. Modeling invasion in 3D, loss of Lkb1, but not p53, was sufficient to drive collective invasion and collagen alignment that was highly sensitive to FAK inhibition. Treatment of early, stage-matched KLLenti tumors with FAK inhibitor monotherapy resulted in a striking effect on tumor progression, invasion, and tumor-associated collagen. Chronic treatment extended survival and impeded local lymph node spread. Lastly, we identified focally upregulated FAK and collagen-associated collective invasion in KRAS and LKB1 comutated human lung adenocarcinoma patients. Our results suggest that patients with LKB1 mutant tumors should be stratified for early treatment with FAK inhibitors.

Authors

Melissa Gilbert-Ross, Jessica Konen, Junghui Koo, John Shupe, Brian S. Robinson, Walter Guy Wiles IV, Chunzi Huang, W. David Martin, Madhusmita Behera, Geoffrey H. Smith, Charles E. Hill, Michael R. Rossi, Gabriel L. Sica, Manali Rupji, Zhengjia Chen, Jeanne Kowalski, Andrea L. Kasinski, Suresh S. Ramalingam, Haian Fu, Fadlo R. Khuri, Wei Zhou, Adam I. Marcus

×

The volume-regulated anion channel (LRRC8) in nodose neurons is sensitive to acidic pH
Runping Wang, … , Rajan Sah, François M. Abboud
Runping Wang, … , Rajan Sah, François M. Abboud
Published March 9, 2017
Citation Information: JCI Insight. 2017;2(5):e90632. https://doi.org/10.1172/jci.insight.90632.
View: Text | PDF

The volume-regulated anion channel (LRRC8) in nodose neurons is sensitive to acidic pH

  • Text
  • PDF
Abstract

The leucine rich repeat containing protein 8A (LRRC8A), or SWELL1, is an essential component of the volume-regulated anion channel (VRAC) that is activated by cell swelling and ionic strength. We report here for the first time to our knowledge its expression in a primary cell culture of nodose ganglia neurons and its localization in the soma, neurites, and neuronal membrane. We show that this neuronal VRAC/SWELL1 senses low external pH (pHo) in addition to hypoosmolarity. A robust sustained chloride current is seen in 77% of isolated nodose neurons following brief exposures to extracellular acid pH. Its activation involves proton efflux, intracellular alkalinity, and an increase in NOX-derived H2O2. The molecular identity of both the hypoosmolarity-induced and acid pHo–conditioned VRAC as LRRC8A (SWELL1) was confirmed by Cre-flox–mediated KO, shRNA-mediated knockdown, and CRISPR/Cas9-mediated LRRC8A deletion in HEK cells and in primary nodose neuronal cultures. Activation of VRAC by low pHo reduces neuronal injury during simulated ischemia and N-methyl-D-aspartate–induced (NMDA-induced) apoptosis. These results identify the VRAC (LRRC8A) as a dual sensor of hypoosmolarity and low pHo in vagal afferent neurons and define the mechanisms of its activation and its neuroprotective potential.

Authors

Runping Wang, Yongjun Lu, Susheel Gunasekar, Yanhui Zhang, Christopher J. Benson, Mark W. Chapleau, Rajan Sah, François M. Abboud

×

Muscular dystrophy in PTFR/cavin-1 null mice
Shi-Ying Ding, … , Libin Liu, Paul F. Pilch
Shi-Ying Ding, … , Libin Liu, Paul F. Pilch
Published March 9, 2017
Citation Information: JCI Insight. 2017;2(5):e91023. https://doi.org/10.1172/jci.insight.91023.
View: Text | PDF

Muscular dystrophy in PTFR/cavin-1 null mice

  • Text
  • PDF
Abstract

ice and humans lacking the caveolae component polymerase I transcription release factor (PTRF, also known as cavin-1) exhibit lipo- and muscular dystrophy. Here we describe the molecular features underlying the muscle phenotype for PTRF/cavin-1 null mice. These animals had a decreased ability to exercise, and exhibited muscle hypertrophy with increased muscle fiber size and muscle mass due, in part, to constitutive activation of the Akt pathway. Their muscles were fibrotic and exhibited impaired membrane integrity accompanied by an apparent compensatory activation of the dystrophin-glycoprotein complex along with elevated expression of proteins involved in muscle repair function. Ptrf deletion also caused decreased mitochondrial function, oxygen consumption, and altered myofiber composition. Thus, in addition to compromised adipocyte-related physiology, the absence of PTRF/cavin-1 in mice caused a unique form of muscular dystrophy with a phenotype similar or identical to that seen in humans lacking this protein. Further understanding of this muscular dystrophy model will provide information relevant to the human situation and guidance for potential therapies.

Authors

Shi-Ying Ding, Libin Liu, Paul F. Pilch

×

Mitophagy and mitochondrial biogenesis in atrial tissue of patients undergoing heart surgery with cardiopulmonary bypass
Allen M. Andres, … , Robert M. Mentzer Jr., Roberta A. Gottlieb
Allen M. Andres, … , Robert M. Mentzer Jr., Roberta A. Gottlieb
Published February 23, 2017
Citation Information: JCI Insight. 2017;2(4):e89303. https://doi.org/10.1172/jci.insight.89303.
View: Text | PDF

Mitophagy and mitochondrial biogenesis in atrial tissue of patients undergoing heart surgery with cardiopulmonary bypass

  • Text
  • PDF
Abstract

Mitophagy occurs during ischemia/reperfusion (I/R) and limits oxidative stress and injury. Mitochondrial turnover was assessed in patients undergoing cardiac surgery involving cardiopulmonary bypass (CPB). Paired biopsies of right atrial appendage before initiation and after weaning from CPB were processed for protein analysis, mitochondrial DNA/nuclear DNA ratio (mtDNA:nucDNA ratio), mtDNA damage, mRNA, and polysome profiling. Mitophagy in the post-CPB samples was evidenced by decreased levels of mitophagy adapters NDP52 and optineurin in whole tissue lysate, decreased Opa1 long form, and translocation of Parkin to the mitochondrial fraction. PCR analysis of mtDNA comparing amplification of short vs. long segments of mtDNA revealed increased damage following cardiac surgery. Surprisingly, a marked increase in several mitochondria-specific protein markers and mtDNA:nucDNA ratio was observed, consistent with increased mitochondrial biogenesis. mRNA analysis suggested that mitochondrial biogenesis was traniscription independent and likely driven by increased translation of existing mRNAs. These findings demonstrate in humans that both mitophagy and mitochondrial biogenesis occur during cardiac surgery involving CPB. We suggest that mitophagy is balanced by mitochondrial biogenesis during I/R stress experienced during surgery. Mitigating mtDNA damage and elucidating mechanisms regulating mitochondrial turnover will lead to interventions to improve outcome after I/R in the setting of heart disease.

Authors

Allen M. Andres, Kyle C. Tucker, Amandine Thomas, David J.R. Taylor, David Sengstock, Salik M. Jahania, Reza Dabir, Somayeh Pourpirali, Jamelle A. Brown, David G. Westbrook, Scott W. Ballinger, Robert M. Mentzer Jr., Roberta A. Gottlieb

×

Polyfunctional and IFN-γ monofunctional human CD4+ T cell populations are molecularly distinct
Julie G. Burel, … , James S. McCarthy, Denise L. Doolan
Julie G. Burel, … , James S. McCarthy, Denise L. Doolan
Published February 9, 2017
Citation Information: JCI Insight. 2017;2(3):e87499. https://doi.org/10.1172/jci.insight.87499.
View: Text | PDF

Polyfunctional and IFN-γ monofunctional human CD4+ T cell populations are molecularly distinct

  • Text
  • PDF
Abstract

Pathogen-specific polyfunctional T cell responses have been associated with favorable clinical outcomes, but it is not known whether molecular differences exist between polyfunctional and monofunctional cytokine-producing T cells. Here, we report that polyfunctional CD4+ T cells induced during Plasmodium falciparum (P. falciparum) blood-stage infection in humans have a unique transcriptomic profile compared with IFN-γ monofunctional CD4+ T cells and, thus, are molecularly distinct. The 14-gene signature revealed in P. falciparum–reactive polyfunctional T cells is associated with cytokine signaling and lymphocyte chemotaxis, and systems biology analysis identified IL-27 as an upstream regulator of the polyfunctional gene signature. Importantly, the polyfunctional gene signature is largely conserved in Influenza-reactive polyfunctional CD4+ T cells, suggesting that polyfunctional T cells have core characteristics independent of pathogen specificity. This study provides the first evidence to our knowledge that consistent molecular differences exist between polyfunctional and monofunctional CD4+ T cells.

Authors

Julie G. Burel, Simon H. Apte, Penny L. Groves, James S. McCarthy, Denise L. Doolan

×

Amphetamines promote mitochondrial dysfunction and DNA damage in pulmonary hypertension
Pin-I Chen, … , Brian J. Feldman, Marlene Rabinovitch
Pin-I Chen, … , Brian J. Feldman, Marlene Rabinovitch
Published January 26, 2017
Citation Information: JCI Insight. 2017;2(2):e90427. https://doi.org/10.1172/jci.insight.90427.
View: Text | PDF

Amphetamines promote mitochondrial dysfunction and DNA damage in pulmonary hypertension

  • Text
  • PDF
Abstract

Amphetamine (AMPH) or methamphetamine (METH) abuse can cause oxidative damage and is a risk factor for diseases including pulmonary arterial hypertension (PAH). Pulmonary artery endothelial cells (PAECs) from AMPH-associated-PAH patients show DNA damage as judged by γH2AX foci and DNA comet tails. We therefore hypothesized that AMPH induces DNA damage and vascular pathology by interfering with normal adaptation to an environmental perturbation causing oxidative stress. Consistent with this, we found that AMPH alone does not cause DNA damage in normoxic PAECs, but greatly amplifies DNA damage in hypoxic PAECs. The mechanism involves AMPH activation of protein phosphatase 2A, which potentiates inhibition of Akt. This increases sirtuin 1, causing deacetylation and degradation of HIF1α, thereby impairing its transcriptional activity, resulting in a reduction in pyruvate dehydrogenase kinase 1 and impaired cytochrome c oxidase 4 isoform switch. Mitochondrial oxidative phosphorylation is inappropriately enhanced and, as a result of impaired electron transport and mitochondrial ROS increase, caspase-3 is activated and DNA damage is induced. In mice given binge doses of METH followed by hypoxia, HIF1α is suppressed and pulmonary artery DNA damage foci are associated with worse pulmonary vascular remodeling. Thus, chronic AMPH/METH can induce DNA damage associated with vascular disease by subverting the adaptive responses to oxidative stress.

Authors

Pin-I Chen, Aiqin Cao, Kazuya Miyagawa, Nancy F. Tojais, Jan K. Hennigs, Caiyun G. Li, Nathaly M. Sweeney, Audrey S. Inglis, Lingli Wang, Dan Li, Matthew Ye, Brian J. Feldman, Marlene Rabinovitch

×
  • ←
  • 1
  • 2
  • …
  • 5
  • 6
  • 7
  • 8
  • 9
  • →

No posts were found with this tag.

Advertisement
Follow JCI Insight: Facebook logo white Twitter logo v2 Rss icon
Copyright © 2019 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts